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Chapter 1
Analytic Functions

A complex number is a number of the form a + bi where a, b are real

numbers and i is the square root of −1. They have the algebraic structure

of a field. In engineering and physics, complex numbers are used extensively

to describe electric circuits and electromagnetic waves. The number i appears

explicitly in the Schrödinger wave equation, which is fundamental to the quantum

theory of the atom. Complex analysis, which combines complex numbers with

ideas from calculus, has been widely applied to various subjects.

Historically, complex numbers arose in the search for solutions to equations

such as x2 = −1. Because there is no real number x for which the square is

−1, early mathematicians believed this equation had no solution. However, by

the middle of the 16th century, Italian mathematician Gerolamo Cardano and his

contemporaries were experimenting with solutions to equations that involved the

square roots of negative numbers. Swiss mathematician Leonhard Euler intro-

duced the modern symbol i for
√
−1 in 1777 and expressed the famous relation-

ship eiπ = −1, which connects four of the fundamental numbers of mathematics.

In his doctoral dissertation in 1799, German mathematician Carl Friedrich Gauss
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1.1. Regions in the Complex Plane 5

proved the fundamental theorem of algebra, which states that every polynomial

with complex coefficients has a complex root. The study of complex functions

was continued by French mathematician Augustin Louis Cauchy, who in 1825

generalized the real definite integral of calculus to functions of a complex variable.

We first discuss about complex functions and then define the concepts limit,

continuity, differentiability of complex functions. We will study in detail about

analytic functions, an important class of complex functions, which plays a

central role in complex analysis.

1.1 Regions in the Complex Plane

In this section, we recollect some facts concerned with sets of complex numbers,

or points in the z plane, and their closeness to one another.

For any ε > 0, an ε- neighborhood of a given point z0 is the set |z−z0| < ε.

It consists of all points z lying inside but not on a circle centered at z0 and with

positive radius ε.

A deleted neighborhood of z0, or punctured disk , 0 < |z − z0| < ε

consisting of all points z in an ε- neighborhood of z0 except for the point z0

itself.

A point z0 is said to be an interior point of a set S whenever there is some

neighborhood of z0 that contains only points of S. z0 is called an exterior point

of S when there exists a neighborhood of it containing no points of S. If z0 is

neither of these, it is a boundary point of S. Thus, a boundary point is a point

all of whose neighborhoods contain at least one point in S and at least one point

not in S. The totality of all boundary points is called the boundary of S.

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 6

A set is called open if it contains none of its boundary points. Clearly, a set

is open if and only if each of its points is an interior point. A set is closed if it

contains all of its boundary points, and the closure of a set S is the closed set

consisting of all points in S together with the boundary of S.

An open set S is said to be connected if each pair of points z1 and z2 in S

can be joined by a polygonal line, consisting of a finite number of line segments

joined end to end, that lies entirely in S.

A nonempty open set that is connected is called a domain. A domain

together with some, none, or all of its boundary points is said to be a region.

A set S is bounded if every point of S lies inside some circle |z| = R ;

otherwise, it is unbounded. A point z0 is said to be an accumulation point

of a set S if each deleted neighborhood of z0 contains at least one point of S.

1.2 Functions of a Complex Variable

Let S be a set of complex numbers. A function f defined on S is a rule that

assigns to each z in S a complex number w. The number w is called the value

of f at z and is denoted by f(z). i.e., w = f(z). The set S is called the domain

of definition of f .

Let w = f(z) be a complex function of the complex variable z. Let w = u+iv

and z = x + iy. Then, u and v depends upon the values of the real variables x

and y. Therefore, f(z) = u(x, y)+iv(x, y). This shows that any complex function

f(z) of a complex variable z = x + iy is equivalent to a pair of two real-valued

functions u and v of the real variables x and y.

In polar coordinates, z = reiθ, we have f(z) = u(r, θ) + iv(r, θ).

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 7

Example 1.

Consider the complex function f(z) = z2, then f(x + iy) = (x + iy)2 =

x2−y2+i2xy. Hence u(x, y) = x2−y2 and v(x, y) = 2xy. When polar coordinates

are used, f(reiθ) = (reiθ)2 = r2ei2θ = r2cos2θ + ir2sin2θ.. Therefore, u(r, θ) =

r2cos2θ and v(r, θ) = r2sin2θ.

If n is zero or a positive integer and if a0, a1, a2, ..., an are complex constants,

where an 6= 0, the function P (z) = a0 + a1z + a2z
2 + ... + anz

n is called a

polynomial of degree n. Here, the sum has only a finite number of terms and

the domain of definition is the entire z plane. A quotient of the form
P (z)

Q(z)
where,

P (z) and Q(z) are polynomials is called a rational function and is defined at

each point z where Q(z) 6= 0.

Problem 1.

Express the function f(z) = z3 + z + 1 in the form f(z) = u(x, y) + iv(x, y).

Solution.

Let z = x+iy. Then, f(z) = z3+z+1 = (x+iy)3+(x+iy)+1. On simplification,

we get f(z) = (x3 − 3xy2 + x + 1) + i(3x2y − y3 + y). �

1.2.1 Limit of a Function of a Complex Variable

Let a function f be defined at all points z in some deleted neighborhood z0. Then

we say that the limit of f(z) as z approaches z0 is a number w0, or in symbols

limz→z0f(z) = w0, if for each positive number ε, there is a positive number δ

such that |f(z)−w0| < ε whenever 0 < |z − z0| < δ. ( i.e., the limit of f(z) as z

approaches z0 is the number w0, if the point w = f(z) can be made arbitrarily

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 8

close to w0 if we choose the point z close enough to z0 but distinct from it.)

Geometrically, this means that for each ε-neighborhood |w−w0| < ε of w0, there

exists a deleted neighborhood 0 < |z − z0| < δ of z0 such that every point z in

it has an image w lying in the ε-neighborhood.

Note that limit of a function f(z) at a point z0 is unique, if it exists.

Theorem 1.2.1.

Suppose that f(z) = u(x, y) + iv(x, y), (z = x + iy) and z0 = x0 + iy0, w0 =

u0 + iv0. Then, limz→z0f(z) = w0 if and only if lim(x,y)→(x0,y0)u(x, y) = u0 and

lim(x,y)→(x0,y0)v(x, y) = v0.

Similar rules as in the case of the limits of real functions, will hold in the

complex case. For instance, if limz→z0f(z) = w0 and if limz→z0F (z) = W0, then

limz→z0 [f(z) + F (z)] = w0 + W0,

limz→z0 [f(z)F (z)] = w0W0,

and, if W0 6= 0 ,

limz→z0

f(z)

F (z)
=

w0

W0

.

Also, limz→z0c = c and limz→z0z = z0, where z0 and c are any complex

numbers, and limz→z0z
n = zn

0 (n = 1, 2, ...).

The limit of a polynomial P (z) = a0+a1z+a2z
2+ ...+anz

n as z approaches a

point z0 is the value of the polynomial at that point. i.e., limz→z0P (z) = P (z0).

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 9

1.2.2 Limits involving the Point at Infinity

The complex plane together with the point at infinity is called the extended

complex plane. To visualize the point at infinity, denoted by∞ one can think of

the complex plane as passing through the equator of a unit sphere centered at the

origin. To each point z in the plane there corresponds exactly one point P on the

surface of the sphere. The point P is the point where the line through z and the

north pole N intersects the sphere. In like manner, to each point P on the surface

of the sphere, other than the north pole N , there corresponds exactly one point

z in the plane. By letting the point N of the sphere correspond to the point at

infinity, we obtain a one to one correspondence between the points of the sphere

and the points of the extended complex plane. The sphere is known as the Rie-

mann sphere, and the correspondence is called a stereographic projection.

Note that in the above identification, the exterior of the unit circle centered

at the origin in the complex plane corresponds to the upper hemisphere with

the equator and the point N deleted. Moreover, for each small positive number

ε > 0, those points in the complex plane exterior to the circle |z| = 1

ε
correspond

to points on the sphere close to N . Therefore, the set |z| =
1

ε
is called an ε-

neighborhood of ∞. With this definition of ε-neighborhood of ∞, we can define

School of Distance Education,University of Calicut
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1.2. Functions of a Complex Variable 10

limits involving the point at infinity as in 1.2.1. Also, we have: If z0 and w0

are points in the z and w planes, respectively, then limz→z0f(z) = ∞ if and

only if limz→z0

1

f(z)
= 0 and limz→∞f(z) = w0 if and only if limz→0f(

1

z
) = w0.

Moreover, limz→∞f(z) = ∞ if and only if limz→0
1

f(1/z)
= 0.

1.2.3 Continuity

A function f is said to be continuous at a point z0 if: (i) limz→z0f(z) exists,

(ii) f(z0) exists, and (iii) limz→z0f(z) = f(z0).

A function of a complex variable is said to be continuous in a region R if

it is continuous at each point in R.

Note that if two functions are continuous at a point, then their sum and

product are also continuous at that point and their quotient is continuous at

any such point if the denominator is not zero there. Also, a composition of

continuous functions is itself continuous. If f(z) = u(x, y) + iv(x, y), then the

function f(z) is continuous at a point z0 = (x0, y0) if and only if its component

functions u(x, y) and v(x, y) are continuous at (x0, y0).

Theorem 1.2.2.

If a function f(z) is continuous and nonzero at a point z0, then f(z) 6= 0

throughout some neighborhood of that point.

Proof.

Assume that f(z) is continuous and nonzero at z0. Let ε =
|f(z0)|

2
. Then

corresponding to this ε > 0, there is a positive number δ such that |f(z)−f(z0)| <
|f(z0)|

2
whenever |z − z0| < δ. Now, if there is a point z in the neighborhood

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 11

|z − z0| < δ at which f(z) = 0, then we have |f(z0)| <
|f(z0)|

2
, which is a

contradiction. This shows that f(z) 6= 0 throughout the neighborhood |z−z0| < δ

of z0.

Theorem 1.2.3.

If a function f is continuous throughout a region R that is both closed and

bounded, there exists a nonnegative real number M such that |f(z)| ≤ M for all

points z in R, where equality holds for at least one such z.

1.2.4 Derivatives

Let f be a function whose domain of definition contains a neighborhood |z−z0| <

δ of a point z0. The derivative of f at z0 is the limit

f ′(z0) = limz→z0

f(z)− f(z0)

z − z0

,

and the function f is said to be differentiable at z0 when f ′(z0) exists.

Writing 4z = z − z0, where z 6= z0, we have

f ′(z0) = lim4z→0
f(z0 +4z)− f(z0)

4z
.

Since f is defined throughout a neighborhood of z0, the number f(z0 +4z) is

always defined for |4z| sufficiently small. If we write w = f(z + 4z) − f(z),

then

f ′(z) =
dw

dz
= lim4z→0

4w

4z
.

Remark.

Note that the existence of the derivative of a function at a point implies the

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 12

continuity of the function at that point. To see this, assume that f ′(z0) exists.

Then,

limz→z0 [f(z)− f(z0)] = limz→z0

f(z)− f(z0)

z − z0

limz→z0(z − z0) = f ′(z0).0 = 0.

⇒ limz→z0f(z) = f(z0). This shows that f is continuous at z0.

The following example shows that the continuity of a function at a point does

not imply the existence of a derivative there.

Example 2.

Consider the real-valued function f(z) = |z|2 = u(x, y) + i v(x, y). Then,

u(x, y) =
√

x2 + y2 and v(x, y) = 0. Note that f(z) = |z|2 is continuous at each

point in the complex plane since its components are continuous at each point.

Here,

4w

4z
=
|z +4z|2 − |z|2

4z
=

(z +4z)(z +4z)− zz

4z
= z +4z + z

4z

4z
.

If 4z = (4x,4y) → (0, 0) horizontally through the points (4x, 0) on the real

axis, then
4z

4z
→ 1 and if 4z = (4x,4y) → (0, 0) vertically through the points

(0,4y) on the imaginary axis, then
4z

4z
→ −1, so that we have

4w

4z
→ z + z

and
4w

4z
→ z − z in these cases. By the uniqueness of limits, this implies

z + z = z − z ⇒ z = 0. Therefore,
dw

dz
cannot exist when z 6= 0. Also, when

z = 0,
4w

4z
= 4z. Therefore,

dw

dz
exists only at z = 0 and its value is 0. Thus, a

function is continuous at a point does not imply that the function is differentiable

at that point.

This example also shows that a function f(z) = u(x, y) + i v(x, y) can be

School of Distance Education,University of Calicut



1.2. Functions of a Complex Variable 13

differentiable at a point z = (x, y) but nowhere else in any neighborhood of that

point.

Suppose that f has a derivative at z0 and that g has a derivative at the point

f(z0). Then the composite function F (z) = g[f(z)] has a derivative at z0, and

F ′(z0) = g′[f(z0)]f
′(z0).

As in the real case, the following formulas also holds for complex differentia-

tion, and we ask the reader to prove these rules using the definition of derivatives.

(i)
d

dz
c = 0, for any complex constant c,

(ii)
d

dz
z = 1

(iii)
d

dz
cf(z) = cf ′(z),

(iv)
d

dz
zn = nzn−1 where n is a positive integer(valid for negative integers if

z 6= 0),

(v)
d

dz
[f(z) + g(z)] = f ′(z) + g′(z),

(vi)
d

dz
[f(z)g(z)] = f(z)g′(z) + f ′(z)g(z), and when g(z) 6= 0,

(vi)
d

dz
[
f(z)

g(z)
] =

g(z)f ′(z)− f(z)g′(z)

[g(z)]2
.

Exercises.

1. Using the definition of limit, prove that

(a) limz→z0Rez = Rez0

(b) limz→z0 z̄ = z̄0,

(c) limz→z0

z̄2

z
= 0.

(d) limz→1−i[x + i(2x + y)] = 1 + i, where (z = x + iy).

School of Distance Education,University of Calicut



1.3. Cauchy - Riemann Equations 14

2. Show that

(a) limz→i
iz3 − 1

z + i
= 0.

(b) limz→z0z
n = zn

0 (n = 1, 2, 3, ...)(Hint: Use mathematical induction.)

(c) limz→∞
4z2

(z − 1)2
= 4.

(d) limz→∞
z2 + 1

z − 1
= ∞.

3. Show that the limit of the function f(z) = (
z

z̄
)2 as z tends to 0 does not

exist.

4. Show that limz→z0f(z)g(z) = 0 if limz→z0f(z) = 0 and if there exists a

positive number M such that |g(z)| ≤ M for all z in some neighborhood

of z0.

5. Show that a set S is unbounded if and only if every neighborhood of the

point at infinity contains at least one point in S.

6. Find f ′(z), where (a). f(z) = 3z2 − 2z + 4 (b). f(z) =
z + 1

2z − 1
(z 6= 1

2
)

7. Show that f ′(z) does not exist at any point z when (a). f(z) = Rez, (b).

f(z) = Imz.

1.3 Cauchy - Riemann Equations

In this section, we obtain a pair of equations that the first-order partial deriva-

tives of the component functions u and v of a function f(z) = u(x, y) + i v(x, y)

must satisfy at a point z0 = (x0, y0) when the derivative of f exists there. We

also derive an expression for f ′(z0) in terms of partial derivatives of u and v.

School of Distance Education,University of Calicut



1.3. Cauchy - Riemann Equations 15

Theorem 1.3.1.

Suppose that f(z) = u(x, y) + i v(x, y) and that f ′(z) exists at a point z0 =

x0+i y0. Then the first-order partial derivatives of u and v must exist at (x0, y0),

and they must satisfy the Cauchy - Riemann equations ux = vy, uy = −vx

there. Also, f ′(z0) can be written f ′(z0) = ux+i vx, where these partial derivatives

are to be evaluated at (x0, y0).

Proof.

Let 4z = 4x + i 4y and 4w = f(z0 +4z)− f(z0).

Then, 4w = [u(x0 +4x, y0 +4y)− u(x0, y0)] + i [v(x0 + x, y0 + y)− v(x0, y0)].

Suppose that (4x,4y) → (0, 0) horizontally through the points (4x, 0) on the

real axis, then we have, lim4z→0
4w

4z
= lim4x→0

u(x0 +4x, y0)− u(x0, y0)

4x
+

i lim4x→0
v(x0 +4x, y0)− v(x0, y0)

4x

⇒ lim4z→0
4w

4z
= ux(x0, y0) + i vx(x0, y0) where ux(x0, y0) and vx(x0, y0) denote

the first–order partial derivatives with respect to x of the functions u and v,

respectively, at (x0, y0).

If 4z = (4x,4y) → (0, 0) vertically through the points (0,4y) on the imagi-

nary axis, we get lim4z→0
4w

4z
=

lim4y→0
u(x0, y0 +4y)− u(x0, y0)

i 4y
+ i lim4y→0

v(x0, y0 +4y)− v(x0, y0)

i 4y
⇒

lim4z→0
4w

4z
= lim4y→0

v(x0, y0 +4y)− v(x0, y0)

4y
−i lim4y→0

u(x0, y0 +4y)− u(x0, y0)

4y

= vy(x0, y0) − i uy(x0, y0) where uy(x0, y0) and vy(x0, y0) denote the first–order

partial derivatives with respect to y of the functions u and v, respectively, at

(x0, y0). Since f ′(z) exists at the point z0 = x0 + i y0, both of the above values

of lim4z→0
4w

4z
must be equal. Therefore, we must have

ux(x0, y0) + i vx(x0, y0) = vy(x0, y0)− i uy(x0, y0).

School of Distance Education,University of Calicut



1.3. Cauchy - Riemann Equations 16

Therefore, we must have ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).

Also, we have f ′(z0) = lim4z→0
4w

4z
= ux(x0, y0) + i vx(x0, y0).

Example 3.

Let f(z) = |z|2 = u(x, y) + i v(x, y). Then, we have u(x, y) = x2 + y2 and

v(x, y) = 0.

Then ux = 2x, uy = 2y, and vx = vy = 0. So the Cauchy - Riemann equations

holds at a point (x, y) only if 2x = 0 and 2y = 0, i.e., only if x = y = 0. Therefore,

f ′(z) does not exist at any nonzero point.

From, Exercise 1 given below, we know that satisfaction of the Cauchy-

Riemann equations at a point is not sufficient to ensure the existence of the

derivative of a function at that point.

Now we derive a sufficient condition for differentiability of f(z) at a point

z0 = x0 + i y0.

For proving this theorem we make use of the following result from your Vector

Calculus ( V- Semester) Course.

The increment Theorem for Functions of Two Variables:

Suppose that the first order partial derivatives of f(x, y) are defined throughout

an open region R containing the point (x0, y0) and that fx and fy are continuous

at (x0, y0) . Then the change, 4z = f(x0+4x, y0+4y)−f(x0, y0) in the value of

f that results from moving from (x0, y0) to another point x0 +4x, y0 +4y) in R

satisfies an equation of the form 4z = fx(x0, y0)4x+fy(x0, y0)4y+ε14x+ε24y

in which ε1, ε2 → 0 as 4x,4y → 0.

Theorem 1.3.2.

Let the function f(z) = u(x, y) + i v(x, y) be defined throughout some ε-

School of Distance Education,University of Calicut



1.3. Cauchy - Riemann Equations 17

neighborhood of a point z0 = x0 + i y0, and suppose that

(a) the first–order partial derivatives of the functions u and v with respect to x

and y exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (x0, y0) and satisfy the Cauchy-

Riemann equations ux = vy, uy = −vx at (x0, y0). Then f ′(z0) exists, its value

being f ′(z0) = ux + i vx where the right–hand side is to be evaluated at (x0, y0).

Proof.

Let 4z = 4x + i 4y, where 0 < |4z| < ε. Then we write 4w = f(z0 +

4z) − f(z0) = 4u + i 4v, where 4u = u(x0 + 4x, y0 + 4y) − u(x0, y0) and

4v = v(x0 + x, y0 + y)− v(x0, y0). Since the first–order partial derivatives of u

and v are continuous at the point (x0, y0), by the increment theorem for functions

of two variables, we have

4u = ux(x0, y0)4x + uy(x0, y0)4y + ε14x + ε24y

and

4v = vx(x0, y0)4x + vy(x0, y0)4y + ε34x + ε44y,

where ε1, ε2, ε3, and ε4 tend to zero as (x, y) approaches (0, 0) in the z-plane.

Now, 4w = 4u + i 4v ⇒ 4w = ux(x0, y0)4x + uy(x0, y0)4y + ε14x + ε24y +

i [vx(x0, y0)4x+vy(x0, y0)4y+ε34x+ε44y]. Since Cauchy – Riemann equations

are satisfied at (x0, y0), this implies that

4w

4z
= ux(x0, y0) + i vx(x0, y0) + (ε1 + i ε3)

4x

4z
+ (ε2 + i ε4)

4y

4z
.
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But, |4x| ≤ |4z| and |4y| ≤ |4z|, we have |4x

4z
| ≤ 1 and |4y

4z
| ≤ 1, so that

|(ε1 + i ε3)
4x

4z
| ≤ |ε1 + i ε3| ≤ |ε1|+ |ε3|

and

|(ε2 + i ε4)
4y

4z
| ≤ |ε2 + i ε4| ≤ |ε2|+ |ε4|.

Thus, as 4z → 0, we get f ′(z0) = lim4z→0
4w

4z
= ux(x0, y0) + i vx(x0, y0).

Problem 2.

Show that f(z) = ez is differentiable everywhere in the complex plane.

Solution.

We have f(z) = ez = ex+i y = exeiy = ex(cos y + i sin y) = u + i v. Then

ux = excos y, uy = −exsin y, vx = exsin y and vy = excos y, all are continuous

and satisfies the Cauchy– Riemann equations everywhere. Therefore f ′(z) exists

everywhere and f ′(z) = ux + i vx = excos y + i exsin y = ez = f(z), for all z. �

The following theorem gives the polar form of Cauchy– Riemann equations.

Theorem 1.3.3.

Let the function f(z) = u(r, θ) + i v(r, θ) be defined throughout some ε−

neighborhood of a nonzero point z0 = r0exp(i θ0), and suppose that (a) the first–

order partial derivatives of the functions u and v with respect to r and θ exist

everywhere in the neighborhood; (b) those partial derivatives are continuous at

(r0, θ0) and satisfy the polar form rur = vθ, uθ = −rvr of the Cauchy-Riemann

equations at (r0, θ0). Then f ′(z0) exists, its value being f ′(z0) = e−i θ(ur + i vr),

where the right–hand side is to be evaluated at (r0, θ0).
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Problem 3.

Show that f(z) =
1

z
is differentiable at all z 6= 0 and find its derivative.

Solution.

Writing in the polar form, we have for z 6= 0, f(z) =
1

z
=

1

reiθ
=

1

r
e−iθ =

1

r
(cos θ − i sin θ) = u + i v. Thus, u(r, θ) =

cos θ

r
and v(r, θ) = −sin θ

r
.

Therefore,rur = −cos θ

r
= vθ and uθ = −sin θ

r
= −rvr. ⇒ The partial

derivatives are continuous and the Cauchy– Riemann equations are satisfied

at all z 6= 0. Therefore the derivative of f exists at all z 6= 0 and f ′(z) =

e−iθ(−cos θ

r2
+ i

sin θ

r2
) = − 1

(reiθ)2
= − 1

z2
when z 6= 0. �

Exercises.

1. Let u and v denote the real and imaginary components of the function f

defined by means of the equations f(z) =
z2

z
when z 6= 0, and f(0) = 0.

Verify that the Cauchy-Riemann equations are satisfied at the origin. Show

that f ′(0) does not exists.

2. If f(z) is analytic, use chain rule to show that
∂f

∂z
= 0.

3. Show that f(z) = z3 is differentiable at all z and find its derivative.

4. Show that f(z) = ez is nowhere differentiable.

5. Show that f ′(z) does not exists at any point if f(z) = 2x + i xy2.

6. Show that f(z) =
1

z4
is differentiable at all z 6= 0 and find its derivative.
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1.4 Analytic Functions

A function f of the complex variable z is said to be analytic at a point z0 if it

has a derivative at each point in some neighborhood of z0.

Note that if f is analytic at a point z0, it must be analytic at each point

in some neighborhood of z0. A function f is analytic in an open set if it has a

derivative everywhere in that set.

Note that the function f(z) =
1

z
is analytic at each nonzero point in the finite

complex plane. But the function f(z) = |z|2 is not analytic at any point since

its derivative exists only at z = 0.

An entire function is a function that is analytic at each point in the entire

finite complex plane.

Since the derivative of a polynomial exists everywhere, it follows that every

polynomial is an entire function. Similarly, ez, sin z, cos z are entire functions.

If a function f fails to be analytic at a point z0 but is analytic at some point

in every neighborhood of z0, then z0 is called a singular point, or singularity,

of f .

For example, the point z = 0 is a singular point of the function f(z) =
1

z
,

whereas the function f(z) = |z|2, has no singular points since it is nowhere

analytic.

A necessary, but not sufficient condition for a function f to be analytic in a

domain D is clearly the continuity of f throughout D. Satisfaction of the Cauchy-

Riemann equations is also necessary, but not sufficient. Sufficient conditions for

analyticity in D are provided by the theorems 1.3.2 and 1.3.3.

Note that a constant multiple of an analytic function is analytic. If two
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functions are analytic in a domain D, their sum and their product are both

analytic in D. Similarly, their quotient is analytic in D provided the function

in the denominator does not vanish at any point in D. In particular, the quo-

tient P (z)/Q(z) of two polynomials is analytic in any domain throughout which

Q(z) 6= 0. From the chain rule for the derivative of a composite function, we see

that a composition of two analytic functions is analytic.

Problem 4.

If f ′(z) = 0 everywhere in a domain D, then show that f(z) must be constant

throughout D.

Solution.

Since f ′(z) exists everywhere in D, f(z) = u + i v is analytic in D. Hence

u and v satisfies the Cauchy–Riemann equations and f ′(z) = ux + i vx. But,

f ′(z) = 0, ∀z ∈ D, we have ux = 0, vx = 0. By Cauchy –Riemann equations, we

get uy = 0, vy = 0. This shows that both u and v are independent of x and y.

i.e. u and v are constants in D ⇒ f(z = u + i v) is constant in D. �

Problem 5.

If f(z) is a real–valued analytic function in a domain D, then show that f(z)

must be constant in D.

Solution.

Let f(z) = u+i v. Since f(z) is real–valued in D, we have v = 0. ⇒ vx = vy = 0.

Since f(z) is analytic in D, u and v satisfies the Cauchy–Riemann equations, so

we get ux = 0, uy = 0. This shows that u is a constant in D. Thus, any real–

valued analytic function in a domain D is constant in D. �
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Problem 6.

If both f(z) and f(z) are analytic functions in a domain D, then show that

f(z) must be constant in D.

Solution.

Let f(z) = u + i v. Then, f(z) = u − i v = U + i V . ⇒ U = u and V = −v.

Since f(z) is analytic in D, we have the Cauchy–Riemann equations ux = vy

and uy = −vx. Since f(z) = U + i V is analytic in D, we have Ux = Vy and

Uy = −Vx. Since U = u and V = −v, this implies that ux = −vy and uy = vx.

⇒ ux = 0, vx = 0. This shows that f ′(z) = ux + i vx = 0. Therefore by Problem

4, f(z) is a constant in D. �

Definition 1.4.1.

A real–valued function H of two real variables x and y is said to be harmonic

in a given domain of the xy−plane if, throughout that domain, it has continuous

partial derivatives of the first and second order and satisfies the partial differential

equation Hxx(x, y) + Hyy(x, y) = 0, known as Laplace’s equation.

For example, f(x, y) = x2 − y2 is clearly a harmonic function in any domain

of the xy-plane.

Note that, if a function f(z) = u(x, y) + i v(x, y) is analytic in a domain D,

then its component functions u and v are harmonic in D. To see this, note that

by Cauchy – Riemann equations, we have ux = vy and uy = −vx. Differentiating

these again w.r.t x and y, we get uxx = vyx and uyy = −vxy. The continuity of

the partial derivatives of u and v implies vxy = vyx. Hence, we get uxx +uyy = 0.

Similarly, vxx + vyy = 0. This shows that both u and v are harmonic in D.

If two given functions u and v are harmonic in a domain D and their first–
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order partial derivatives satisfy the Cauchy-Riemann equations throughout D,

then v is said to be a harmonic conjugate of u.

It can be proved that if a function f(z) = u(x, y) + i v(x, y) is analytic in a

domain D if and only if v is a harmonic conjugate of u.

For example, since u = x2− y2 and v = 2xy are the real and imaginary parts

of the entire function f(z) = z2, v is a harmonic conjugate of u throughout the

plane. But u cannot be a harmonic conjugate of v since, the function 2xy +

i (x2 − y2) is not analytic anywhere (Verify this!).

Problem 7.

Show that u(x, y) = y3 − 3x2y is harmonic throughout the plane and find a

harmonic conjugate v(x, y).

Solution.

We have
∂u

∂x
= −6xy and

∂u

∂y
= 3y2− 3x2. ⇒ ∂2u

∂x2
= −6y, and

∂2u

∂y2
= 6y. Thus,

∂2u

∂x2
+

∂2u

∂y2
= 0. ⇒ u is harmonic.

Let v(x, y) be the harmonic conjugate of u so that f(z) = u + i v is analytic.

By Cauchy–Riemann equations, ux = vy and uy = −vx. But vy = ux = −6xy

Integrating this equation w.r.t y, we get v(x, y) = −3xy2 + k(x). Differentiating

this w.r.t x, we get vx = −3y2+k′(x). But vx = −uy = −3y2+3x2 ⇒ k′(x) = 3x2.

Integrating, we get k(x) = x3 + C where C is an arbitrary real number, so that

v(x, y) = −3xy2 + x3 + C. �

Exercises.

1. If f(z) is an analytic function in a domain D with Imf(z) =constant, then

show that f(z) is a constant in D.
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2. If f(z) is an analytic function in a domain D with |f(z)| is a constant, then

show that f(z) is a constant in D.

3. If f(z) is an analytic function in a domain D with argf(z) =constant, then

show that f(z) is a constant in D.

4. Show that a linear combination of two entire functions is entire.

5. Show that f(z) = eyeix is nowhere analytic.

6. Show that f(z) = xy + i y is nowhere analytic.

7. Determine the singular points of

(a) f(z) =
2z + 1

z(z2 + 1)

(b) f(z) = tan z

(c) f(z) =
z3 + i

z2 − 3z + 2
.

8. Show that if v and V are harmonic conjugates of u(x, y) in a domain D,

then v(x, y) and V (x, y) can differ at most by an additive constant.

9. Show that u(x, y) =
y

x2 + y2
is harmonic throughout the plane and find a

harmonic conjugate v(x, y).

10. Suppose that v is a harmonic conjugate of u in a domain D and also that

u is a harmonic conjugate of v in D. Show that both u(x, y) and v(x, y)

must be constant throughout D.

11. Show that v is a harmonic conjugate of u in a domain D if and only if −u

is a harmonic conjugate of v in D.

12. Let the function f(z) = u(x, y) + i v(x, y) be analytic in a domain D,

and consider the families of level curves u(x, y) = c1 and v(x, y) = c2,
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where c1 and c2 are arbitrary real constants. Prove that these families are

orthogonal.

13. Show that u(x, y) = 2x− x3 + 3xy2 is harmonic throughout the plane and

find a harmonic conjugate v(x, y).

14. Let the function f(z) = u(r, θ) + i v(r, θ) be analytic in a domain D that

does not include the origin. Using the polar form of Cauchy-Riemann equa-

tions and assuming continuity of partial derivatives, show that throughout

D the function u(r, θ) satisfies the partial differential equation r2urr(r, θ)+

rur(r, θ) + uθθ(r, θ) = 0, which is the polar form of Laplace’s equation.

Show that the same is true for the function v(r, θ).

1.5 Elementary Functions

In this section, we consider various elementary functions that studied in calculus

and define corresponding functions of a complex variable. We begin by defining

the complex exponential function.

Let z = x + i y. Then we define the complex exponential function as

ez = exeiy.

But, by Euler’s formula eiy = cos y+i sin y where y is to be taken in radians.

Thus, we have

exp(z) = ez = ex(cos y + i sin y) = excos y + i exsin y = u + i v

Then u and v have continuous first order partial derivatives that satisfy the

Cauchy–Riemann equations, showing that ez is an entire function and (ez)′ = ez.
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Also, note that ez is periodic with pure imaginary period 2πi. We have,

|ez| = ex 6= 0, so that ez 6= 0 for any complex number z. Also, arg ez = y + 2nπ

(n = 0,±1,±2, ...).

If z is any nonzero complex number, we define the complex logarithmic

function log z (or, ln z)as the inverse of the complex exponential function. i.e.,

we have log z = w = u + i v if ew = z.

Writing z = rei θ with −π < θ ≤ π and w = u + i v, we obtain: eu+i v =

rei θ ⇒ euei v = rei θ so that eu = r and v = θ + 2nπ (since ei2nπ = 1 for any

integer n.)

Therefore, u = ln r and v = θ + 2nπ for n = 0,±1± 2, .....

Thus, log z = ln r + i(θ + 2nπ) where θ = arg z, n = 0,±1± 2, .....

Since arg z is infinitely many valued, the complex logarithmic function is also

a multiple–valued function.

If we let α denote any real number and restrict the value of θ = arg z in the

above definition of log z so that α < θ < α + 2π, the function log z = ln r + iθ,

(r > 0, α < θ < α + 2π), with components u(r, θ) = ln r and v(r, θ) = θ, is

single–valued and continuous in the stated domain.

The function log z = ln r + i θ defined above is continuous and also analytic

throughout the domain r > 0, α < θ < α + 2π, since the first–order partial

derivatives of u and v are continuous there and satisfy the polar form of the

Cauchy–Riemann equations.

Also,
d

dz
log z = e−i θ(ur + i vr) = e−i θ(

1

r
+ i 0) =

1

reiθ
=

1

z
, where |z| >

0, α < arg z < α + 2π.

The principal value of log z , denoted by Log z is the value corresponding
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to the principal value of arg z. i.e., Log z = ln |z| + i (Arg z), where Arg z is

that value of arg z lies between −π < arg z ≤ π.

A branch of a multiple–valued function f is any single–valued function F

that is analytic in some domain at each point z of which the value F (z) is one

of the values of f .

The requirement of analyticity, prevents F from taking on a random selection

of the values of f . Observe that for each fixed α, the single–valued function

log z = ln r + iθ, (r > 0, α < θ < α + 2π) is a branch of the multiple–valued

function log z = ln r + i arg z.

Note that the function Log z = ln r+iθ(r > 0,−π < θ < π) is the principal

branch of log z.

A branch cut is a portion of a line or curve that is introduced in order to

define a branch F of a multiple–valued function f .

Points on the branch cut for F are singular points of F , and any point that

is common to all branch cuts of f is called a branch point.

The origin and the ray θ = α make up the branch cut for the branch log z =

ln r + iθ, (r > 0, α < θ < α + 2π) of the logarithmic function. The branch cut

for the principal branch of log z consists of the origin and the ray θ = π. The

origin is evidently a branch point for branches of the multiple-valued logarithmic

function.

Now we define complex exponents. When z 6= 0 and the exponent c is any

complex number, the function zc is defined by means of the equation zc = ec log z,

where log z denotes the multiple–valued logarithmic function. So, in general, zc

is multiple–valued. To get a single value for zc, we replace the multiple–valued
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logarithmic function by a particular branch of log z.

The principal value of zc is that value of zc when log z is replaced by Log z

in the definition of zc. i.e., the principal value of zc = ecLog z.

Problem 8.

Solve for z, the equation ez = 1 + i.

Solution.

In polar form, we have 1 + i =
√

2ei π
4 . Let z = x + i y.

Therefore, ez = exei y =
√

2ei (π
4
+2nπ) (n = 0,±1,±2, ...).

⇒ ex =
√

2 and y =
π

4
+ 2nπ, (n = 0,±1,±2, ...).

⇒ x = ln
√

2 =
1

2
ln 2 and y = (2n +

1

4
)π (n = 0,±1,±2, ...).

Hence z = x + i y =
1

2
ln 2 + i (2n +

1

4
)π (n = 0,±1,±2, ...). �

Problem 9.

Show that exp (z + π i) = − exp z.

Solution.

We have exp (z + π i) = ez+π i = eze iπ = ez(cos π + i sin π) = ez(−1 + i 0) =

−ez = − exp z. �

Problem 10.

Find the value of log (−1−
√

3 i).

Solution.

Writing in polar form, −1 −
√

3 i = 2ei(− 2π
3

). Therefore, log (−1 −
√

3 i) =

ln 2+ i (−2π
3

+2nπ), (n = 0,±1,±2, ...). ⇒ log (−1−
√

3 i) = ln 2+2 (n− 1
3
)π i,

(n = 0,±1,±2, ...). �
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Problem 11.

Show that Log(−e i) = 1− π
2

i.

Solution.

We have , Log(−e i) = ln| − e i|+ i (Arg(−e i)). ⇒ Log(−e i) = ln e + i (−π
2

⇒ Log(−e i) = 1 + i (−π
2

= 1− π
2

i. �

Problem 12.

Find the principal value of ii.

Solution.

We have, the principal value of ii = ei Log i. But, Log i = ln |i| + i Arg (i) =

0 + i π
2

= π
2
i. Therefore, the principal value of ii = ei Log i = ei( i π

2
) = e−

π
2 .

�

Now we define the trigonometric and hyperbolic functions of a complex vari-

able z.

We define the sine and cosine functions of a complex variable z as follows:

sin z =
eiz − e−iz

2 i
and cos z =

eiz + e−iz

2
.

These functions are entire since they are linear combinations of the entire func-

tions eiz and e−iz.

From the definitions, it follows that
d

dz
sin z = cos z and

d

dz
cos z = −sin z.

The other four trigonometric functions are defined in terms of the sine and

cosine functions as in the real case.

The hyperbolic sine and the hyperbolic cosine of a complex variable z are
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defined as :

sinh z =
ez − e−z

2
and cosh z =

ez + e−z

2
.

Since ez and e−z are entire, sinh z and cosh z are entire functions. Furthermore,

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z.

The hyperbolic tangent of z is defined by means of the equation tanh z =

sinh z

cosh z
and is analytic in every domain in which cosh z 6= 0.

The functions coth z, sech z, and csch z are the reciprocals of tanh z, cosh z,

and sinh z, respectively.

The hyperbolic sine and cosine functions are closely related to the trigono-

metric functions as follows:

−i sinh (iz) = sin z, cosh (iz) = cos z,

−isin (iz) = sinh z, cos (iz) = cosh z.

In order to define the inverse sine function sin−1z, we write w = sin−1z when

z = sin w.

i.e., w = sin−1z when z =
eiw − e−iw

2i
.

⇒ (eiw)2 − 2 i z(eiw)− 1 = 0,

which is quadratic equation in eiw, and solving for eiw, we get

eiw = i z + (1− z2)1/2 where (1− z2)1/2 is a double–valued function of z.

Taking logarithms on both sides we get w = sin−1z = −i log[i z + (1− z2)1/2].

Since the logarithmic function is multiple-valued, we see that sin−1z is a multiple-

valued function, with infinitely many values at each point z.

Similarly, one can find that cos−1z = −i log [z + i (1 − z2)1/2] and that

tan−1z =
i

2
log

i + z

i− z
. The functions cos−1z and tan−1z are also multiple-valued.

In a similar way, inverse hyperbolic functions can be found in a corresponding

manner.
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It turns out that sinh−1z = log [z + (z2 + 1)1/2], cosh−1z = log [z + (z2 − 1)1/2],

and tanh−1z =
1

2
log

1 + z

1− z
.

Exercises.

1. Find all values of z such that

(a) ez = −2; (b) ez = 1 +
√

3i; (c) exp(2z − 1) = 1; (d) log z = iπ/2;

(e) sinh z = i (f) cosh z =
1

2
; (g) sin z = 2; (h) cos z =

√
2.

2. Show that if ez is real, then Im z = nπ, (n = 0,±1,±2, ...).

3. Show that

(a) exp(
2 + πi

4
) ==

√
e

2
(1 + i).

(b) Log(1− i) =
1

2
ln2− π

4
i.

(c) log e = 1 + 2nπi (n = 0,±1,±2, ...)

(d) log i = (2n +
1

2
)πi (n = 0,±1,±2, ...)

(e) log (−1 +
√

3i) = ln 2 + 2(n +
1

3
)πi (n = 0,±1,±2, ...).

(f) (−1)1/π = e(2n+1)i (n = 0,±1,±2, ...)

4. Find the principal value of (1− i)4i.

5. Show that |sin z|2 = sin2x + sinh2y and |cos z|2 = cos2x + sinh2y.

6. Show that sin−1(−i) = nπ + i(−1)n+1ln(1 +
√

2) (n = 0,±1,±2, ...)

7. Find all the values of (a) tan−1(2 i), (b) i−2i, (c) (1 + i)i.

8. Solve the equation cos z =
√

2 for z.

9. Show that cos (iz) = cos(iz) for all z.
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10. Show that neither sin z nor cos z is an analytic function of z anywhere.

11. Show that the function f(z) = Log (z − i) is analytic everywhere except

on the portion x ≤ 0 of the line y = 1.

12. Show that the function ln (x2 + y2) is harmonic in every domain that does

not contain the origin.
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Chapter 2
Complex Integration

In the first chapter, we have studied about derivatives of complex functions.

We now turn to the problem of integrating complex functions. The theory that

we will learn is elegant, powerful, and a useful tool for physicists and engineers.

It also connects widely with other branches of mathematics. For example, even

though the ideas presented here belong to the general area of mathematics known

as analysis, we will see as an application of them gives us one of the simplest

proofs of the fundamental theorem of algebra.

The complex integration helps us in the evaluation of certain real definite

integrals and improper integrals, by changing them as the integration of a suitable

complex function around a special simple closed path or contour of integration,

where the usual methods of real integration fails. Also, complex integration

theory is useful in establishing some basic properties of analytic functions.

We will find that integrals of analytic functions are well behaved and that

many properties from calculus carry over to the complex case. We introduce

the integral of a complex function by defining the integral of a complex-valued

function of a real variable.
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2.1 Definite Integrals

Let w be a complex function of a real variable t, then we can write w(t) =

u(t) + i v(t), where u and v are real valued functions of t.

Then, the derivative w′(t) at a point t is defined as w′(t) = u′(t) + i v′(t),

provided each of the derivatives u′ and v′ exists at t.

The definite integral of w(t) over an interval a ≤ t ≤ b is defined as
∫ b

a
w(t)dt =∫ b

a
u(t)dt + i

∫ b

a
v(t)dt, provided each of the integrals on the right exists.

Thus, Re[
∫ b

a
w(t)dt] =

∫ b

a
Re[w(t)]dt and Im[

∫ b

a
w(t)dt] =

∫ b

a
Im[w(t)]dt.

Remark.

The existence of the integrals of u and v in the above definition is ensured if

those functions are piece wise continuous on the interval a ≤ t ≤ b.

The following properties will holds for complex definite integrals.

(i)
∫ b

a
kw(t)dt = k

∫ b

a
w(t)dt, for any complex constant k,

(ii)
∫ b

a
[w1(t) + w2(t)]dt =

∫ b

a
w1(t)dt +

∫ b

a
w2(t)dt, for any complex functions

w1 and w2,

(iii)
∫ b

a
w(t)dt = −

∫ a

b
w(t)dt,

(iv)
∫ b

a
w(t)dt =

∫ c

a
w(t)dt +

∫ b

c
w(t)dt, where a < c < b, and

(v) if w(t) = u(t) + i v(t) and W (t) = U(t) + i V (t) are continuous on the

interval a ≤ t ≤ b, and if W ′(t) = w(t) on a ≤ t ≤ b, then U ′(t) = u(t) and

V ′(t) = v(t) and hence
∫ b

a
w(t)dt = W (b) −W (a). (Fundamental Theorem of

Calculus) .
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Problem 13.

Evaluate the following integrals.

(a).
∫ π

4

0
eitdt.

(b).
∫ 1

0
(1 + i t)2dt

Solution.

(a). We have
∫ π

4

0
eitdt =

[
eit

i

]π
4

0

= −i

[
ei π

4 − 1

]
=

1√
2

+ i (1− 1√
2
).

(b).
∫ 1

0
(1 + i t)2dt =

∫ 1

0
(1− t2)dt + i

∫ 1

0
2 t dt =

2

3
+ i. �

Problem 14.

If m and n are integers, show that
∫ 2π

0
eimθe−inθdθ =

 0 when m 6= n

2π when m = n

.

Solution.

First, assume that m 6= n, then∫ 2π

0
eimθe−inθdθ =

∫ 2π

0
ei(m−n)θdθ =

[
ei(m−n)θ

i(m− n)

]2π

0

=

[
ei(m−n)2π − e0

i(m− n)

]
= 0

Now, let m = n, then∫ 2π

0
eimθe−imθdθ =

∫ 2π

0
dθ =

[
θ

]2π

0

= 2π

�

2.1.1 Contours

Definition 2.1.1.

A set of points z = (x, y) in the complex plane is said to be an arc if

x = x(t), y = y(t), (a ≤ t ≤ b), where x(t) and y(t) are continuous functions of

the real parameter t.

Thus, an arc C in the complex plane is a continuous function from [a, b] to
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the complex plane and we describe C by the equation z = z(t) = x(t) + i y(t),

(a ≤ t ≤ b). The sense of increasing values of t induces an orientation to C.

The arc C is said to be a simple arc, or a Jordan arc, if it does not cross

itself. Thus, C is simple if z(t1) 6= z(t2) when t1 6= t2. When the arc C is simple

except for the fact that z(b) = z(a), we say that C is a simple closed curve ,

or a Jordan curve . For example, a circle is a simple closed curve, whereas

an 8- shaped curve is not. A curve is positively oriented when it is in the

counterclockwise direction.

Example 4.

The unit circle z = eiθ, (0 ≤ θ ≤ 2π) about the origin is a simple closed curve,

oriented in the counterclockwise direction. The circle z = z0+Reiθ, (0 ≤ θ ≤ 2π),

centered at the point z0 and with radius R is also a simple closed curve oriented

in the counterclockwise direction. The arc given by z(θ) = e−iθ, (0 ≤ θ ≤ 2π)

represents the unit circle traversed in the clockwise direction. The equation

z(θ) = ei2θ, (0 ≤ θ ≤ 2π) represents the unit circle traversed twice in the

counterclockwise direction.

Definition 2.1.2.

Consider an arc C represented by the equation z = z(t) = x(t) + i y(t),

(a ≤ t ≤ b). If the components x′(t) and y′(t) of the derivative z′(t) = x′(t) +

i y′(t) of z(t) are continuous on the entire interval [a, b], then the arc C is said

to be a differentiable arc. In this case, the real-valued function |z′(t)| =√
[x′(t)]2 + [y′(t)]2 is integrable over the interval [a, b], and

∫ b

a
|z′(t)|dt gives the

length L of C.

An arc C represented by the equation z = z(t) = x(t) + i y(t), (a ≤ t ≤ b)

is said to be a smooth arc if the derivative z′(t) is continuous on the closed
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interval [a, b] and nonzero throughout the open interval (a, b). An arc consisting

of a finite number of smooth arcs joined end to end is called a contour , or a

piecewise smooth arc. Hence, if z = z(t) represents a contour, then z(t) is

continuous, and its derivative z′(t) is piecewise continuous.

When only the initial and final values of z(t) are the same, a contour C

is called a simple closed contour . Circles, the boundary of a triangle or a

rectangle taken in a specific direction are examples of simple closed contours.

The length of a contour or a simple closed contour is the sum of the lengths of

the smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are bound-

ary points of two distinct domains, one of which is the interior of C and is

bounded. The other, which is the exterior of C, is unbounded. This is known as

the Jordan curve theorem .

Problem 15.

Express the following curves in parametric form.

(a). The polygonal line consisting of a line segment from 0 to 1 + i followed by

one from 1 + i to 2 + i.

(b). The curve y =
1

x
from (1, 1) to (4,

1

4
).

(c). The upper half of the circle |z +3− i| = 5 in the counterclockwise direction.

Solution.

(a). The equation z(t) = t + i t, when 0 ≤ t ≤ 1 , z = t + i, when 1 ≤ t ≤ 2

represents the arc consisting of a line segment from 0 to 1 + i followed by one

from 1 + i to 2 + i, and is a simple arc.

(b). The equation z(t) = t+
1

t
i, 1 ≤ t ≤ 4 represents the curve y =

1

x
from (1, 1)
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to (4,
1

4
).

(c). The equation z(θ) = (−3 + i) + 5eiθ, 0 ≤ θ ≤ π represents the upper half

of the circle |z + 3− i| = 5 in the counterclockwise direction. �

2.1.2 Contour Integrals

We now discuss integrals of complex-valued functions f of the complex variable

z. Such an integral is defined in terms of the values f(z) along a given contour

C, starting from a point z = z1 to a point z = z2 in the complex plane. Such

an integral is called a line integral , and is denoted by
∫

C
f(z)dz and its value

depends, in general, on the contour C as well as on the function f .

Let z = z(t) = x(t) + i y(t), (a ≤ t ≤ b) represents a contour C and assume

that f(z) is defined on C. Also, we assume that f [z(t)] is piecewise continuous on

the interval [a, b] and in this case we say the function f(z) is piecewise continuous

on C. Then, the line integral , or contour integral , of f along C is defined

as ∫
C

f(z)dz =

∫ b

a

f [z(t)]z′(t)dt

. Since C is a contour, z′(t) is also piecewise continuous on [a, b]; and so the

existence of the above integral is ensured.

From the definition of line integrals, it is clear that∫
C

kf(z)dz = k
∫

C
f(z)dz, for any complex constant k, and

∫
C

[f1(z) + f2(z)]dz =

∫
C

f1(z)dz +

∫
C

f2(z)dz,

for any complex functions f1 and f2 defined on C.
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Also, if −C denotes the same set of points of C, but traversed in the reverse

direction, then ∫
−C

f(z)dz = −
∫

C

f(z)dz.

Now, consider a path C consisting of a contour C1 from z1 to z2 followed by a

contour C2 from z2 to z3 such that the initial point of C2 is the final point of C1.

Then, ∫
C

f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz.

Here, the contour C is called the sum of its legs C1 and C2 and is denoted by

C1 + C2.

Problem 16.

Evaluate the integral
∫

C
z̄dz, where C is the right hand half of the circle |z| = 2,

from −2i to 2i.

Solution.

The equation for C is given by z(θ) = 2eiθ, −π
2
≤ θ ≤ π

2
. Therefore,

∫
C

z̄dz =

∫ π
2

−π
2

2eiθ(2eiθ)′dθ

=4 i

∫ π
2

−π
2

e−iθeiθdθ

=4 i

∫ π
2

−π
2

dθ = 4πi

�

Remark.

In the above problem, note that zz̄ = |z|2 = 4 on C, so that
∫

C
1
z
dz =

1
4

∫
C

z̄dz = πi.
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Problem 17.

Integrate 1
z
, around C, the unit circle |z| = 1, taken in the counterclockwise

direction.

Solution.

The equation for C is given by z(θ) = eiθ, 0 ≤ θ ≤ 2π. Therefore,

∫
C

1

z
dz =

∫ 2π

0

1

eiθ
(eiθ)′dθ

= i

∫ 2π

0

e−iθeiθdθ

= i

∫ 2π

0

dθ = 2πi

�

2.1.3 Upper Bounds for Absolute Value of Contour Inte-

grals

We now discuss a theorem which helps us to obtain an upper bound for the

modulus of a contour integral
∫

C
f(z)dz, without evaluating the interval.

Lemma 2.1.3.

If w(t) is a piecewise continuous complex-valued function defined on an interval

a ≤ t ≤ b, then

|
∫ b

a

w(t)dt| ≤
∫ b

a

|w(t)|dt.

Theorem 2.1.4.

Let C denotes a contour of length L, and suppose that a function f(z) is piece

wise continuous on C. If M is a nonnegative constant such that |f(z)| ≤ M for
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all points z on C, then |
∫

C
f(z)dz| ≤ ML.

Problem 18.

Find an upper bound |
∫

C

z + 4

z3 − 1
dz|, where C is the arc of the circle |z| = 2 from

z = 2 to z = 2i, without evaluating the integral.

Solution.

Here, the length of C is π. Also along C, |z + 4| ≤ |z|+ 4 = 6, and |z3− 1| ≥

||z|3 − 1| = 7. Therefore, | z + 4

z3 − 1
| =

|z + 4|
|z3 − 1|

≤ 6
7
. Thus, by Theorem 2.1.4,

|
∫

C

z + 4

z3 − 1
dz| ≤ 6π

7
. �

Problem 19.

If C is the boundary of the triangle with vertices at the points 0, 3i and −4,

oriented in the counterclockwise direction, then show that |
∫

C
(ez − z̄)dz| ≤ 60,

without evaluating the integral.

Solution.

Here, the length L of C is the sum of the lengths of the sides of the triangle,

and therefore L = 3 + 4 + 5 = 12. We have, |ez − z̄| ≤ |ez| + |z̄|. Along C,

|ez| = ex ≤ 1 and |z̄| ≤ 4. Therefore, |ez − z̄| ≤ 1 + 4 = 5. Thus, by theorem

2.1.4, |
∫

C
(ez − z̄)dz| ≤ 5.12 = 60. �

Exercises.

1. Evaluate the following integrals.

(a)
∫ 2

1
(1

t
− i)2dt.

(b)
∫ π

6

0
ei2tdt
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(c)
∫∞

0
e−ztdt, (Re z > 0)

2. Find a parametric representation z = z(t) for

(a) The straight-line segment from 0 to 4− 7i.

(b) The upper half of |z − 4 + 3i| = 5 in the counterclockwise direction.

(c) The arc y = x3 from (−2,−8) to (3, 27).

(d) The lower half of the circle with center at z = 1 and radius 1 in the

clockwise direction.

3. Evaluate the contour integral
∫

C
f(z)dz, where,

(a) f(z) = z+2
z

and C is the semi circle z = 2eiθ, (0 ≤ θ ≤ π).

(b) f(z) = z̄ and C is parabola y = x2 from 0 to 1 + i.

(c) f(z) = cosz and C is the semi circle |z| = π from −πi to π.

(d) f(z) = Rez2 and C is the unit circle |z| = 1 counterclockwise.

(e) f(z) = Rez2 and C is the boundary of the square with vertices 0, i, 1+

i, 1, oriented in the clockwise direction.

(f) f(z) = π exp (πz̄) and C is the boundary of the square with vertices

0, 1, 1 + i, i, oriented in the counterclockwise direction.

4. Find an upper bound |
∫

C

dz

z2 − 1
|, where C is the arc of the circle |z| = 2

from z = 2 to z = 2i, without evaluating the integral.

5. Let C denote the line segment joining the points z = i to z = 1. Show that

|
∫

C

dz

z4
| ≤ 4

√
2, without evaluating the integral.
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2.2 Theorems on Complex Integration

We now, state a theorem that contains an extension of the fun-

damental theorem of calculus that simplifies the evaluation of many contour

integrals. This extension involves the concept on an antiderivative of a con-

tinuous function f(z) on a domain D, i.e., a function F (z) such that F ′(z) = f(z)

for all z in D.

Note that an antiderivative is an analytic function and that an antiderivative

of a given function f(z) is unique except for an additive constant. ( This is be-

cause the derivative of the difference F (z)−G(z) of any two such antiderivatives

is zero, and since an analytic function whose derivative is zero throughout in a

domain D, is a constant inD.)

Theorem 2.2.1.

Suppose that a function f(z) is continuous on a domain D. If any one of the

following statements is true, then so are the others:

(a) f(z) has an antiderivative F (z) throughout D,

(b) the integrals of f(z) along contours lying entirely in D and extending from any

fixed point z1 to any fixed point z2 all have the same value, namely
∫ z2

z1
f(z)dz =

F (z2)− F (z1), where F (z) is the antiderivative of f(z),

(c) the integrals of f(z) around closed contours lying entirely in D all have value

zero.

Remark.

Note that the theorem 2.2.1 does not claim that any of these statements is

true for a given function f(z). It says only that all of them are true or that none

of them is true.
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Problem 20.

By finding an antiderivative, find the value of
∫

1
z2 dz, where C is the circle |z| = 2

oriented in counterclockwise sense.

Solution.

The function f(z) = 1
z2 , which is continuous everywhere except at the origin,

has an antiderivative F (z) = −1
z

in the domain |z| > 0, consisting of the entire

plane with the origin deleted. Therefore, by theorem 2.2.1,
∫

1
z2 dz = 0. �

2.2.1 Cauchy - Goursat Theorem

In theorem 2.2.1, we noted that when a continuous function f has an antideriva-

tive in a domain D, then the integral of f(z) around any given closed contour C

lying entirely in D has value zero.

Now, we present a theorem giving other conditions on a function f which

ensure that the value of the integral of f(z) around a simple closed contour is

zero.

Theorem 2.2.2. (Cauchy - Goursat Theorem)

If a function f is analytic at all points interior to and on a simple closed

contour C, then
∫

C
f(z)dz = 0.

Definition 2.2.3.

A simply connected domain D is a domain such that every simple closed

contour within it encloses only points of D.

A domain that is not simply connected is said to be multiply connected .

Example 5.
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The set of points interior to a simple closed contour is a simply connected

domain. The annular domain between two concentric circles is, however, not

simply connected, it is multiply connected.

We have the following generalization of Cauchy - Goursat Theorem.

Theorem 2.2.4.

If a function f is analytic throughout a simply connected domain D, then∫
C

f(z)dz = 0 for every closed contour C lying in D.

From theorem 2.2.1, we get the following result.

Corollary 2.2.5.

A function f that is analytic throughout a simply connected domain D must

have an antiderivative everywhere in D.

Remark.

Note that the finite complex plane is simply connected. Therefore, by the

above corollary, we see that entire functions always possess antiderivatives.

The following theorem generalizes the Cauchy - Goursat theorem to multiply

connected domains.

Theorem 2.2.6.

Suppose that

(a) C is a simple closed contour, described in the counterclockwise direction,

(b) Ck (k = 1, 2, ..., n) are simple closed contours interior to C, all described in

the clockwise direction, that are disjoint and whose interiors have no points in

common.
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If a function f is analytic on all of these contours and throughout the multiply

connected domain consisting of the points inside C and exterior to each Ck, then∫
C

f(z)dz +
∑n

k=1

∫
Ck

f(z)dz = 0.

The following corollary shows that if C1 is continuously deformed into C2,

always passing through points at which f is analytic, then the value of the

integral of f over C1 never changes.

Corollary 2.2.7. (Principle of Deformation of Paths )

Let C1 and C2 denote positively oriented simple closed contours, where C1 is

interior to C2. If a function f is analytic in the closed region consisting of those

contours and all points between them, then
∫

C2
f(z)dz =

∫
C1

f(z)dz.

Example 6.

Let C be any positively oriented simple closed contour surrounding the origin.

Also, let C0 be a positively oriented circle with center at the origin and radius so

small that C0 lies entirely inside C. Since,
∫

C0

dz
z

= 2πi and since 1
z

is analytic

everywhere except at z = 0, then by the above Corollary 2.2.7, it follows that∫
C

dz
z

= 2πi .

2.2.2 Cauchy’s Integral Formula

Now we state the Cauchy’s Integral Formula, which asserts that if a function

f is analytic within and on a simple closed contour C, then the values of f interior

to C are completely determined by the values of f on C.
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Theorem 2.2.8.

Let f be analytic everywhere inside and on a simple closed contour C, taken in

the positive sense. If z0 is any point interior to C, then f(z0) =
1

2πi

∫
C

f(z)dz

z − z0

.

Proof.

Let Cr denote a positively oriented circle |z−z0| = r, where r is small enough

that Cr is interior to C. Then, the quotient
f(z)

(z − z0)
is analytic between and on

the contours Cr and C.

Therefore, by Corollary 2.2.7, we have∫
C

f(z)

(z − z0)
dz =

∫
Cr

f(z)

(z − z0)
dz.

This implies that,∫
C

f(z)

(z − z0)
dz − f(z0)

∫
Cr

1

(z − z0)
dz. =

∫
Cr

f(z)− f(z0)

(z − z0)
dz.

As in Problem 17, we obtain
∫

Cr

1

(z − z0)
dz = 2πi, so that

∫
C

f(z)

(z − z0)
dz − 2πi f(z0) =

∫
Cr

f(z)− f(z0)

(z − z0)
dz.

Since f is analytic, and therefore continuous, at z0 ensures that corresponding

to each positive number ε, there is a positive number δ such that |f(z)−f(z0)| < ε

whenever |z−z0| < δ. Let the radius r of the circle Cr be smaller than the number

δ. Then |z − z0| = r < δ when z is on Cr, so that |f(z) − f(z0)| < ε when z is
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such a point. Therefore, by Theorem 2.1.4, we obtain

∫
C

f(z)− f(z0)

z − z0

dz <
ε

r
2πr = 2πε.

Thus,

|
∫

C

f(z)

(z − z0)
dz − 2πif(z0)| < 2πε.

Since, ε > 0 is arbitrary, it follows that

f(z0) =
1

2πi

∫
C

f(z)dz

z − z0

.

2.2.3 Cauchy’s integral formula for Derivatives

The Cauchy’s integral formula can be extended to provide an integral repre-

sentation for derivatives of f at z0. We assume that the function f is analytic

everywhere inside and on a simple closed contour C, taken in the positive sense

and z0 is any point interior to C. Then, for n = 1, 2, 3, ...,

f (n)(z0) =
n!

2πi

∫
C

f(z)dz

(z − z0)n+1
.

This is known as Cauchy’s integral formula for derivatives.

Remark.

From Cauchy’s integral formula for derivatives, it follows that if a function f

is analytic at a given point, then its derivatives of all orders are analytic there

too.
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Problem 21.

Evaluate
∫

c

z2 − z + 1

z − 1
dz, where C is (a). |z| = 1

2
, and (b). |z| = 2, oriented

in the positive sense.

Solution.

(a). Here, f(z) =
z2 − z + 1

z − 1
is analytic at all points except the point z = 1 and

z = 1 lies outside C.

Therefore by Cauchy – Goursat theorem,
∫

C

z2 − z + 1

z − 1
dz = 0.

(b). Here f(z) = z2 − z + 1 is analytic everywhere and C encloses the point

z = 1. Therefore, by Cauchy’s integral formula, we get

∫
C

z2 − z + 1

z − 1
dz = 2πif(1) = 2πi.

�

Problem 22. Evaluate
∫

c

z

(9− z2)(z + i)
dz, where C is the positively oriented

circle |z| = 2.

Solution.

Here, f(z) =
z

(9− z2)
is analytic within and on C, and z0 = −i lies inside C.

Therefore by Cauchy’s integral formula, we get

∫
c

z

(9− z2)(z + i)
dz =

∫
c

z
(9−z2)

(z − (−i))
dz = 2πif(−i) = 2πi(

−i

10
) =

π

5
.

�

Problem 23. Evaluate
∫

c

e2z

z4
dz, where C is the positively oriented unit circle.

Solution.
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Here, f(z) = e2z is analytic within and on C, and z0 = 0 lies inside C.

Therefore by Cauchy’s integral formula for derivatives, we get

∫
c

e2z

z4
dz =

∫
c

e2z

(z − 0)3+1
dz =

2πi

3!
f (3)(0) =

8πi

3
.

�

Problem 24. Evaluate
∫

c

e2z

(z − 1)(z − 2)
dz, where C is the positively oriented

circle |z| = 3.

Solution.

Here,
e2z

(z − 1)(z − 2)
is analytic everywhere, except the points z = 1 and

z = 2, and both of these points lies inside C. Using partial fractions, we have

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
.

Therefore by Cauchy’s integral formula, we get

∫
C

e2z

(z − 1)(z − 2)
dz =

∫
C

e2z

z − 2
dz −

∫
C

e2z

z − 1
dz = 2πi(e4 − e2).

�

Problem 25. Evaluate
∫

c

z4 − 3z2 + 6

(z + i)3
dz, where C is any positively oriented

contour enclosing the point z0 = −i.

Solution.

Here, f(z) = z4 − 3z2 + 6 is analytic everywhere and the point z0 = −i lies

inside C. Therefore by Cauchy’s integral formula for derivatives, we get∫
c

z4 − 3z2 + 6

(z + i)3
dz =

∫
c

z4 − 3z2 + 6

(z + i)2+1
dz =

2πi

2!
f (2)(−i) = −18πi..

�
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2.2.4 Consequences of Cauchy’s Integral Formula

The following theorem, known as Morera’s theorem , gives a partial converse

to the Cauchy – Goursat theorem.

Theorem 2.2.9.

Let f be continuous on a domain D. If
∫

C
f(z)dz = 0 for every closed contour

C in D, then f is analytic throughout D.

Proof.

By Theorem 2.2.1, f has an antiderivative in D, i.e., there exists an analytic

function F such that F ′(z) = f(z) at each point in D. Since f is the derivative

of an analytic function F , it follows that (See the Remark above) f is analytic

in D.

Theorem 2.2.10. (Cauchy’s inequality)

Suppose that a function f is analytic inside and on a positively oriented circle

CR, centered at z0 and with radius R. If MR denotes the maximum value of |f(z)|

on CR, then

|f (n)(z0)| ≤
n!MR

Rn
, (n = 1, 2, ...).

Proof.

By Cauchy’s integral formula for derivatives, we have

f (n)(z0) =
n!

2πi

∫
C

f(z)dz

(z − z0)n+1
(n = 1, 2, ...).

Applying Theorem 2.1.4, we see that

|f (n)(z0)| ≤
n!

2π

MR2πR

Rn+1
(n = 1, 2, ...).
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Therefore,

|f (n)(z0)| ≤
n!MR

Rn
, (n = 1, 2, ...).

Now we make use of Cauchy’s inequality to prove that no entire function

except a constant is bounded in the complex plane. This is known as Liouville’s

theorem .

Theorem 2.2.11.

If a function f is entire and bounded in the complex plane, then f(z) is

constant throughout the complex plane.

Proof.

Since f is bounded in the complex plane, there exists a nonnegative constant

M such that |f(z)| ≤ M for all z.

Therefore, since f is entire, for any choice of z0 and R, for the value n = 1,

the Cauchy’s inequality implies that, |f ′(z0)| ≤
M

R
.

Letting R →∞, we get f ′(z0) = 0. Since the choice of z0 was arbitrary, this

means that f ′(z) = 0 everywhere in the complex plane. This shows that f is a

constant function.

By using Liouville’s theorem, we now give a simple proof for the fundamen-

tal theorem of algebra .

Theorem 2.2.12.

Any polynomial P (z) = a0 + a1z + a2z
2 + ... + anz

n, (an 6= 0) of degree

n (n ≥ 1) has at least one zero. i.e., there exists at least one point z0 such that

P (z0) = 0.
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Proof.

Suppose that P (z) is not zero for any value of z. Then the reciprocal

f(z) =
1

P (z)
is an entire function, and it is also bounded in the complex plane.

Therefore, by Liouville’s theorem f(z), and hence P (z) is a constant. But P (z)

is not a constant. This contradiction shows that there exists at least one point

z0 such that P (z0) = 0.

Lemma 2.2.13.

Suppose that |f(z)| ≤ |f(z0)| at each point z in some neighborhood |z−z0| < ε

in which f is analytic. Then f(z) has the constant value f(z0) throughout that

neighborhood.

Theorem 2.2.14. (Maximum Modulus Principle)

If a function f is analytic and not constant in a given domain D, then |f(z)|

has no maximum value in D. That is, there is no point z0 in the domain such

that |f(z)| ≤ |f(z0)| for all points z in D.

Corollary 2.2.15.

Suppose that a function f is continuous on a closed bounded region R and

that it is analytic and not constant in the interior of R. Then the maximum

value of |f(z)| in R, which is always reached, occurs somewhere on the boundary

of R and never in the interior.

Exercises.

1. By finding an antiderivative, evaluate each of these integrals, where the

path is any contour between the indicated limits of integration: (a)
∫ i/2

i
eπzdz,

(b)
∫ π+2i

0
cos(

z

2
)dz, (c)

∫ 3

1
(z − 2)3dz.
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2. Apply the Cauchy - Goursat theorem to show that
∫

C
f(z)dz = 0, when

the contour C is the unit circle |z| = 1, in either direction, and when

(a) f(z) =
z2

z − 3
, (b) f(z) = ze−z, (c) f(z) =

1

z2 + 2z + 2
, (d) f(z) = tanz.

3. Evaluate
∫

c

dz

z2 + 2
, where C is the positively oriented unit circle.

4. Evaluate
∫

c

dz

z̄
, where C is the positively oriented unit circle.

5. Verify Cauchy – Goursat theorem for the function f(z) = z2, where C is

the boundary of the rectangle with vertices −1, 1, 1+ i,−1+ i, taken in the

counterclockwise sense.

6. Evaluate
∫

c

e2z

(z + 1)4
dz, where C is the positively oriented circle |z| = 2.

7. Evaluate
∫

c

ez2

z(z − 2i)2
dz, where C is the boundary of the square with ver-

tices ±3± 3i, oriented in the counterclockwise direction.

8. Suppose that f(z) is entire and that the harmonic function u(x, y) =

Re[f(z)] has an upper bound u0 i.e., u(x, y) ≤ u0 for all points (x, y)

in the xy-plane. Show that u(x, y) must be constant throughout the plane.
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Chapter 3
Series of Complex Numbers

In this chapter we study about the convergence and divergence of complex se-

quences and complex infinite series. The basic definitions for complex sequences

and series are essentially the same as for the real case.

3.1 Convergence of Sequences and Series of Com-

plex Numbers

A complex sequence is a function of the form f : N → C, where for every n ∈ N,

we write f(n) = zn. An infinite sequence z1, z2, ..., zn, ... of complex numbers

has a limit z if, for each positive number ε, there exists a positive integer n0 such

that |zn − z| < ε whenever n > n0.

The quantity |zn−z|measures the difference between zn and its intended limit

z. The definition thus says that this difference can be made as small as we like,

provided that n is large enough. It follows that the convergence is not affected by

the initial terms. Observe that the inequality |zn− z| < ε is equivalent to saying

55
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that the point zn lies inside a circle of radius ε and centered at z. In the case

when zn = xn and z = x are real, the inequality |xn− x| < ε is equivalent to the

inequalities x− ε < xn < x+ ε, so that xn lies in the open interval (x− ε, x+ ε).

The limit of the above sequence is unique if it exists. If that limit exists, the

sequence is said to converge to z, and we write limn→∞zn = z. If the sequence

has no limit, we say that it diverges. The proof of the following theorem is left

as an exercise.

Theorem 3.1.1.

Suppose that zn = xn + iyn (n = 1, 2, ...) and z = x+ iy. Then limn→∞zn = z

if and only if limn→∞xn = x and limn→∞yn = y.

An infinite series Σ∞n=1zn = z1 + z2 + .... + zn + .... of complex numbers

converges to the sum S if the sequence SN = ΣN
n=1zn = z1 + z2 + ... + zN ,

(N = 1, 2, ...) of partial sums converges to S, we then write Σ∞n=1zn = S. Since a

sequence can have at most one limit, a series can have at most one sum. When

a series does not converge, we say that it diverges.

Theorem 3.1.2.

Suppose that zn = xn + iyn, (n = 1, 2, ...) and S = X + iY . Then Σ∞n=1zn = S

if and only if Σ∞n=1xn = X and Σ∞n=1yn = Y .

Proof.

Let SN denote the sequence of partial sums of the series Σ∞n=1zn. Then we

can write SN = XN + iYN , where XN = ΣN
n=1xn and YN = ΣN

n=1yn. Therefore,

Σ∞n=1zn = S if and only if limn→∞SN = S. By Theorem 3.1.1, limN→∞SN = S

if and only if limN→∞XN = X and limN→∞YN = Y . Thus, Σ∞n=1zn = S if and

only if Σ∞n=1xn = X and Σ∞n=1yn = Y .
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Corollary 3.1.3.

If a series of complex numbers converges, the nth term converges to zero as n

tends to infinity.

This corollary shows that the terms of convergent series are bounded. That

is, when series Σ∞n=1zn converges, there exists a positive constant M such that

|zn| ≤ M for each positive integer n.

A series of complex numbers Σ∞n=1zn is said to be absolutely convergent

if the series Σ∞n=1|zn| =
√

x2
n + y2

n, (zn = xn + iyn) of real numbers
√

x2
n + y2

n

converges.

Corollary 3.1.4.

The absolute convergence of a series of complex numbers implies the conver-

gence of that series.

In complex analysis, we define power series in a formally identical way to

the real case: namely, a power series centered at a complex number z0 is an

expression of the form Σ∞n=0an(z − z0)
n; where an be complex numbers. Notice

that for any complex number z, this infinite series is a series of complex numbers,

which either converges or diverges.

A power series can be thought of as a generalization of a polynomial, but

unlike polynomials power series do not necessarily converge at all points z. Power

series will provide a large source of analytic functions, and we will see that power

series play a key role in understanding properties of analytic functions.
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3.2 Taylor Series
We begin with the Taylor’s theorem .

Theorem 3.2.1.

Suppose that a function f is analytic throughout a disk |z−z0| < R0, centered

at z0 and with radius R0. Then f(z) has the power series representation

f(z) = Σ∞n=1an(z − z0)
n (|z − z0| < R0), where an =

f (n)(z0)

n!
(n = 0, 1, 2, ...).

i.e., Σ∞n=1an(z−z0)
n converges to f(z) when z lies in the open disk |z−z0| < R0.

(This expansion of f(z) is called the Taylor series of f(z) about the point z0.)

Since f (0)(z0) = f(z0) and 0! = 1, the Taylor series of f(z) about the point z0 can

be written as f(z) = f(z0)+
f ′(z0)

1!
(z−z0)+

f ′′(z0)

2!
(z−z0)

2 + ...., (|z−z0| < R0).

Remark.

A Taylor’s series about the point z0 = 0, f(z) = Σ∞n=0

f (n)(0)

n!
zn (|z| < R0)

is called a Maclaurin series.

Any function which is analytic at a point z0 must have a Taylor series about

z0. For, if f is analytic at z0, it is analytic throughout some neighborhood

|z−z0| < ε of z0. Therefore by Taylor’s theorem, f(z) have a Taylor series about

z0 valid in |z − z0| < ε. Also, if f is entire, R0 can be chosen arbitrarily large,

and the condition of validity becomes |z − z0| < ∞ and the Taylor series then

converges to f(z) at each point z in the finite plane. If f is analytic everywhere

inside a circle centered at z0, then the Taylor series of f(z) about z0 converges

to f(z) for each point z within that circle and in fact, according to Taylor’s

theorem, the series converges to f(z) within the circle about z0 whose radius is
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the distance from z0 to the nearest point z1 at which f fails to be analytic.

Example 7.

Consider the function f(z) = ez. Since f(z) = ez is an entire function, it

has a Maclaurin series representation which is valid for all z. Here, f (n)(z) = ez

(n = 0, 1, 2, ...) ⇒ f (n)(0) = 1, (n = 0, 1, 2, ...)

Therefore, ez = Σ∞n=0

zn

n!
, (|z| < ∞).

Example 8.

Let f(z) =
1

1− z
. Then, the derivatives of the function f(z) =

1

1− z
,

which fails to be analytic at z = 1, are f (n)(z) =
n!

(1− z)n+1
(n = 0, 1, 2, ...).

⇒ f (n)(0) = n! (n = 0, 1, 2, ...).. Therefore, f(z) =
1

1− z
= 1 + z + z2 + z3 +

... (|z| < 1).

Problem 26. Determine the Taylor’s series for f(z) =
1

z + z4
valid for |z| < 1.

Solution.

We have,
1

z + z4
=

1

z

1

1 + z3
=

1

z

1

1− (−z3)
=

1

z
Σ∞n=0(−z3)n

=
1

z
Σ∞n=0(−1)n(z)3n = Σ∞n=0(−1)nz3n−1. �

Exercises.

1. Obtain the Maclaurin series representation f(z) = z cosh (z2).

2. Obtain the Taylor series for the function f(z) = ez in powers of (z − 1).

3. Find the Maclaurin series expansion of the function f(z) =
z

z4 + 9
.

4. Derive the Taylor series representation for
1

1− z
valid in |z − i| <

√
2 in

powers of (z − i).
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5. Expand cos z into a Taylor series about the point z0 = π/2.

6. Expand the function f(z) =
1 + 2z2

z3 + z5
into a series involving powers of z.

7. Obtain the Maclaurin series for the function f(z) = sin(z2).

3.3 Laurent Series

If a function f fails to be analytic at a point z0, but it is analytic throughout

an annular domain R1 < |z − z0| < R2 , centered at z0, then the power series

representation for f(z) involves both positive and negative powers of z−z0. Such

a series representation for f(z) is called a Laurent’s series.

Theorem 3.3.1.

Suppose that a function f is analytic throughout an annular domain R1 <

|z − z0| < R2 , centered at z0 , and let C denote any positively oriented simple

closed contour around z0 and lying in that domain. Then, at each point in the

domain, f(z) has the series representation

f(z) = Σ∞n=0an(z − z0)
n + Σ∞n=1

bn

(z − z0)n
(R1 < |z − z0| < R2),

where

an =
1

2πi

∫
C

f(z)dz

(z − z0)n+1
(n = 0, 1, 2, ...)

and

bn =
1

2πi

∫
C

f(z)dz

(z − z0)n+1
(n = 1, 2, ...).

Remark.

Replacing n by −n in the second series in the above Laurent’s series enables
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us to write that series as

Σ−1
n=−∞

b−n

(z − z0)−n
,

where

b−n =
1

2πi

∫
C

f(z)dz

(z − z0)n+1
(n = −1,−2, ...).

Thus, we have

f(z) = Σ−1
n=−∞b−n(z − z0)

n + Σ∞n=1an(z − z0)
n (R1 < |z − z0| < R2).

Or, we can write

f(z) = Σ∞n=−∞cn(z − z0)
n (R1 < |z − z0| < R2),

where

cn =
1

2πi

∫
C

f(z)dz

(z − z0)n+1
(n = 0,±1,±2, ...).

When the annular domain is specified, it can be proved that a Laurent’s

series for a given function is unique. This fact helps us to found the coefficients

in a Laurent’s series by means other than appealing directly to their integral

representations. We illustrate this through the following examples.

Example 9.

We have the Maclaurin’s series expansion of ez as

ez = Σ∞n=0

zn

n!
= 1 +

z

1!
+

z2

2!
+

z3

3!
+ .... (|z| < ∞).

Replacing z by
1

z
, in this series representation, we get the Laurent’s series for e

1
z
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as:

e
1
z = Σ∞n=0

1

n! zn
= 1 +

1

1! z
+

1

2! z2
+

1

3! z3
+ .... (0 < |z| < ∞).

Note that no positive powers of z appear in this Laurent’s series, the coefficients

of the positive powers being zero.

Example 10.

Consider f(z) =
1

(z + 5)
. We now find the Laurent’s series expansions of

f(z) that are valid in the regions (i) |z| < 5, and (ii) |z| > 5. Here, the region

in (i) is an open disk inside a circle of radius 5, centered on z = 0. We write

f(z) =
1

(z + 5)
=

1

5(1 +
z

5
)

=
1

5(1− (−z

5
))

.

Therefore, by using geometric series expansion, we get f(z) =
1

5
Σ∞n=0(−

z

5
)n =

Σ∞n=0

(−1)n zn

5n+1
, valid in the region |z| < 5, which involves only non negative

powers of z.

Now, the region in (ii) is an open annulus outside a circle of radius 5, centered

on z = 0. Here, |z| > 5 ⇒ |5
z
| < 1.

So, we have f(z) =
1

(z + 5)
=

1

z(1 +
5

z
)

=
1

z(1− (−5

z
))

. By using geometric

series expansion, we get f(z) =
1

z
Σ∞n=0(−

5

z
)n = Σ∞n=0

(−1)n 5n

zn+1
, valid in the

region |z| > 5, which involves only negative powers of z.

Problem 27. Determine the Laurent’s series for f(z) =
1

z(z + 5)
valid in the

region |z| < 5.

Solution.

We know from the above example that
1

z + 5
= Σ∞n=0

(−1)n zn

5n+1
, valid in the
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region |z| < 5. Therefore,

1

z(z + 5)
=

1

z

1

z + 5
=

1

z
Σ∞n=0

(−1)n zn

5n+1
= Σ∞n=0

(−1)n zn−1

5n+1
(|z| < 5).

�

Exercises.

1. Obtain the Laurent’s series expansion for f(z) =
1

z2 + 4
valid in the region

|z − 2i| > 4.

2. For the function f(z) =
1

z(z + 2)
, determine the Laurent’s series that is

valid within the region 1 < |z − 1| < 3.

3. Expand f(z) =
1

z − 1
− 1

z − 2
in the following regions (a) |z| < 1 (b)

1 < |z| < 2 (c) |z| > 2.

4. Find the Laurent series that represents the function f(z) = z2sin
1

z2
in the

domain 0 < |z| < ∞.

5. Derive the Laurent series representation for
ez

(z + 1)2
valid for 0 < |z +1| <

∞.

6. Give two Laurent’s series expansions in powers of z for the function f(z) =

1

z2(1− z)
, and specify the regions in which those expansions are valid.

7. Find the Laurent series expansion of f(z) =
z

(z − 1)(z − 3)
valid in the

region 0 < |z − 1| < 2.

School of Distance Education,University of Calicut



3.4. Absolute and Uniform Convergence of Power Series 64

3.4 Absolute and Uniform Convergence of Power

Series

We will now discuss basic properties of power series.

A natural question is to determine the set of complex numbers z for which a

given power series converges. We have the following theorem.

Theorem 3.4.1.

If a power series Σ∞n=0an(z − z0)
n converges when z = z1 (z1 6= z0), then it

is absolutely convergent at each point z in the open disk |z − z0| < R1 where

R1 = |z1 − z0|.

Analogous to the concept of an interval of convergence in real calculus, a

complex power series Σ∞n=0an(z − z0)
n has a circle of convergence defined by

|z − z0| = R for some R ≥ 0.

The above theorem implies that the set of all points inside some circle centered

at z0 is a region of convergence for the above power series Σ∞n=0an(z − z0)
n,

provided it converges at some point other than z0.

The greatest circle centered at z0 such that series Σ∞n=0an(z − z0)
n converges

at each point inside is called the circle of convergence of the series.

The series cannot converge at any point z2 outside that circle, according to

the theorem ; for if it did, it would converge everywhere inside the circle centered

at z0 and passing through z2. The first circle could not, then, be the circle of

convergence.

The power series converges absolutely for all z satisfying |z − z0| < R and

diverges for |z− z0| > R. Here R is called the radius of convergence of the power
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series. The radius R of convergence can be (a) zero (in which case Σ∞n=0an(z−z0)
n

converges only at z = z0), (b) a finite number (in which case the given power

series converges at all interior points of the circle |z − z0| = R), (c) ∞ (in which

case the given power series converges for all z).

A power series may converge at some, all, or none of the points on the actual

circle of convergence.

Suppose that the power series Σ∞n=0an(z − z0)
n has circle of convergence |z −

z0| = R, and let S(z) and SN(z) represent the sum and partial sums, respectively,

of that series:

S(z) = Σ∞n=0an(z − z0)
n, SN(z) = ΣN−1

n=0 an(z − z0)
n (|z − z0| < R).

Then, the remainder function ρN(z) is given by ρN(z) = S(z) − SN(z)

(|z − z0| < R). Since the power series converges for any fixed value of z when

|z − z0| < R, we know that the remainder ρN(z) approaches zero for any such z

as N tends to infinity.

This means that corresponding to each positive number ε, there is a positive

integer Nε such that |ρN(z)| < ε whenever N > Nε.

When the choice of Nε depends only on the value of ε and is independent

of the point z taken in a specified region within the circle of convergence, the

convergence is said to be uniform in that region.

It can be shown that if z1 is a point inside the circle of convergence |z−z0| = R

of a power series Σ∞n=0an(z− z0)
n, then that series must be uniformly convergent

in the closed disk |z − z0| < R1, where R1 = |z1 − z0|.

Note that a power series Σ∞n=0an(z − z0)
n represents a continuous function
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S(z) at each point inside its circle of convergence |z − z0| = R. Furthermore,

the sum S(z) of the power series Σ∞n=0an(z − z0)
n is actually analytic within the

circle of convergence.

Theorem 3.4.2.

Let C denote any contour interior to the circle of convergence of the power

series Σ∞n=0an(z − z0)
n, and let g(z) be any function that is continuous on C.

The series formed by multiplying each term of the power series by g(z) can be

integrated term by term over C; i.e.,
∫

C
g(z)S(z)dz = Σ∞n=0an

∫
C

g(z)(z−z0)
ndz.

If a series Σ∞n=0an(z − z0)
n converges to f(z) at all points interior to some

circle |z−z0| = R, then it is the Taylor series expansion for f in powers of z−z0.

If a series Σ∞n=−∞cn(z− z0)
n = Σ∞n=0an(z− z0)

n +Σ∞n=1

bn

(z − z0)n
converges to

f(z) at all points in some annular domain about z0, then it is the Laurent series

expansion for f in powers of z − z0 for that domain.

An important result in real calculus states that, within a power series’s radius

of convergence, a power series is differentiable, and its derivative can be obtained

by differentiating the individual terms of the power series term–by–term. The

same holds true for complex power series:

Theorem 3.4.3.

The power series S(z) = Σ∞n=0an(z − z0)
n can be differentiated term by term.

i.e., at each point z interior to the circle of convergence of that series, S ′(z) =

Σ∞n=1nan(z − z0)
n−1. Also, S ′(z) has the same radius of convergence as S(z).

Suppose that each of the power series Σ∞n=0an(z − z0)
n and Σ∞n=0bn(z − z0)

n

converges within some circle |z−z0| = R. Their sums f(z) and g(z), respectively,

are then analytic functions in the disk |z−z0| < R, and the product of those sums

School of Distance Education,University of Calicut



3.4. Absolute and Uniform Convergence of Power Series 67

has a Taylor series expansion which is valid there: Σ∞n=0cn(z−z0)
n (|z−z0| < R),

where cn are given by

cn = Σn
k=0akbn−k.

The series Σ∞n=0cn(z−z0)
n with cn = Σn

k=0akbn−k is the same as the series obtained

by formally multiplying the two series Σ∞n=0an(z− z0)
n and Σ∞n=0bn(z− z0)

n term

by term and collecting the resulting terms in like powers of z − z0; it is called

the Cauchy product of the two given series.

Now, let f(z) and g(z) denote the sums of series Σ∞n=0an(z−z0)
n and Σ∞n=0bn(z−

z0)
n, in the region |z − z0| < R respectively. Suppose that g(z) 6= 0 when

|z − z0| < R. Since the quotient f(z)/g(z) is analytic throughout the disk

|z − z0| < R, it has a Taylor series representation
f(z)

g(z)
= Σ∞n=0dn(z − z0)

n,

where the coefficients dn can be found by differentiating f(z)/g(z) successively

and evaluating the derivatives at z = z0.

Problem 28.

Determine the power series for f(z) =
1

z2
valid in the region |z − 1| < 1, by

differentiating the power series representation of
1

z
in the region |z − 1| < 1.

Solution.

By geometric series expansion, we have
1

z
=

1

1 + (z − 1)
=

1

1− (−(z − 1))
=

Σ∞n=0(−1)n(z − 1)n, |z − 1| < 1.

Differentiating each sides of this equation gives,
−1

z2
= Σ∞n=1(−1)nn(z − 1)n−1

⇒ 1

z2
= Σ∞n=0(−1)n(n + 1)(z − 1)n, |z − 1| < 1. �

Problem 29.

Use the power series expansions for ez and
1

1 + z
, to obtain the power series
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representation of
ez

1 + z
in the region |z| < 1.

Solution.

By geometric series expansion, we have
1

1 + z
= 1− z + z2− z3 + ...., |z| < 1.

Also, ez = Σ∞n=0

zn

n!
, (|z| < ∞).

Therefore,
ez

1 + z
= (1 + z +

1

2
z2 +

1

6
z3 + ....)(1− z + z2 − z3 + ....).

Multiplying these two series term by term, we get
ez

1 + z
= 1+

1

2
z2− 1

3
z3 + ....

(|z| < ∞). �

Exercises.

1. By differentiating the Maclaurin series representation
1

1− z
= Σ∞n=0z

n

(|z| < 1), obtain the expansions for
1

(1− z)2
and

2

(1− z)3

2. Find the Taylor series for the function
1

z
about the point z0 = 2. By

differentiating that series term by term, obtain the Taylor series for the

function
1

z2
valid in the region |z − 2| < 2.

3. Use multiplication of series to show that
ez

z(z2 + 1)
=

1

z
+1− 1

2
z− 5

6
z2 + ....

(0 < |z| < 1).

4. Use division to obtain the Laurent series representation

1

ez − 1)
=

1

z
− 1

2
+

1

12
z − 1

720
z3 + .... (0 < |z| < 2π).

5. Show that
1

z2sinh z
=

1

z3
− 1

6
· 1

z
+

7

360
z + .... (0 < |z| < π).
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Chapter 4
Residue Integration

In this chapter, we will discuss the Cauchy’s residue theorem, which is a powerful

tool to evaluate line integrals of analytic functions over closed curves; it can

often be used to compute real integrals as well. It generalizes the Cauchy -

Goursat theorem and Cauchy’s integral formula. We begin with a detailed study

of isolated singular points.

4.1 Singular Points and Residues

Recall that a point z0 is called a singular point of a function f if f fails to be

analytic at z0 but is analytic at some point in every neighborhood of z0.

A singular point z0 is said to be isolated if there is a deleted neighborhood

0 < |z − z0| < ε of z0 throughout which f is analytic.

If there is a positive number R1 such that f is analytic for R1 < |z| < ∞,

then f is said to have an isolated singular point at z0 = ∞.

For example, the function f(z) =
z + 1

z3(z2 + 1)
has the three isolated singular
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points z = 0 and z = ±i.

The function f(z) =
1

sin(π/z)
has the singular points z = 0 and z = 1/n,

(n = ±1,±2, ...), all lying on the segment of the real axis from z = −1 to

z = 1. Each singular point except z = 0 is isolated. The singular point z = 0

is not isolated because every deleted ε-neighborhood of the origin contains other

singular points of the function (since 1/n → 0 as n →∞).

Now, suppose that z0 is an isolated singular point of a function f . Then there

exists ε > 0 such that f is analytic in the annulus 0 < |z − z0| < ε. Hence f(z)

has a Laurent series representation

f(z) = Σ∞n=0an(z − z0)
n + Σ∞n=1

bn

(z − z0)n
(0 < |z − z0| < ε).

Let C is any positively oriented simple closed contour around z0 that lies in the

punctured disk 0 < |z − z0| < ε.

Since
∫

C
(z−z0)

ndz = 0 when z 6= −1, and
∫

C

1

(z − z0)
dz = 2πi, by integrating

the above Laurent series, term by term around C, we obtain:∫
C

f(z)dz = 2πi b1.

The complex number b1, which is the coefficient of 1/(z−z0) in the above Laurent

series expansion of f(z), is called the residue of f at the isolated singular point

z0, and we denote it as Resz=z0f(z).

Therefore, we have
∫

C
f(z)dz = 2πi Resz=z0f(z).
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This provides a powerful method for evaluating certain integrals around simple

closed contours.

Example 11.

Consider the integral
∫

C
z2 sin

1

z
dz where C is the positively oriented unit

circle |z| = 1. Since the integrand is analytic everywhere in the finite complex

plane except at z = 0, it has a Laurent series representation that is valid in the

region 0 < |z| < ∞. Therefore by the equation
∫

C
f(z)dz = 2πi Resz=z0f(z),

the value of integral
∫

C
z2 sin

1

z
dz is 2π i times the residue of its integrand at

z = 0.

Note that

z2 sin
1

z
= z2(

1

z
− 1

3!
· 1

z3
+

1

5!
· 1

z5
− ....) = z− 1

3!
· 1
z

+
1

5!
· 1

z3
− .... 0 < |z| < ∞.

Here, the coefficient of
1

z
is
−1

3!
. ⇒Resz=z0z

2 sin
1

z
=
−1

3!
. Therefore,

∫
C

z2 sin
1

z
dz = 2πi · −1

3!
=
−π i

3
.

Theorem 4.1.1. (Cauchy’s Residue Theorem)

Let C be a simple closed contour, described in the positive sense. If a function

f is analytic inside and on C except for a finite number of singular points zk

(k = 1, 2, ..., n) inside C, then∫
C

f(z)dz = 2πi Σn
k=1Resz=zk

f(z)

Proof.

Let the points zk (k = 1, 2, ..., n) be centers of positively oriented circles Ck

which are interior to C and are so small that no two of them have points in

School of Distance Education,University of Calicut



4.1. Singular Points and Residues 72

common. The circles Ck, together with the simple closed contour C, form the

boundary of a closed region throughout which f is analytic and whose interior

is a multiply connected domain consisting of the points inside C and exterior to

each Ck.

Hence, by the Cauchy–Goursat theorem for multiply connected domains,∫
C

f(z)dz − Σn
k=1

∫
Ck

f(z)dz = 0

. But,
∫

Ck
f(z)dz = 2πi Resz=zk

f(z) (k = 1, 2, ..., n).

Therefore,
∫

C
f(z)dz = 2πi Σn

k=1Resz=zk
f(z).

Residue at Infinity

Suppose that a function f is analytic throughout the finite plane except for

a finite number of singular points interior to a positively oriented simple closed

contour C. Let R1 denote a positive number which is large enough that C lies

inside the circle |z| = R1. Then, the function f is clearly analytic throughout

the domain R1 < |z| < ∞ and in this case, the point at infinity is said to be an

isolated singular point of f . Now, let C0 denote a circle |z| = R0, oriented in the

clockwise direction, where R0 > R1.
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The residue of f at infinity is defined by means of the equation

∫
C0

f(z)dz = 2π i Resz=∞f(z) −−−−− (1)

Since f is analytic throughout the closed region bounded by C and C0, the

principle of deformation of paths implies that

∫
C

f(z)dz =

∫
−C0

f(z)dz = −
∫

C0

f(z)dz.

Therefore,
∫

C
f(z)dz = −2π i Resz=∞f(z) −−−−− (2).

Now to find this residue,we write the Laurent series

f(z) = Σ∞n=−∞cn zn (R1 < |z| < ∞),

where

cn =
1

2πi

∫
−C0

f(z)dz

zn+1
(n = 0,±1,±2, ...).

Replacing z by 1/z in the above Laurent series and then multiplying by 1/z2, we

see that

1

z2
f(

1

z
) = Σ∞n=−∞cn zn+2 = Σ∞n=−∞cn−2 zn (0 < |z| < 1

R1

).

Therefore, by definition of residues, c−1 = Resz=0[
1

z2
f(

1

z
)]. But, by the above

formula to compute the coefficients of Laurent series,

c−1 =
1

2πi

∫
−C0

f(z)dz

⇒
∫

C0
f(z)dz = −2π i Resz=0[

1

z2
f(

1

z
)] −−−−− (3).
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Now from equations (1) and (3), it follows that

Resz=∞f(z) = −Resz=0[
1

z2
f(

1

z
)] −−−−− (4)

From equations (2) and (4), we obtain the following theorem, which is sometimes

more efficient to use than Cauchy’s residue theorem since it involves only one

residue.

Theorem 4.1.2.

If a function f is analytic everywhere in the finite plane except for a finite

number of singular points interior to a positively oriented simple closed contour

C, then ∫
C

f(z)dz = 2π i Resz=0[
1

z2
f(

1

z
)].

Problem 30.

Evaluate the integral
∫

C

5z − 2

z(z − 1)
dz, where C is the positively oriented circle

|z| = 2.

Solution.

Here, the integrand f(z) =
5z − 2

z(z − 1)
has the two isolated singularities z = 0

and z = 1, both of which are interior to C. We first expand f(z) =
5z − 2

z(z − 1)
as

a Laurent series about z = 0 as follows:

5z − 2

z(z − 1)
=

5z − 2

z
· −1

1− z
= (5− 2

z
)(−1− z − z2 − ....) (0 < |z| < 1).

Therefore, the Resz=0f(z) is the coefficient of 1/z in this Laurent series expan-

sion, i.e., Resz=0f(z) = 2.
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Now we expand f(z) =
5z − 2

z(z − 1)
as a Laurent series about z = 1 as follows:

5z − 2

z(z − 1)
=

5(z − 1) + 3

(z − 1)
· 1

1 + (z − 1)
= (5+

3

(z − 1)
)[1− (z−1)+(z−1)2− ....],

when 0 < |z−1| < 1. From this expansion, we get Resz=1f(z) = 3, the coefficient

of i/(z − 1). Therefore, by Cauchy’s residue theorem,

∫
C

5z − 2

z(z − 1)
dz = 2πi [Resz=0f(z) + Resz=1f(z)] = 2πi [2 + 3] = 10π i.

�

Remark.

The above problem can also be solved by using Theorem 4.1.2. Here,

1

z2
f(

1

z
) =

5− 2z

z(1− z)
=

5− 2z

z
· 1

1− z
= (

5

z
− 2) (1 + z + z2 + ....) (0 < |z| < 1).

Therefore, Resz=0[
1

z2
f(

1

z
)] is the coefficient of 1/z in the above Laurent series

expansion. i.e., Resz=0[
1

z2
f(

1

z
)] = 5. Therefore,

∫
C

f(z)dz = 2π i Resz=0[
1

z2
f(

1

z
)] = 2π i · 5 = 10π i .

Exercises.

1. Find the residue at z = 0 of the following functions.

(a)
1

z + z2
(b) z cos(1

z
) (c)

z − sin z

z
(d)

exp(−z)

z2
.

2. Evaluate the integral
∫

C

exp(−z)

(z − 1)2
dz, where C is the positively oriented

circle |z| = 3.
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3. Evaluate the integral
∫

C
z2 exp(

1

z
)dz, where C is the positively oriented

unit circle.

4. Suppose that a function f is analytic throughout the finite complex plane

except for a finite number of singular points z1, z2, ..., zn. Show that

Resz=z1f(z) + Resz=z2f(z) + .... + Resz=znf(z) + Resz=∞f(z) = 0.

5. Use Cauchy’s residue theorem, to compute
∫

C

z + 1

z2 − 2z
dz, where C is the

positively oriented circle |z| = 3.

6. Use Theorem 4.1.2, to compute
∫

C

z + 1

z2 − 2z
dz, where C is the positively

oriented circle |z| = 3.

4.2 Types of Isolated Singular Points

Let z = z0 be an isolated singular point of a function f . Then there exists ε > 0

such that f is analytic in the annulus 0 < |z− z0| < ε. Hence f(z) has a Laurent

series representation

f(z) = Σ∞n=0an(z − z0)
n + Σ∞n=1

bn

(z − z0)n
(0 < |z − z0| < ε).

Here, the portion of the Laurent series of f(z) about the isolated singular point

z = z0 consisting of negative powers of z − z0, i.e, Σ∞n=1

bn

(z − z0)n
is called the

principal part of f at z0. We now use the principal part to identify the isolated

singular point z0 as one of three special types.

If the principal part of f at z0 contains at least one nonzero term but the

number of such terms is only finite, then there exists a positive integerm (m ≥ 1)

such that bm 6= 0 and bm+1 = bm+2 = .... = 0. Then the Laurent series expansion
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of f(z) becomes

f(z) = Σ∞n=0an(z− z0)
n +

b1

z − z0

+
b2

(z − z0)2
+ ...+

bm

(z − z0)m
(0 < |z− z0| < ε),

where bm 6= 0. In this case, the isolated singular point z0 is called a pole of

order m. A pole of order m = 1 is called a simple pole.

If every bn in the Laurent series expansion of f(z) about the isolated singular

point z = z0 is zero, so that

f(z) = Σ∞n=0an(z − z0)
n (0 < |z − z0| < ε).

In this case, the isolated singular point z0 is called a removable singular point.

Note that the residue at a removable singular point is always zero. If we rede-

fine, f at z0 so that f(z0) = a0, the Laurent expansion becomes valid throughout

the entire disk |z − z0| < ε. Since a power series always represents an analytic

function interior to its circle of convergence, it follows that f is now analytic at

z0. The singularity z0 of f is, therefore, removed.

If an infinite number of the coefficients bn in the principal part of the Laurent

series expansion of f(z) about the isolated singular point z0 are nonzero, then z0

is said to be an essential singular point of f .

In each neighborhood of an essential singular point, a function assumes every

finite value, with one possible exception, an infinite number of times. This is

known as Picard’s theorem .

Example 12. (Simple Pole)

Consider the function f(z) =
5z − 2

z − 1
.
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Note that f(z) =
5z − 2

z − 1
=

5(z − 1) + 3

(z − 1)
= 5 +

3

(z − 1)
, which is the Laurent

series expansion of f(z) =
5z − 2

z − 1
about the isolated singular point z = 1. Here,

the principal part contains only one nonzero term namely
3

(z − 1)
, and hence

z = 1 is a simple pole of f(z) and Resz=1
5z − 2

z − 1
= 3.

Example 13. (Pole of Order 2 )

Consider the function f(z) =
1

z2(z + 1)
. Note that

f(z) =
1

z2(z + 1)
=

1

z2

1

1− (−z)
=

1

z2
− 1

z
+ 1 − z + z2 − ..... (0 < |z| < 1).

Thus, the principal part of the Laurent series expansion of f(z) =
1

z2(z + 1)

about the isolated singular point z = 0 shows that z = 0 is a pole of order 2,

and Resz=0
1

z2(z + 1)
= −1.

Example 14. (Removable Singular Point )

Consider the function f(z) =
sin z

z
.

Note that
sin z

z
=

1

z
[z − z3

3!
+

z5

5!
− ....] = 1− z2

3!
+

z4

3!
− .... (0 < |z| < ∞).

Thus, the principal part of the Laurent series expansion of f(z) =
sin z

z
has no

terms. ⇒ z = 0 is a removable singular point of f(z), Resz=0
sin z

z
= 0, and if

we set f(0) = 1, f(z) becomes an entire function.

Example 15. (Essential Singular Point )

We have

e
1
z = Σ∞n=0

1

n! zn
= 1 +

1

1! z
+

1

2! z2
+

1

3! z3
+ .... (0 < |z| < ∞).

Thus, the principal part of the Laurent series expansion of f(z) = e
1
z con-

tains infinitely many terms. ⇒ z = 0 is an essential singular point of f(z)

and Resz=0 e
1
z = 1.
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Problem 31.

Show that z = 0 is a removable singularity of the function f(z) =
1− cos z

z2
.

Solution.

We have the Macalurin’ series expansion

cos z = 1− z2

2!
+

z4

4!
− z6

6!
+ .... (|z| < ∞).

Therefore, for 0 < |z| < ∞, we have

f(z) =
1− cos z

z2
=

1

z2
[1− (1 +

1

1! z
+

1

2! z2
+

1

3! z3
+ ....)] =

1

2!
− z2

4!
+

z4

6!
+ .....

The principal part of the Laurent series expansion has no terms. ⇒ z = 0 is a

removable singular point of
1− cos z

z2
. If we set f(0) = 1/2, f(z) becomes an

entire function. �

Problem 32.

Evaluate
∫

C
e−1/zsin (1

z
) dz where C is the positively oriented unit circle.

Solution.

We have the series expansions

e−1/z = 1− 1

z
+

1

2!
· 1

z2
− 1

3!
· 1

z3
+ .... (0 < |z| < ∞)

and

sin (
1

z
) =

1

z
− 1

3!
· 1

z3
+

1

5!
· 1

z5
− .... (0 < |z| < ∞)
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Therefore, for 0 < |z| < ∞, we have

e−1/zsin (
1

z
) =

1

z
− 1

z2
+ ....

⇒ The principal part of the Laurent series expansion of e−1/zsin (1
z
) has infinitely

many terms. ⇒ z = 0 is an essential singular point with residue 1. Hence∫
C

e−1/zsin (1
z
) dz = 2π i · 1 = 2π i. �

Exercises.

1. Write the principal part of the following functions at the isolated singular

points and determine whether that point is a pole, a removable singular

point, or an essential singular point. Also, find the corresponding residue

in each case.

(a) z exp(
1

z
)

(b)
cos z

z

(c)
z2

1 + z

(d)
1

(2− z)3

(e)
sinh z

z4

(f)
z2 − 2z + 3

z − 2

(g)
1− exp(2z)

z4

(h)
exp(2z)

(z − 1)2
.

2. Suppose that a function f is analytic at z0, and write g(z) =
f(z)

(z − z0)
.

Show that
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(a) if f(z0) 6= 0, then z0 is a simple pole of g, with residue f(z0);

(b) if f(z0) = 0, then z0 is a removable singular point of g.

4.3 Computation of Residues at Poles

If a function f(z) has an isolated singularity at a point z0, then, the basic method

for identifying z0 as a pole and finding the residue there is to write the appropriate

Laurent series and to note the coefficient of 1/(z − z0). But, the computation

of a Laurent series expansion is tedious in most circumstances. The following

theorem provides an alternative characterization of poles and a way of finding

residues at poles.

Theorem 4.3.1. An isolated singular point z0 of a function f is a pole of order

m if and only if f(z) can be written in the form f(z) =
φ(z)

(z − z0)m
, where φ(z)

is analytic and nonzero at z0.

Moreover, Resz=z0f(z) = φ(z0) if m = 1 and Res z=z0f(z) =
φ(m−1)(z0)

(m− 1)!
if m ≥ 2.

Problem 33.

Find the residues of f(z) =
z + 1

z2 + 9
at singular points.

Solution.

Here, f(z) =
z + 1

z2 + 9
is analytic at all points except z = ±3 i. We can write

f(z) =
φ(z)

z − 3ı
where φ(z) =

z + 1

z + 3 i
. Since φ(z) is analytic at 3 i and φ(3 i) 6= 0,

z = 3 i is a simple pole of f , and Resz=3 if(z) = φ(3 i) =
3− i

6
.

Similarly, z = −3 i is also a simple pole of f , and Resz=−3 if(z) =
3 + i

6
.

�
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Problem 34.

Find the value of the integral
∫

C

3z3 + 2

(z − 1)(z2 + 9)
dz, taken counterclockwise

around the circle |z − 2| = 2.

Solution.

Here, f(z) =
3z3 + 2

(z − 1)(z2 + 9)
has the singular points z = 1 and z = ±3 i and

all these are simple poles.

Here, C is |z − 2| = 2. The simple poles z = 1 lies inside C , whereas z = −3ı

and z = 3 i lies out side C.

As in above problem, we find that Resz=1f(z) = 1/2. By Cauchy’s residue

theorem, ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz = 2πi Resz=1f(z) = π i.

�

Problem 35.

Evaluate
∫

C

ez

(z + 1)2
dz, along the circle |z−1| = 3 taken in counterclockwise

direction.

Solution.

Note that f(z) =
ez

(z + 1)2
is analytic at all points except z = −1.

Here, C is |z − 1| = 3. ⇒ The singular point z = −1 lies inside C .

Also, we can write f(z) =
φ(z)

(z + 1)2
where φ(z) = ez.

Since φ(z) is analytic and non zero at z = −1, it is a double pole of f , and

Resz=−1f(z) =
φ′(−1)

1!
= e−1.

Hence,
∫

C

ez

(z + 1)2
dz = 2πi Resz=−1f(z) = 2π i · e−1 =

2π i

e
.

�
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Exercises.

1. Find the residues of f(z) =
sinh z

z4
at z = 0.

2. Find the residues of f(z) =
(log z)3

z2 + 1
at singular points.

3. Show that z = i is a pole of order 3 of the function f(z) =
z3 + 2z

(z − i)3
and

find the residue at z = i.

4. Find the value of the integral
∫

C

3z3 + 2

(z − 1)(z2 + 9)
dz, taken counterclockwise

around the circle |z| = 4.

5. Find the value of the integral
∫

C

dz

(z − 1)(z3(z + 4))
dz, taken counterclock-

wise around the circle |z| = 2.

6. Evaluate the integral of f(z) around the positively oriented circle |z| = 3

where (a) f(z) =
z3e

1
z

1 + z3
(b) f(z) =

(3z + 2)2

z(z − 1)(2z + 5)
.

4.4 Zeros of Analytic Functions

Suppose that a function f is analytic at a point z0. Since f(z) is analytic at z0,

all of the derivatives f (n)(z) (n = 1, 2, ...) exist at z0. If f(z0) = 0 and if there is

a positive integer m such that f (m)(z + 0) 6= 0 and each derivative of lower order

vanishes at z0 , then f is said to have a zero of order m at z0. The following

theorem provides an alternative characterization of zeros of order m.

Theorem 4.4.1.

Let a function f be analytic at a point z0. It has a zero of order m at z0 if

and only if there is a function g, which is analytic and nonzero at z0 , such that

f(z) = (z − z0)
mg(z).
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Example 16.

Consider the polynomial f(z) = z3−8. Note that f is entire and that f(2) = 0

and f ′(2) = 12 6= 0. ⇒ z0 = 2 is a zero of order 1.

This can also be seen by using the above theorem. We can write z3 − 8 =

(z−2)(z2+2z+4). ⇒ f(z) has a zero of order 1 at z0 = 2, since f(z) = (z−2)g(z),

where g(z) = z2 + 2z + 4, and because f and g are entire and g(2) 6= 0.

The next theorem shows that the zeros of an analytic function are isolated

when the function is not identically equal to zero.

Theorem 4.4.2.

Given a function f and a point z0 , suppose that (a) f is analytic at z0 ; (b)

f(z0) = 0 but f(z) is not identically equal to zero in any neighborhood of z0 .

Then f(z) 6= 0 throughout some deleted neighborhood 0 < |z − z0| < ε of z0 .

Theorem 4.4.3.

Given a function f and a point z0, suppose that

(a) f is analytic throughout a neighborhood N0 of z0 ;

(b) f(z) = 0 at each point z of a domain D or line segment L containing z0.

Then f(z) = 0 in N0; that is, f(z) is identically equal to zero throughout N0.

Theorem 4.4.4.

Suppose that

(a) two functions p and q are analytic at a point z0 ;

(b) p(z0) 6= 0 and q has a zero of order m at z0. Then the quotient p(z)/q(z)

has a pole of order m at z0.
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Theorem 4.4.5.

Let two functions p and q be analytic at a point z0 . If p(z0) 6= 0, q(z0) = 0,

and q′(z0) 6= 0, then z0 is a simple pole of the quotient p(z)/q(z) and

Resz=z0

p(z)

q(z)
=

p(z0)

q′(z0)

Example 17.

Consider the function f(z) = cotz =
cos z

sin z
, which is a quotient of the entire

functions p(z) = cos z and q(z) = sin z. Its singularities occur at the zeros of

q. i.e., at the points z = nπ (n = 0,±1,±2, ...). Since p(nπ) = (−1)n 6= 0,

q(nπ) = 0, and q′(nπ) = (−1)n 6= 0, each singular point z = nπ of f is a simple

pole, with residue =
p(nπ)

q′(nπ)
=

(−1)n

(−1)n
= 1.

Problem 36.

Find the value of the integral
∫

C

9z + i

z(z2 + 1)
dz, taken counterclockwise around

the circle |z| = 2.

Solution.

Here, f(z) =
9z + i

z(z2 + 1)
=

p(z)

q(z)
has the singular points z = 0 and z = ±i and

all these lies inside C.

Since p(0) = i 6= 0, q(0) = 0, and q′(0) = 1 6= 0, the singular point z = 0 of f

is a simple pole, with residue =
p(0)

q′(0)
=

i

1
= i.

Similarly, since p(i) = 10i 6= 0, q(i) = 0, and q′(i) = −2 6= 0, the singular

point z = i of f is a simple pole, with residue =
p(i)

q′(i)
=

10 i

−2
= −5 i and, since

p(−i) = −8 i 6= 0, q(−i) = 0, and q′(−i) = −2 6= 0, the singular point z = −i of

f is a simple pole, with residue =
p(−i)

q′(−i)
=
−8 i

−2
= 4 i.
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By Cauchy’s residue theorem,∫
C

9z + i

z(z2 + 1)
dz = 2πi [Resz=0f(z)+Resz=if(z)+Resz=−if(z)] = 2π i[i+(−5i)+

(4i)] = 0. �

Exercises.

1. Let C denote the positively oriented circle |z| = 2 and evaluate the integral

(a)
∫

C
tan zdz; (b)

∫
C

dz

sinh 2z
.

2. Show that
∫

C

dz

(z2 − 1)2 + 3
=

π

2
√

2
, where C is the positively oriented

boundary of the rectangle whose sides lie along the lines x = ±2, y = 0,

and y = 1.

3. Let p and q denote functions that are analytic at a point z0, where p(z0) 6= 0

and q(z0) = 0. Show that if the quotient p(z)/q(z) has a pole of order m

at z0, then z0 is a zero of order m of q.

4. Show that Resz=πi
z − sinh z

z2sinh z
=

i

π
.

5. Show that Res z=zn(tanh z) = 1 where zn = (π
2
+nπ)i (n = 0,±1,±2, ...).

6. Show that the point z = 0 is a simple pole of the function f(z) = csc z

and that the residue of f at z = 0 is 1.

4.5 Evaluation of Improper Integrals

We have seen that the Cauchy’s residue theorem allows us to evaluate integrals

without actually physically integrating i.e., it allows us to evaluate an integral

just by knowing the residues contained inside a closed contour. In this section

we shall see how to use the residue theorem to to evaluate certain real integrals
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which were not possible (or difficult) using real integration techniques from single

variable calculus.

In calculus, the improper integral of a continuous function f(x) over the

semi-infinite interval 0 ≤ x < ∞ is defined by means of the equation

∫ ∞

0

f(x)dx = limR→∞

∫ R

0

f(x)dx.

When the limit on the right exists, the improper integral is said to converge to

that limit.

If f(x) is continuous for all x, its improper integral over the infinite interval

−∞ < x < ∞ is defined by writing

∫ ∞

−∞
f(x)dx = limR1→∞

∫ 0

−R1

f(x)dx + limR2→∞

∫ R2

0

f(x)dx −−−−(1)

and when both of the limits on right side exist, we say that the integral
∫∞
−∞ f(x)dx

converges to their sum.

Another value that is assigned to the integral
∫∞
−∞ f(x)dx is the Cauchy

principal value (P.V.) . The Cauchy principal value (P.V.) of integral∫∞
−∞ f(x) dx is defined as:

P.V.
∫∞
−∞ f(x) dx = limR→∞

∫ R

−R
f(x) dx −−−−(2)

provided this single limit exists.

If integral (1) converges its Cauchy principal value (2) exists. But it is not

always true that integral (1) converges when its Cauchy P.V. exists.

For example, consider the function f(x) = x. Here, both of the limits

limR1→∞
∫ 0

−R1
x dx and limR2→∞

∫ R2

0
x dx does not exists.

But, P.V.
∫∞
−∞ f(x) dx = limR→∞

∫ R

−R
x dx = limR→∞[x2

2
]R−R = 0.
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If f(x) (−∞ < x < ∞) is an even function and if the Cauchy principal value

(2) exists, then ∫ ∞

0

f(x) dx =
1

2
[P.V.

∫ ∞

−∞
f(x) dx].

We now describe a method involving sums of residues, that is often used to

evaluate improper integrals of rational functions f(x) = p(x)/q(x), where p(x)

and q(x) are polynomials with real coefficients and no factors in common. We

agree that q(z) has no real zeros but has at least one zero above the real axis.

The method begins with the identification of all the distinct zeros of the

polynomial q(z) that lie above the real axis. They are, of course, finite in number

and may be labelled as z1, z2, ..., zn, where n is less than or equal to the degree

of q(z).

We then integrate the quotient f(z) =
p(z)

q(z)
around the positively oriented

boundary of the semicircular region consisting of the portion CR in the upper

half plane, of the circle with center at z = 0 and radius R, and the line segment

from −R to R on the real axis.

We take the positive number R as so large such that all the points z1, z2, ..., zn

lie inside of the above described simple closed path.

The parametric representation z = x (−R ≤ x ≤ R) of the segment of the

real axis and the Cauchy’s residue theorem allows us to write that∫ R

−R

f(x) dx +

∫
CR

f(z) dz = 2π iΣn
k=0Resz=zk

f(z).
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If

limR→∞

∫
CR

f(z) dz = 0,

it follows that

P.V.

∫ ∞

−∞
f(x) dx = 2π i Σn

k=0Resz=zk
f(z).

Therefore, if f is even, then

∫ ∞

0

f(x) dx = π i Σn
k=0Resz=zk

f(z).

Problem 37.

Find the Cauchy principal value of
∫∞
−∞

x2 + x

(x2 + 1)(x2 + 4)
dx

Solution.

Consider f(z) =
z2 + z

(z2 + 1)(z2 + 4)
. Then f(z) is not analytic at z = ± i and

z = ±2i and the singular points of f(z) that lie in the upper half plane are z = i

and z = 2i.

Consider the simple closed contour enclosing the semicircular region bounded

by the segment z = x (−R ≤ x ≤ R) of the real axis and the upper half CR of

the circle |z| = R. (Here R is large enough such that both the singular points

z = i and z = 2i of f that lie in the upper half plane belongs to the interior of

the simple closed contour mentioned ). Integrating f(z) counterclockwise around

the boundary of this semicircular region, we see that

∫ R

−R

x2 + x

(x2 + 1)(x2 + 4)
dx +

∫
CR

f(z) dz = 2π i [Resz=if(z) + Resz=2if(z)].

On computation, we get Resz=if(z) =
i− 1

6i
and Resz=2if(z) =

2− i

6i
.
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Therefore,

∫ R

−R

x2 + x

(x2 + 1)(x2 + 4)
dx = 2π i[

i− 1

6i
+

2− i

6i
]−

∫
CR

f(z) dz =
π

3
−

∫
CR

f(z) dz.

This is valid for all values of R greater than 2.

Now, we show that
∫

CR
f(z) dz → 0 as R →∞.

On |z| = R, we have |z2 + z| ≤ R2 + R , |z2 + 1| ≥ ||z|2 − 1| = R2 − 1 and

|z2 + 4| ≥ ||z|2 − 4| = R2 − 4. ⇒ |f(z)| ≤ R2 + R

(R2 − 1)(R2 − 4)

This implies that |
∫

CR
f(z) dz| ≤

∫
CR
|f(z)| dz ≤ R2 + R

(R2 − 1)(R2 − 4)
π R

(Using 2.1.4) Thus, as R →∞,
∫

CR
f(z) dz → 0. Hence

P.V.

∫ ∞

−∞

x2 + x

(x2 + 1)(x2 + 4)
dx =

π

3
.

�

Exercises.

1. Use residues to evaluate
∫∞

0

x2

x6 + 1
dx

2. Use residues to find the Cauchy principal value of
∫∞
−∞

dx

x2 + 2x + 2
.

3. Use residues to evaluate
∫∞

0

dx

x2 + 1

4. Find the value of
∫∞

0

dx

x4 + 1

5. Use residues to show that
∫∞

0

dx

(x2 + 1)2
dx =

π

4

6. Use residues to find the Cauchy principal value of
∫∞
−∞

x dx

(x2 + 1)(x2 + 2x + 2)
.
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4.6 Definite Integrals involving Sines and Cosines

The method of residues is also useful in evaluating certain definite integrals of

the type ∫ 2π

0

F (sin θ, cos θ) dθ −−−−(1)

Given the form of an integrand in (1) one can reasonably hope that the integral

results from the usual parametrization of the unit circle z = eiθ (0 ≤ θ ≤ 2π).

Let z = eiθ, so that sin θ =
z − z−1

2i
, cos θ =

z + z−1

2
, and dθ =

dz

iz
.

Putting all of this into (1) yields

∫ 2π

0

F (sin θ, cos θ) dθ =

∫
C

F (
z − z−1

2i
,
z + z−1

2
)
dz

iz
−−−−(2)

where C is the unit circle. When the integrand in integral (2) reduces to a

rational function of z , we can evaluate that integral by means of Cauchy’s residue

theorem once the zeros in the denominator have been located and provided that

none of them lie on C.

Problem 38.

Use residues to show that if −1 < a < 1,
∫ 2 π

0

d θ

1 + a sin θ
=

2π√
1− a2

.

Solution.

This integration formula is clearly valid when a = 0, so we now assume that

a 6= 0. With substitutions sin θ =
z − z−1

2i
, and dθ =

dz

iz
. the integral takes

the form
∫

C

2/a

z2 + (2i/a)z − 1
dz, where C is the positively oriented circle |z| = 1.

Using quadratic formula, we find that the denominator of the integrand has the

pure imaginary zeros z1 = (
−1 +

√
1− a2

a
)i and z2 = (

−1−
√

1− a2

a
)i. Let
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f(z) denotes the integrand in the above integral, then f(z) =
2/a

(z − z1)(z − z2)
.

Since |a| < 1 , |z2| =
1 +

√
1− a2

|a|
> 1. Also, since |z1z2| = 1, it follows that

|z1| < 1. Hence there are no singular points on C, and the only singular point

interior to C is the point z1. The corresponding residue can be found by writing

f(z) =
φ(z)

z − z1

where φ(z) =
2/a

z − z2

. ⇒ z1 is a simple pole and Resz=z1f(z) =

2/a

z1 − z2

=
1

i
√

1− a2
. Thus,

∫ 2 π

0

d θ

1 + a sin θ
= 2π iResz=z1f(z) =

2π√
1− a2

.

�

Exercises.

1. Use residues to show that
∫ 2π

0

cos 3t

5− 4 cos t
dt =

π

12
.

2. Find the value of
∫ 2π

0

d θ

5 + 4 sin θ
.

3. Show that
∫ π

−π

d θ

1 + sin2 θ
=
√

2π.

4. Use residues to show that if −1 < a < 1,
∫ 2 π

0

d θ

1 + a cos θ
=

2π√
1− a2

.

5. Use residues to find the value of
∫ π

0

d θ

(a + cos θ)2
, if a > 1.
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