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1
FIXED POINT ITERATION METHOD

Nature of numerical problems

Solving mathematical equations is an important requirement for various branches of

science. The field of numerical analysis explores the techniques that give approximate

solutions to such problems with the desired accuracy.

Computer based solutions

The major steps involved to solve a given problem using a computer are:

Modeling: Setting up a mathematical model, ie. formulating the problem in
mathematical terms, taking into account the type of computer one wants to use.

Choosing an appropriate numerical method (algorithm) together with a preliminary
error analysis (estimation of error, determination of steps, size etc.)

Programming, usually starting with a flowchart showing a block diagram of the
procedures to be performed by the computer and then writing, say, a C++ program.

Operation or computer execution.

Interpretation of results, which may include decisions to rerun if further data are
needed.

Errors

Numerically computed solutions are subject to certain errors. Mainly there are three

types of errors. They are inherent errors, truncation errors and errors due to rounding,.

1.

Inherent errors or experimental errors arise due to the assumptions made in the
mathematical modeling of problem. It can also arise when the data is obtained from
certain physical measurements of the parameters of the problem. i.e., errors arising
from measurements.

Truncation errors are those errors corresponding to the fact that a finite (or infinite)
sequence of computational steps necessary to produce an exact result is “truncated”
prematurely after a certain number of steps.

Round of errors are errors arising from the process of rounding off during
computation. These are also called chopping, i.e. discarding all decimals from some
decimals on.
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Error in Numerical Computation

Due to errors that we have just discussed, it can be seen that our numerical result is an
approximate value of the (sometimes unknown) exact result, except for the rare case
where the exact answer is sufficiently simple rational number.

If ais an approximate value of a quantity whose exact value is 4, then the difference ¢ =
a— ais called the absolute error of a or, briefly, the error of a. Hence, a=a+¢, i.e.

Approximate value = True value + Error.

For example, if @ =10.52 is an approximation to a = 10.5, then the error is ¢ = 0.02. The
relative error, ¢, of ais defined by

B B |Error]

=~ Froevaicd

For example, consider the value of 2(=1.414213...) up to four decimal places, then

V2 =1.4142 1 Error |
| Error |= |1.4142 - 1.41421 |=.00001,
taking 1.41421 as true or exact value. Hence, the relative error is

0.00001

Er = .
1.4142
We note that

€, z% if || is much less than a|.

We may also introduce the quantity y = a — @ = —¢ and call it the correction, thus, a = a
+vy, ie.
True value = Approximate value + Correction.

Error bound for 3is a number Bsuchthat | & —a | <B ie., |e| <B.

Number representations

Integer representation
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Floating point representation

Most digital computers have two ways of representing numbers, called fixed point and
floating point. In a fixed point system the numbers are represented by a fixed number of
decimal places e.g. 62.358, 0.013, 1.000.

In a floating point system the numbers are represented with a fixed number of
significant digits, for example

0.6238 x 103 0.1714 x 10"  —0.2000 x 101
also written as 0.6238 E03 01714 E-13  -0.2000 EO1
or more simply 0.6238 +03 01714 -13 -0.2000 +01
Significant digits

Significant digit of a number c is any given digit of ¢, except possibly for zeros to the
left of the first nonzero digit that serve only to fix the position of the decimal point. (Thus,
any other zero is a significant digit of c). For example, each of the number 1360, 1.360,
0.01360 has 4 significant digits.

Round off rule to discard the k + 1th and all subsequent decimals

(@) Rounding down If the number at (k + 1)t decimal to be discarded is less than half a
unit in the k t place, leave the k t*h decimal unchanged. For example, rounding of 8.43
to 1 decimal gives 8.4 and rounding of 6.281 to 2 decimal places gives 6.28.

(b) Rounding up If the number at (k + 1)t decimal to be discarded is greater than half a
unit in the k th place, add 1 to the k th decimal. For example, rounding of 8.48 to 1
decimal gives 8.5 and rounding of 6.277 to 2 decimals gives 6.28.

(c) If it is exactly half a unit, round off to the nearest even decimal. For example, rounding
off 8.45 and 8.55 to 1 decimal gives 8.4 and 8.6 respectively. Rounding off 6.265 and
6.275 to 2 decimals gives 6.26 and 6.28 respectively.

Example Find the roots of the following equations using 4 significant figures in the
calculation.

(@) x2-4x+2=0 and (b) x2-40x+2=0.
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Solution

A formula for the roots x1, x2 of a quadratic equation ax? + bx + c=01is
(i) x1:2—1a(—b+\/b2—4ac) and x, =2—1a(—b—\/b2—4ac).
Furthermore, since x1x2 = ¢/a, another formula for these roots is

1
i = (-b+yb?—4ac), and _c
(if) X =5 ), an X,

For the equation in (a), formula (i) gives,
x1=2+2=2+1414 = 3414,
x=2-+2 =2-1414=0586

and formula (i7) gives,
x1=2+2 =2+1414=3414,
x2=2.000/3.414 = 0.5858.

For the equation in (b), formula (i) gives,
x1=20 + /398 =20 +19.95 = 39.95,
x2= 20 - /398 =20 - 19.95 = 0.05

and formula (i7) gives,
x1 =20 + /398 =20 + 19.95 = 39.95,

x2=20.000/39.95 = 0.05006.

Example Convert the decimal number (which is in the base 10) 81.5 to its binary form (of
base 2).

Solution Note that (81.5)10=8-101+1- 100+5-10-1
Now 81.5 = 64+16+1+0.5=26 +24 +20 + 2-1=(1010001.1)>.

Numerical Methods Page 9



School of Distance Education

Remainder Product Integer
part

81 0.5 %2 1.0 1 d

N N N N DD N DN
—
(e}

Example Convert the binary number 1010.101 to its decimal form.
Solution
(1010.101)2=1- 23+1- 21+ 1- 21+ 1. 23
=8+2+ 0.5+ 0.125=(10.625)10

Numerical Iteration Method

A numerical iteration method or simply iteration method is a mathematical
procedure that generates a sequence of improving approximate solutions for a class of
problems. A specific way of implementation of an iteration method, including the
termination criteria, is called an algorithm of the iteration method. In the problems of
finding the solution of an equation an iteration method uses an initial guess to generate
successive approximations to the solution.

Since the iteration methods involve repetition of the same process many times,
computers can act well for finding solutions of equation numerically. Some of the iteration
methods for finding solution of equations involves (1) Bisection method, (2) Method of
false position (Regula-falsi Method), (3) Newton-Raphson method.

A numerical method to solve equations may be a long process in some cases. If the
method leads to value close to the exact solution, then we say that the method is
convergent. Otherwise, the method is said to be divergent.

Solution of Algebraic and Transcendental Equations

One of the most common problem encountered in engineering analysis is that given a
function f (x), find the values of x for which f(x) = 0. The solution (values of x) are known
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as the roots of the equation f(x) = 0, or the zeroes of the function f (x). The roots of
equations may be real or complex.

In general, an equation may have any number of (real) roots, or no roots at all. For
example, sin x - x = 0 has a single root, namely, x = 0, whereas tan x - x = 0 has infinite
number of roots (x = 0, £4.493, +7.725, ...).

Algebraic and Transcendental Equations

f(x) = 0 is called an algebraic equation if the corresponding f(x) is a polynomial. An
example is 7x2 + x - 8 = 0. f(x)=0 is called transcendental equation if the f(x) contains

trigonometric, or exponential or logarithmic functions. Examples of transcendental
equations are sin x - x =0, tanx—x=0 and 7x* +log(3x - 6) + 3e*cosx + tan x = 0.

There are two types of methods available to find the roots of algebraic and
transcendental equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of
steps. We assume here that there are no round off errors. Direct methods determine all the
roots at the same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of
successive approximations. The general procedure is to start with one or more initial
approximation to the root and obtain a sequence of iterates x  which in the limit
converges to the actual or true solution to the root. Indirect or iterative methods
determine one or two roots at a time. The indirect or iterative methods are further
divided into two categories: bracketing and open methods. The bracketing methods
require the limits between which the root lies, whereas the open methods require the
initial estimation of the solution. Bisection and False position methods are two known
examples of the bracketing methods. Among the open methods, the Newton-Raphson is
most commonly used. The most popular method for solving a non-linear equation is the

Newton-Raphson method and this method has a high rate of convergence to a solution.

In this chapter and in the coming chapters, we present the following indirect or iterative
methods with illustrative examples:

1. Fixed Point Iteration Method
2. Bisection Method
3. Method of False Position (Regula Falsi Method)

4. Newton-Raphson Method (Newton’s method)
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Fixed Point Iteration Method
Consider
f(x)=0 (1)
Transform (1) to the form,
x=f (). ..(2)

Take an arbitrary xo and then compute a sequence x1, x2, x3, ... recursively from a
relation of the form

X1 =0(x) (n=01..) .. (3)

A solution of (2) is called fixed point off . To a given equation (1) there may
correspond several equations (2) and the behaviour, especially, as regards speed of
convergence of iterative sequences xo, X1, x2, X3, ... may differ accordingly.

Example Solve f(x)=x*-3x+1=0, by fixed point iteration method.

Solution
Write the given equation as

x*=3x-1 or x=3-1/xX.
Choose f (X) :3—%. Then f'(x) :X—lzand [f'(x)| <1 on the interval (1, 2).

Hence the iteration method can be applied to the Eq. (3).

The iterative formula is given by

xn+1:3—% n=012...)

Starting with, x, =1, we obtain the sequence
x0=1.000, x1 =2.000, x2=2.500, x3 = 2.600, x4 =2.615, . . .

Question : Under what assumptions on f and x, does Algorithm 1 converge ? When

does the sequence (x,) obtained from the iterative process (3) converge ?

We answer this in the following theorem, that is a sufficient condition for
convergence of iteration process
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Theorem Let x=xbe arootof f(x)=0 and let I be an interval containing the point x=x.
Let f(x) be continuous in I, where f (x) is defined by the equation x=f(x) which is

equivalent to f(x)=0. Then if |f'(x)|<1 for all x in I, the sequence of approximations

Xo1 X, %, -+ X, defined by

%a=00) (n=0,1..)
converges to the root x, provided that the initial approximation X, is chosen in I.

Example Find a real root of the equation x*+x*-1=0 on the interval [0,1] with an

accuracy of 107,

To find this root, we rewrite the given equation in the form

X = 1
VX+1
Take
1
f(X)=—=—. Then f (x) = —= .
Vx+1 2 (x+1)2

|=k=0.17678<0.2.

a0l 4
Choose f (X) :3—%. Then f '(x) :X—lzand [f'(x) <|1 on the interval (1, 2).

Hence the iteration method gives:

X, VX, +1 Xnog =1/ 4%, +1

0.75 1.3228756 0.7559289
0.7559289 1.3251146 0.7546517
0.7546617 1.3246326 0.7549263

N P OS>

At this stage,
| X1 — X, | = 0.7549263 - 0.7546517 = 0.0002746,

n+1

which is less than 0.0004. The iteration is therefore terminated and the root to the
required accuracy is 0.7549.

Example Use the method of iteration to find a positive root, between 0 and 1, of the
equation xe* =1.
Writing the equation in the form

x=e"*
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We find that f (x) =€ ™ and so f '(x) = - ™.

Hence |f '(x)| <1 for x<1, which assures that the iterative process defined by the equation

X1 =T (X,) will be convergent, when x<1.

The iterative formula is

1
Xa=gr  (1=01...)

Starting with x; =1, we find that the successive iterates are given by

X, =1/e= 03678794, x, = —— = 0.6922008,
1

X, = 0.5004735, X, = 0.6062435,

X, = 0.5453957, X, = 0.5796123,

We accept 6.5453957 as an approximate root.

Example Find the root of the equation 2x = cos x+ 3 correct to three decimal places.

We rewrite the equation in the form

x=%(cos X+3)

so that
f :l(cosx+3),
2
and
IF'(X) | = ﬂzx <1.

Hence the iteration method can be applied to the eq. (3) and we start with x,=p/2. The

successive iterates are

X =15, X, =1.535, X;=1518,
X, =1526, Xx;=1522, X;=1.524,
X, =1.523, Xg=1.524.

We accept the solution as 1.524 correct to three decimal places.

Example Find a solution of f(x)=x®+x-1=0, by fixed point iteration.
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x3+ x -1 =0 can be written as x(x2+1)=1,or X=— T
X2+

Note that

If (%) = 2|—X|2 <1 for any real x,
(1+ xz)

so by the Theorem we can expect a solution for any real number xo as the starting point.

Choosing xo = 1, and undergoing calculations in the iterative formula

Xa=T )= -1 n=01,..), ..(4)

1+ X
n

we get the sequence
x0=1.000, x1=0.500, x2=0.800, x3 =0.610,
xa=0.729, x5=0.653,  x6=0.701, ...

and we choose 0.701 as an (approximate) solution to the given equation.

Example Solve the equation x*=sinx. Considering various f (x), discuss the convergence

of the solution.

How do the functions we considered for f (x) compare? Table shows the results of

several

iterations using initial value x, =1 and four different functions for f (x) . Here x,is the

value of x

on the nth iteration .
Answer:

When f (x) =3sinx, we have:

x, =0.94408924124306; X, = 0.93215560685805

X = 0.92944074461587 , X, = 0.92881472066057
When f (x) = szx, we have:
X

x = 0.84147098480790; X, =1.05303224555943

X5 = 0.78361086350974 X, =1.14949345383611
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Referring to Theorem, we can say that for f (x) = ﬂzx, the iteration doesn’t converge.
X

When f (x) = x+sinx—x°, we have:

x, = 0.84147098480790; X, = 0.99127188988250

X3 = 0.85395152069647 ; X, = 0.98510419085185
- 3
SNX—-X
When f (X) =X—————, we have:
COSX — 3X

% = 0.93554939065467;  x, = 0.92989141894368
X = 0.92886679103170; X, = 0.92867234089417
Example Give all possible transpositions to x=f (x), and solve f(x)=x®+4x*-10=0.

Possible Transpositions to x=f (x), are

x=f,(x) = x—x® - 4x* +10,

10

X=f,(X)=,/—-4X,
X
x:f?,(x):%\/:LO—x3
10
x=f ,(X)=
() 4+ X
x3 +4x% -10
X=f.(X)=X-—F——"—
(%) 3x% + 8x

For x=f (X) =Xx- x> — 4x% +10, numerical results are:

X =1.5; X, =—0.875
X3 =6.732,  x,=-469.7

Hence doesn’t converge.
10 .

For x=f,(x) =,/——4x, numerical results are:
X

X, =15 X, =0.8165
Xy = 2.9969; X, = (_8.65)1/2;
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For x=f,(x) = %\/10— x3, numerical results are:

X =15 X, =1.2869
X, =1.4025; x,=1.3454"

Exercises

Solve the following equations by iteration method:

. sinx=;((—j . xt=x+0.15
e 3x-cosx—-2=0 o x3—5x+3=0,
o xX3+x+1=0 . x=%(x3+3)
e 3x=6+l0gx . x:%(x3+3)
o 2x-logyx=7 . x3 =2x2+10x=20
e 2sinx=X . cosx=3x-1
e x3+x?=100 . 3x+sinx=¢e*
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2
BISECTION AND REGULA FALSI METHODS

Bisection Method

The bisection method is one of the bracketing methods for finding roots of an equation.
For a given a function f(x), guess an interval which might contain a root and perform a
number of iterations, where, in each iteration the interval containing the root is get halved.

The bisection method is based on the intermediate value theorem for continuous
functions.

Intermediate value theorem for
continuous functions: If f is a
continuous function and f(a) and f(b) w_‘-f[ﬂ
have opposite signs, then at least one root
lies in between a and b. If the interval
(a b) is small enough, it is likely to contain

a single root.

i.e.,, an interval [a, b] must contain a
zero of a continuous function f if the

b4 a i
product f(a)f(b)<0. Geometrically, this % b
means that if f(a)f(b)<0, then the curve .
e
f has to cross the x-axis at some point in b 4

between a and b.
Algorithm : Bisection Method

Suppose we want to find the solution to the equation f(x)=0, where fis continuous.
Given a function f(x) continuous on an interval [ao, bo] and satisfying f (a,) f (b,) <O.

Forn=0,1, 2, ... until termination do:
1
Compute X, = E(a11 +b,).

If f(x,)=0, accept x, as a solution and stop.

Numerical Methods Page 18



School of Distance Education

Else continue.

If f(a,)f(x,)<0,aroot lies in the interval (a,, X,) .

Set A1 = 8, bn+1:Xn'

If f(a,)f(x,)>0, aroot lies in the interval (x,,b,).

Set Any1 = X bn+1 = bn .
Then f(x)=0for some xin [a,,, b, ,].

Test for termination.
Criterion for termination

A convenient criterion is to compute the percentage error e, defined by

!
r
!

X — X,

r

x100%.

where x is the new value of x . The computations can be terminated when e, becomes

less than a prescribed tolerance, say e, In addition, the maximum number of iterations

may also be specified in advance.

Some other termination criteria are as follows:
e Termination after N steps (N given, fixed)
e Termination if | xu1—x. | < & (e >0 given)
e Termination if | f(xn) |<a (o >0 given).

In this chapter our criterion for termination is terminate the iteration process after
some finite steps. However, we note that this is generally not advisable, as the steps may
not be sufficient to get an approximate solution.

Example Solve x3 - 9x+1 = 0 for the root between x = 2 and x = 4, by bisection method.

Given f(x)=x®-9x+1. Now f(2)=-9, f(4)=29 so that f(2)f(4)<0 and hence a root lies
between 2 and 4.

Setag =2 and bgp =4. Then

Numerical Methods Page 19



School of Distance Education

. @th) 244
0= 2 2

=3 and f(x)="f(3)=1.
Since f(2)f(3)<0, aroot lies between 2 and 3, hence we seta; =ap =2 and b =x,=3. Then

= @ _ %’ —25and f(x)=f(25)=-5875

Since f(2)f(25)>0, aroot lies between 2.5 and 3, hence we set a,=x =25 and b,=b =3.

a +b
Then x = @, - ) 2-52+ 8_275and f(x,)= f(2.75)=-2.9531.

The steps are illustrated in the following table.

no| X f(x,)
013 1.0000
1125 ~5.875
21275 2.9531
312875 1.1113
4 | 29375 0.0901

Example Find a real root of the equation f(x)=x>-x-1=0.

Since f(1) is negative and f(2) positive, a root lies between 1 and 2 and therefore we take
X, =3/2=15. Then

(%) :%7—%:1—85 is positive and hence f(1) f(1.5)<0 and Hence the root lies between 1

and 1.5 and we obtain

1+15

5 =125

X =

f(x)=-19/64, which is negative and hence f(1) f(1.25)>0 and hence a root lies between
1.25 and 1.5. Also,

Numerical Methods Page 20



School of Distance Education

_125+15

> = 1.375

X

The procedure is repeated and the successive approximations are

X, =1.3125, x,=1.34375 x,=1328125, etc.

Example Find a positive root of the equation xe* =1, which lies between 0 and 1.

Let f(x)=xe*-1. Since f(0)=-1 and f(1)=1.718, it follows that a root lies between 0 and 1.
Thus,

Xo :0—;1:0.5.

Since f(0.5) is negative, it follows that a root lies between 0.5 and 1. Hence the new root is
0.75, i.e.,

_5+1
X =5 =0.75.

Since f(x,) is positive, a root lies between 0.5 and 0.75 . Hence

)(2:'5+'75=O.625

Since f(x,) is positive, a root lies between 0.5 and 0.625. Hence

=0565.

5+.625
)(3 =

We accept 0.5625 as an approximate root.
Merits of bisection method

a) The iteration using bisection method always produces a root, since the method
brackets the root between two values.

b) As iterations are conducted, the length of the interval gets halved. So one can
guarantee the convergence in case of the solution of the equation.

c) the Bisection Method is simple to program in a computer.

Numerical Methods Page 21



School of Distance Education

Demerits of bisection method

a) The convergence of the bisection method is slow as it is simply based on
halving the interval.

b) Bisection method cannot be applied over an interval where there is a
discontinuity.

c) Bisection method cannot be applied over an interval where the function takes
always values of the same sign.

d) The method fails to determine complex roots.

e) If one of the initial guessesa,or b, is closer to the exact solution, it will take

larger number of iterations to reach the root.
Exercises

Find a real root of the following equations by bisection method.

1. 3x=+/1+sinx 2. X3 +1.2x2— = 4x+ 48

3. e¥=3x 4, x3-4x-9=0

5. x3+3x-1=0 6. 3x=cosx+1

7. x3+x2-1=0 8. 2x=3+cosx

9. x*=3 10. x3— 5x =6

11. cosx=+/x 12. x3-x?—x-3=0,

13. x*=x+0.15near x = 0.

Regula Falsi method or Method of False Position

This method is also based on the intermediate value theorem. In this method also, as
in bisection method, we choose two points a, and b, such that f(a,) and f(b,) are of

opposite signs (i.e., f(a,)f(b,)<0). Then, intermediate value theorem suggests that a zero

of f lies in between a, and by, if f is a continuous function.
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YA

-

Algorithm: Given a function f(x)continuous on an interval [a0 , bo] and satisfying

f(ao) f (k) <O.

Forn=0,1, 2, ... until termination do:

Compute
‘ a, b
_|t@) fo)
f(b)-f(a)

If f(x,)=0,accept x,as a solution and stop.

Else continue.

If f(a,)f(x)<0, seta,,=a,b,  =x.Elseseta  =x,b,  =b.
Then f(x)=0 for some xin [a,,,,b,.,].

Example Using regula-falsi method, find a real root of the equation,

f(xX)=x*+x-1=0, near x =1.

Numerical Methods Page 23



School of Distance Education

Here note that f(0) = -1 and f(0)=-1. Hence f(0)f(1)<0, so by intermediate value

theorem a root lies in between 0 and 1. We search for that root by regula falsi method and
we will get an approximate root.

Setag =0and bp =1. Then

a
0 0

(s 1o \Oﬂ
" f(p)-T(a ) -

and  f(x,)= f(0.5)=-0.375.

Since f (0) f (0.5) >0, a root lies between 0.5 and 1. Set a = x,=0.5 andb =h, =1.

Then

a b
JUOKONE -
(o) t(a) (03

and f(x)= f(0.6364)=-0.1058.

Since f(0.6364)f(x)>0, a root lies between x and 1 and hence we set a, =x =0.6364 and
b,=b =1. Then

0.6364 1‘
~0.1058 1 =0.6712

1-(-0.1058)

((a) 1[5
o) (w)

and  f(x,)= f(0.6712) =-0.0264

X =
2

Since f(0.6712)f (0.6364) >0, a root lies between x, and 1, and hence we set a, = x, =0.6364

and by=0 =1.

(4 ()|
Then X3— (b) f(as) 0.0264)20'6796

and f(x,)= f(0.6796) = —0.0063~0.
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Since f(0.6796) ~ 0.0000 we accept 0.6796 as an (approximate) solution of x®—x—1=0.

Example Given that the equation x**=69 has a root between 5 and 8. Use the method of
regula-falsi to determine it.

Let f(x)=x*?*-69. We find
f(5) =—3450675846 and f(8) =—28.00586026.
_|f(® f(8)| 5(28.00586026) —8(—34.50675846)
17 f(@) -f(5)  28.00586026+ 34.50675846)

= 6.655990062 .

Now, f(x,)=-4.275625415 and therefore, f(5) f(x)>0 and hence the root lies between
6.655990062 and 8.0. Proceeding similarly,

X, = 6.83400179, X, =6.850669653,

The correct root is x; =6.8523651:--, so that x, is correct to these significant figures. We

accept 6.850669653 as an approximate root.
Theoretical Exercises with Answers:
1. What is the difference between algebraic and transcendental equations?

Ans: An equation f(x)=0is called an algebraic equation if the corresponding f(x)
is a polynomial, while, f(x)=0 is called transcendental equation if the f(x)

contains trigonometric, or exponential or logarithmic functions.
2. Why we are using numerical iterative methods for solving equations?

Ans: As analytic solutions are often either too tiresome or simply do not exist, we
need to find an approximate method of solution. This is where numerical analysis
comes into the picture.

3. Based on which principle, the bisection and regula-falsi method is developed?

Ans: These methods are based on the intermediate value theorem for continuous
functions: stated as , “If f is a continuous function and f(a) and f(b) have

opposite signs, then at least one root lies in between a and b. If the interval (a, b)

is small enough, it is likely to contain a single root. ”

4. What are the advantages and disadvantages of the bracketing methods like bisection
and regula-falsi?
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Ans: (i) The bisection and regula-falsi method is always convergent. Since the
method brackets the root, the method is guaranteed to converge. The main
disadvantage is, if it is not possible to bracket the roots, the methods cannot
applicable. For example, if f(x) is such that it always takes the values with same

sign, say, always positive or always negative, then we cannot work with bisection
method. Some examples of such functions are

e  f(x)=x® which take only non-negative values and
e f(x)=-x?, which take only non-positive values.
Exercises

Find a real root of the following equations by false position method:

1. x¥*-5x=6 2. 4x=¢*
3. xlog;p x=1.2 4. tanx+tanhx=0
5. eX=sinx 6. x3-5x-7=0

7. x3+2x2+10x-20=0 8. 2x—log;y x=7

9. xe* =cosx 10. x*-5x+1=0
11. eX=3x 12. x2 —log, x=12
13. 3x—cosx=1 14. 2x—3sinx=5
15. 2x=cosx+3 16. xe*=3

17. cosx=+/x 18. x°-5x+3=0

Ramanujan’s Method
We need the following Theorem:

Binomial Theorem: If n is any rational number and |X <1, then

1 12 12 ... r

(1+x)" :1+Dx+r(n_])x2+ D . (n_(r_]))x’+ o
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In particular,

(1+x)_1:1—x+>3—>?+ D)X

and (LX) " =Lx 8+ A+

Indian Mathematician Srinivasa Ramanujan (1887-1920) described an iterative method
which can be used to determine the smallest root of the equation

f(x)=0,
where f(x) is of the form
f(X) =1-(ax+ax’ +a’ +a,x* +-).
For smaller values of x, we can write
[1-(@ax+ax +apC+ax + ) = +box+bC +---
Expanding the left-hand side using binomial theorem , we obtain

T+ (@x+a)C +apC +- ) +H@xX+axX +ax +- )+
=hy +b,x+bC + -

Comparing the coefficients of like powers of x on both sides of we obtain
b =1
b, =a =ab,
by = af +a, = ab, +ab,

'bn =ab ,+ab, ,+--+a,_,b n=23.
Then b, /b,,; approach a root of the equation f(x)=0.
Example Find the smallest root of the equation

f(x)=x*-6x*+11x-6=0.
Solution

The given equation can be written as f(x)

£(x) =1—%(11x—6x2 +x7)
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Comparing,

To apply Ramanujan’s method we write

2 ,3\1
1_G2:%§¢1J by byt by

Hence,
b =1
b, =2 =g
121 85.
b, =ab, +ab =7=-1=
36’
575.
b, =ajb; + &b, +ay =21 2;
3661.
bS aib + a2b3 + aSbZ + a4bl 1296
22631.
6_a1b5+32b +33Q+a4b2+a5b1 7776
Therefore,
b_s6 b, _66
b, ~11 =0.54545 ; b3_85_07764705
b, 102 b, _ 3450
b, 15 °- =0.8869565; b, ~ 3661 =0.9423654
bs 3138
b, ~ 3233 =0.9706155

By inspection, a root of the given equation is unity and it can be seen that the successive

convergent

n+l

Example Find a root of the equation xe* =1.

Let xe*=1
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X2 X

Recall e =1+X+—+—+---
2 3
Hence,
=1 2 X3 X4 X5 cee | =
f(x)=1 (x+x +7+F+ﬂ+ j_o
1 a-1 a<l a-l -l
a=L &=l &=3 &=Fp &=y
We then have
b, =1

b, = ayb, + &by =1+1-2

by =ab, +ab, +afh =2+1+ 3=,

by = A, + @y + e, + A =4+ 24+ 5+ £ =0

_ _37.,7 . ,,1, 1 _26l
b6—a1b5+a2b4+a3b3+a4b2+a.3bl_6,+2+1+6+24 2

Therefore,

=0.5714;

Il
N[~
Il
o
Ul
Z|&
NS

21 b; 148
=22 _056756756; 2 =21°_056704980.
b, 37 by 261

Example Using Ramanujan’s method, find a real root of the equation

X2 x3 x4

X+ — + R
) @) (@)

Solution
_ X x|
Let f(x)—l—{x—(z!)z+(3!)2—(4!)2+ =0.
Here
a-1 &=, A=, =y

)% @n? (an®’
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1 1

Writing

1
2 3 4
{1{X_(§!)+<§!)2_(31(!)“"1} “Brbxrbe

we obtain
b, =1,
b,=a =1,
_ 1.1 _3.
b =a, + 3 =1- =
_ 23 1 1 31,1 _19
b4—aib3+a2b2+asb1_4 (2!)2+(3!)2 4 4+36_36’
by =ab, +a,b; +a5b, +a,b
_1® 13,1, 1_211
6 4 4 36 576 576
It follows
b, b, 4 .
e REGR =2 _%_1333.;
b, b, 3
by 3 36_27_ b, _19 576 _
b4_4><19—19—1.4210 , bs—36><211—1.4408 ,

where the last result is correct to three significant figures.

Example Find a root of the equation sinx=1-x.

Using the expansion of sinx, the given equation may be written as
3 7
f(x) =1—(x+ x—X—+X——X—+---j=O.

Here
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1 1
%o 7% % Tsup
we write
XX x° X .
[1—(2x—€+@—5040+---ﬂ b, +b,x+bx* +
We then obtain
b =1
b= =2
b, = ab, +ab, ~4
b, =ab + &b, +ay =85 =
_ 46
bs—a1b4+azb3+aeb2+a4b1—?
by = &b, + by + A, + b, + aghy =300,
Therefore,
b _1 b, _1.
b, 2’ b, 2’
by _24_ b, _47_
b, =57 = 0.5106382 b =0 0.5108695
bs 1840
b, 3601 =0.5109691.

The root, correct to four decimal places is 0.5110
Exercises

1. Using Ramanujan’s method, obtain the first-eight convergents of the equation
x2  x x4
TNz T @2 @z

2. Using Ramanujan’s method, find the real root of the equation ~ x+x3=1.
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3
NEWTON RAPHSON ETC..

The Newton-Raphson method, or Newton Method, is a powerful technique for solving
equations numerically. Like so much of the differential calculus, it is based on the simple

idea of linear approximation.
Newton - Raphson Method

Consider f(x)=0, where f has continuous
derivative f'. From the figure we can say that at
x=a, y=f(@)=0; which means that a is a
solution to the equation f(x)=0. In order to find

the value of 4, we start with any arbitrary point
xo . From figure we can see that, the tangent to
the curve f at (x, f(x)) (with slope  f'(x))

touches the x-axis at x1.

Now, tanb = f’(%)zM,

X =%

As f(x)=0, the above simplifies to

_ )

TR T ()

In the second step, we compute

in the third step we compute

ERICS)
(%)

and so on. More generally, we write x, in terms of x, f(x,) and f'(x,) for n=12, ...

by means of the Newton-Raphson formula

f(x)
X =% f’(xn)
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The refinement on the value of the root X isterminated by any of the following conditions.
(i) Termination after a pre-fixed number of steps

(ii) After niterations where, ‘xn —xn‘ <g(for agivene>0), or

+1
(iii) After niterations, where f (xn) <a ( for a given o > 0).

Termination after a fixed number of steps is not advisable, because a fine approximation cannot be
ensured by a fixed number of steps.

Algorithm: The steps of the Newton-Raphson method to find the root of an equation f(x) =0 are
1. Evauate f'(x)

2. Useaninitial guess of theroot, X , to estimate the new value of theroot, Xx;

i+17

as

3. Find the absolute relative approximate error |e,| as

Xi+1 B XI
X

x100

& =

i+1

4. Compare the absolute relative approximate error with the pre-specified relative error
tolerance, €. If |e,|><, then go to Step 2, else stop the algorithm. Also, check if the

number of iterations has exceeded the maximum number of iterations allowed. If so, one
needs to terminate the algorithm and notify the user.

The method can be used for both algebraic and transcendental equations, and it also works
when coefficients or roots are complex. It should be noted, however, that in the case of an
algebraic equation with real coefficients, a complex root cannot be reached with a rea starting
value.

Example Set up a Newton iteration for computing the square root of a given positive
number. Using the same find the square root of 2 exact to six decimal places.

Let ¢ be a given positive number and let x be its positive square root, so that x=+/c. Then

x? =cor
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f(x):xz—c=0
f'(x) = 2x

Using the Newton’s iteration formula we have

X —C
Xn+1:Xn_ 2X
n
X
C
__n, C
or X = 5 +2x
n
_1 c _
or Xn+1_§(xn+x_}n_o'l 2,:,
n

Now to find the square root of 2, let c = 2, so that

_1 2| h=
X = 2(xn+X J n=0,1, 2,

n

Choose x,=1. Then
x1 =1.500000, x2 = 1.416667, x3 = 1.414216, x4 = 1.414214, ...
and accept 1.414214 as the square root of 2 exact to 6D.
Historical Note: Heron of Alexandria (60 CE?) used a pre-algebra version of the above

recurrence. It is still at the heart of computer algorithms for finding square roots.

Example. Let us find an approximation to +/5 to ten decimal places.

Note that /5 is an irrational number. Therefore the sequence of decimals which defines

/5 will not stop. Clearly +/5 is the only zero of f(x) = x2 - 5 on the interval [1, 3]. See the
Picture.
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Let (x,) be the successive approximations obtained through Newton's method. We have

R A €2 R et
Ingy1 =T f‘(zn) =Tn 2z, ’

Let us start this process by taking x1 = 2.

rn = 2

g = 2.25

g = 2.23611111111111171111131111111731111
xy = 2.236067977915804002760524499654934
x5 = 2.23606797749978969644 7872828327110
zq = 2.236067977499789696409173668731276

Example. Let us approximate the only solution to the equation x=cosx
In fact, looking at the graphs we can see that this equation has one solution.
3"

2}

=+ - B . \
-1
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This solution is also the only zero of the function f(x)=x-cosx . So now we see how

Newton's method may be used to approximate r. Since r is between 0 and p/2 , we
set x1 = 1. The rest of the sequence is generated through the formula

L f@w) __ @a—cos(za)
Tpg1 = Ty — fp (.’.I‘:ﬂ) = Tn — 1+ Siﬂ(mﬂ) N
We have
&I, = 1.
xre = 0.750363867840243893034942306682177
xa = 0.73911283091136167036058 5290904890
xy = 0.73908513338528396976012 5120856804
x5 = 0.739085133215160641661702625685026
xzg = 0.73908513321516064165531 2087673873
xy = 0.73908513321516064165531 2087673873
xg = (.73908513321516064165531 2087673873

Example Apply Newton’s method to solve the algebraic equation f(x)=x3+x—1=0

correct to 6 decimal places. (Start with xo=1)
f(x)= X+ x-1,
f'(x)= 3% +1

and substituting these in Newton’s iterative formula, we have

3 3
xn+xn—1 2xn+1
X =X —-——"— or X = n=01,2,....
2 2 7 yLs&y
mtoon 3 +1 il 3 +1

Starting from x0=1.000 000,

x, +0.750000, x, = 0.686047, X, =0.682340, x, =0.682328, --- and we accept 0.682328 as an

approximate solution of f(x)=x>+x-1=0 correct to 6 decimal places.

Example Set up Newton-Raphson iterative formula for the equation
xlog10 x-1.2=0.

Solution

Take f(x) = xlog10 x-1.2.
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Noting that |Og10 X= Iogex- Iogloez 0.4343|Oge X,

we obtain f(X) = 0.4343xlog_x-1.2.

f'(x)= O.4343Ioge X+ 0.4343x><% = Ioglo X+ 0.4343

and hence the Newton's iterative formula for the given equation is

f (xn) 0.4343xlog_x —1.2
%a T T ) T Tog, x+0.4343

Example Find the positive solution of the transcendental equation
2sinx = X.

Here f(X)=x-2sinx,

so that f’(X) =1-2cosx

Substituting in Newton's iterative formula, we have

xn—Zsinxn
X =X -1
i~ %0 1-2c0sx ‘- N=O0L2or

n

2(sian -X cosxn) N
X = =1 =
nl 1-2cosx p - =012

n

where we take N =2(sinx —x cosx Jand D =1-2cosx , to easy our calculation. Values

calculated at each step are indicated in the following table (Starting with x, =2).

n Xn Ny Dy Xn+1

0 |2000 |3.483 |1.832 |1.901

1 /1901 |3.125 |1.648 |1.896

2 [1.8% |3.107 |1.639 |1.896

1.896 is an approximate solution to 2sin x = x.
Example Use Newton-Raphson method to find a root of the equation x*-2x-5=0.

Here f(x)=x*-2x-5 and f'(x)=3x? -2. Hence Newton’'s iterative formula becomes
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x3 —2x. -5

X
3x% -2

X, —

n+l —

Choosing x, =2, we obtain f(x,)=-1 and f'(x,)=10.

x1=2—(—%)=2.1

f(x)=(1)°%-2(2.1)-5=0.06,
and f'(x) =321 -2=11.23.

540061 _
X, = 2.1~ 70 = 2.004568

2.094568 is an approximate root.
Example Find a root of the equation xsinx+cosx=0.
We have

f(x)=xsinx+cosx and f'(x) = xcosx.
Hence the iteration formula is

X, SIN X, + COSX,
Xnpg = Xp —
n+1 n
X, COSX,

With x, =p, the successive iterates are given below:

Xn F()  Xan
31416 -1.0 28233
2.8233 -0.0662 2.7986
2.7986 -0.0006 2.7984

27984 0.0 2.7984

w N P OS>

Example Find a real root of the equation x=€, using the Newton - Raphson method.
f(x)=xe*-1=0

Let x, =1. Then

_q_e-1_1(, 1\_
X =1 e 2(1+ e) 0.6839397
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Now f(x,) = 0.3553424, and f'(x,)=3.337012,

_ 03553424 _
X, = 06830307 - 2222 = 05774545,

Xy =0.5672297 and x, =0.5671433.

Example f(x) = x—2+Inx has a root near x = 1.5. Use the Newton-Raphson formula to
obtain a better estimate.

Here x0 = 1.5, £(1.5)= —0.5 + In(1.5)= —0.0945

1

=1+ ras=2 x, _15- (0099 oe7

1.6667

The Newton-Raphson formula can be used again: this time beginning with 1.5567 as our
initial

(~0.0007)

X, = 1.5567 — W

=1.5571

This is in fact the correct value of the root to 4 d.p.
Generalized Newton’s Method

If x isarootof f(x)=0 with multiplicity p, then the generalized Newton’s formula is

Since x is a root of f(x)=0 with multiplicity p, it follows that x is a root of f'(x)=0
with multiplicity (p-1), of f"(x)=0 with multiplicity (p-2), and so on. Hence the
expressions

f(%,) f'(%,) f"(Xo)
.I:!(XO)’ Xo _(p_l) f”(X((J))’ Xo _(p_Z)WX(:))

X—Pp

must have the same value if there is a root with multiplicity p, provided that the initial
approximation X, is chosen sufficiently close to the root.

Example Find a double root of the equation
f(x)=x>—x*-x+1=0.

Here f'(x)=3x*-2x-1, and f"(x)=6x-2. With x, =0.8, we obtain
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f(X) _ 0.072
f’(x(;) =08- 2—(0.68)

Xo —2 =1.012,

and

(%) _nq —(0.68) _
00) 08—~ =1043

The closeness of these values indicates that there is a doublel root near to unity. For the
next approximation, we choose x, =1.01 and obtain

f(x) _ _
X, 2TX1) =1.01-0.0099 = 1.0001,
and X, — 1(x) _1 01-0.0099=1.0001
(%)

Hence we conclude that there is a double root at x =1.0001 which is sufficiently close to the
actual root unity.

On the other hand, if we apply Newton-Raphson method with x,=0.8, we obtain
X, =0.8+0.106 ~ 0.9, and x, =0.91+ 0.046 ~ 0.96.

Exercises
1. Approximate the real root to two four decimal places of x3+5x—3=0
2. Approximate to four decimal places 3/3

3. Find a positive root of the equation x*+2x+1=0 correct to 4 places of decimals.
(Choose xo=1.3)

4. Explain how to determine the square root of a real number by N-Rmethod and

using it determine /3 correct to three decimal places.

5. Find the value of /2 correct to four decimals places using Newton Raphson method.

6. Use the Newton-Raphson method, with 3 as starting point, to find a fraction that is
within 10 of +10.

7. Design Newton iteration for the cube root. Calculate 37 , starting from xo = 2 and
performing 3 steps.

8. Calculate 7 by Newton’s iteration, starting from xo = 2 and calculating x1, x>, 3.
Compare the results with the value /7 = 2.645751
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9. Design a Newton's iteration for computing kth root of a positive number c.

10. Find all real solutions of the following equations by Newton's iteration method.

(a) sin x = () Inx=1-2x (c) cos x=+/x

X

>

11. Using Newton-Raphson method, find the root of the equation x*-x?-x-3=0,
correct to three decimal places

12. Apply Newton’s method to the equation
X’ —Bx+3=0
starting from the given X, =2 and performing 3 steps.
13. Apply Newton’s method to the equation
x' =X —2x-34=0
starting from the given x =3 and performing 3 steps.
14. Apply Newton’s method to the equation

X —39% +4.79x—1.881=0

starting from the given x =1 and performing 3 steps.

Ramanujan’s Method
We need the following Theorem:

Binomial Theorem: If # is any rational number and |x|<1, then

n_..n_ nin-1 , nn-1) ... (n—(r-1) ,
(1+x) =1+ X=X+t T T X+ ...

In particular,
(LX) " =Lxt (DK

and (LX) =L R+ X

Indian Mathematician Srinivasa Ramanujan (1887-1920) described an iterative method
which can be used to determine the smallest root of the equation
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f(x)=0,
where f(x) is of the form
f(x) =1-(ax+ax’ +ax +ax" +--).
For smaller values of x, we can write
[1-(ax+ax +ax+ax + ) " = +hx+bC +---
Expanding the left-hand side using binomial theorem , we obtain

1+(@X+aXC +a)C + - ) H@x+axX +apc+- )+
=h +hx+byC +--

Comparing the coefficients of like powers of x on both sides of we obtain
b =1,

b2:a1:alb.l.’
by =a +a, =ab, +a,b;,

bn =ab, _,+ab, ,+-+a,,b n=23. -
Then b, /b,,; approach a root of the equation f(x)=0.
Example Find the smallest root of the equation
f(x)=x*-6x*+11x-6=0.
Solution
The given equation can be written as f(x)

£(x) =1—%(11x—6x2 +x°)

Comparing,

To apply Ramanujan’s method we write

2 ,3\1
1_G2:%§¢1J by byt by
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Hence,
b =1
b, =3 =
121 _85.
by =a,b, + 3,0, = =36
575.
4_a1b3+a2b2+a3bl_ 216
3661.
bS afl.b + a2b3 + aSbZ + a4bl 1296 ’
22631.
by =ahs +ah, +ab +ab, +ah ===
Therefore,
b_6_ b, _66_
b, =11 =0.54545; b, = 5—0.7764705
b, 102 _ . b, _3450
b, =115 0.8869565; b, 3661 =0.9423654
b; 3138
b, = 3733~ =0.9706155

By inspection, a root of the given equation is unity and it can be seen that the successive

n+1
Example Find a root of the equation xe* =1.

Let xe*=1

X X3
Recall €(=1+X+E+§+...

Hence,

3 4 5
_1_ X X X
f(xX)=1 (x+x+2+6+24+ j 0
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We then have
b =1
b, =3, =1

b =ap +al =1+1=2

b,=ab,+ah, +af =2+1+

N =

!
2

S S e

_ .71, 1 %
t%_aik%+a2b4+a3Q+allb2+aSbl_ 6 ’+2+1+6+24 24’

Therefore,
b _1_¢s; b4 65714,
b, 2 b, 7
b, 21 b; 148
A L2 _ (056756756, > =1°=0.56704980.
b, =37 0.56756756 b, ~ 261 0.56704980

Example Using Ramanujan’s method, find a real root of the equation

S S S
2y @Y (@y?

Solution
_ ¥ X X B
bet f _1{)(_ @Y @Y @) +"}_
Here
_ __1 __1 _ 1
AL @Iy BTEe BT gy
_ 1 __ 1 .
STeE YT e
Writing
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{1{x—(2!)+(3!)2—(4!)2+ }} by +bX+bC 4+

we obtain
b =1
b, =2 =1
_ 1.1 _3
h=ab+ab=l- =]
3 1 1 31 1
b_ —_—_—————— — E
b=ab, +ab;+ab, +ab
19 1.3.1 121
36 2*2"361 576 576"
It follows
b, .. b, 4
e R 2 _%_1333..;
b, b, 3
by 3 36_27_ b, _19 576 _
b4_4><19—19—1.4210 , bs—36><211—1.4408 ,

where the last result is correct to three significant figures.
Example Find a root of the equation sinx=1-x.

Using the expansion of sinx, the given equation may be written as

3 5 7
f(X)=1—[X+ x—%+%—%+---j=0-
Here
a1=2, a2=0, 83:%, a4=07
_ 1 _ ___1
=10 %70 =gy
we write
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-1
[*{”‘g*ﬁ%‘£;+mﬂ = by +byX by 4
We then obtain
b, =1
b,=a=2
by =ab, +ab =4,

b, = ayby + agb, + 8, =8~ £ =

b, = &b, + a,b, + aqb, + &b, =

3601.
by = ayby +a,b, + ab, + b, + aghy = 3L,
Therefore,
b _1. b _1.
b, "2 b, 2
b _24_ b _47_
b, =57 = 0.5106382 b =92 " 0.5108695
bs 1840 _
b, = 3601 0.5109691.

The root, correct to four decimal places is 0.5110
Exercises

1. Using Ramanujan’s method, obtain the first-eight convergents of the equation
x2 x3 x4
- X+ - + —-
@) @) @)?

2. Using Ramanujan’s method, find the real root of the equation =~ x+x3=1.

The Secant Method

We have seen that the Newton-Raphson method requires the evaluation of derivatives of
the function and this is not always possible, particularly in the case of functions arising in
practical problems. In the secant method, the derivative at X, is approximated by the

formula
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fr(Xn) ~ f(XXn) B f(Xn—l) ’

n~ Xna

which can be written as

f 4 1:n B 1:n—l

n
Xn = X1

where f = f(x,). Hence, the Newton-Raphson formula becomes

x_f

n+1fn_ n'n-1

fn = fn—l

o
f

n

X, —

Xnp1 = Xn — f

Xp1 X
n
n-1

It should be noted that this formula requires two initial approximations to the root.
Example Find a real root of the equation x®-2x-5=0 using secant method.

Let the two initial approximations be given by x ;=2 and x, =3.
We have

f(x,)=f=8-9=-1 and f(x))="f,=27-11=16.

x, = 216) =31 _ % — 2.058823529.

17
Also,
f(x,) = f, = -0.390799923.
x%of—xfy  3(-0.390799923) - 2.058823529(16) _
T TR, ~16.390799923 = 2.08126366.
Again

f(x,) = f, =—-0.147204057.

X5 = 2.094824145.
Example: Find a real root of the equation x-e™ =0 using secant method.
Solution

The graph of f(x)=x-e* is as shown here.
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_12 bl

Let us assume the initial approximation to the roots as 1 and 2. That is consider x ;=1

and x, =2
f(x,)=f,=1-e"=1-0.367879441=0.632120559 and
f(x,) = f, =2-e?=2-0.135335283=1.864664717.

Xafo—%f,
fo— 14

Step 1: Putting n=0 , we obtain x, =

1(1.864664717) — 2(0.632120559) ~ 0.600423599 0.487142
1.864664717 —0.632120559  1.232544158 '

Here, x =
Also,
f(x) = f, =0.487142 - **¥™* = .0,12724,
Step 2: Putting n=1, we obtain

o = Xofi—xfo _ 2(-0.12724) ~0.487142(1.864664717) _ -1.16284 _  coq7g
25 f-f, -0.12724 -1.864664717 - -199190

Again
f (%) = f, =058378—e "™ = 0,025,

Step 3: Setting n=2 ,

% f,—xf,  0.487142(0.02599) — 0.58378(-0.12724)  0.08694

= = = =0.56738
-1, 0.02599 - (-0.12724) 0.15323

f (%) = f, =0.56738 e *°°"*® = 0,00037.

Step 4: Setting n=3 in (*),
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o _ Xfs—xf, _0.58378(0.00037) - 0.56738(0.02599) _ -0.01453 _ sy
ST, 0.00037 — 0.02599 - 2002562

Approximating to three digits, the root can be considered as 0.567.
Exercises

1. Determine the real root of the equation xe* =1 using the secant method. Compare
your result with the true value of x=0.567143---.

2. Use the secant method to determine the root, lying between 5 and 8, of the equation
X?2 = 69.

Objective Type Questions

(@) The Newton-Raphson method formula for finding the square root of a real

number C from the equation x*-C =0is,

Q) xml:% (ii) xml:%‘” (i) xml:%[xn +%] (iv) None of these

(b) The next iterative value of the root of 2x*—3=0using the Newton-Raphson
method, if the initial guess is 2, is
(i) 1.275  (ii)) 1.375 (iii) 1.475 (iv) None of these

(c) The next iterative value of the root of 2x*-3=0using the secant method, if the
initial guesses are 2 and 3, is

(i1 (@) 1.25 (iii) 1.5 (iv) None of these
(d) In secant method,
. -x, f
(i) Xns1 = A

(iv) None of these

Answers
@ G ml:%[m%]

(b) (i) 1.375
() (i) 1.5
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(@) () =200
fn - fn—l

Theoretical Questions with Answers:
1. What is the difference between bracketing and open method?

Ans: For finding roots of a nonlinear equation f (x) = 0, bracketing method requires

two guesses which contain the exact root. But in open method initial guess of the
root is needed without any condition of bracketing for starting the iterative process
to find the solution of an equation.

2. When the Generalized Newton’s methods for solving equations is helpful?

Ans: To solve the find the oot of f(x)=0 with multiplicity p, the generalized

Newton'’s formula is required.
3. What is the importance of Secant method over Newton-Raphson method?

Ans: Newton-Raphson method requires the evaluation of derivatives of the
function and this is not always possible, particularly in the case of functions arising
in practical problems. In such situations Secant method helps to solve the equation
with an approximation to the derivative.

B e
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4
FINITE DIFFERENCES OPERATORS

For a function y=f(x), it is given that vy,,y,,..,y, are the values of the variable y
corresponding to the equidistant arguments, X, X,,..., X, , where
X =% +h,X% =% +2h, x;=% +3h,...,x, =% +nh. In this case, even though Lagrange and
divided difference interpolation polynomials can be used for interpolation, some simpler
interpolation formulas can be derived. For this, we have to be familiar with some finite
difference operators and finite differences, which were introduced by Sir Isaac Newton.
Finite differences deal with the changes that take place in the value of a function f(x) due
to finite changes in x. Finite difference operators include, forward difference operator,
backward difference operator, shift operator, central difference operator and mean
operator.

e Forward difference operator (A):

For the values vy,,y,,...,y, of a function y=f(x), for the equidistant values x;,x,%,,...,X,,
where x = x, + h,X, = X, + 2h, X, =X, +3h,..,X, =%, + nh, the forward difference operator A is

defined on the function f(x) as,
A (%)= f(x+h)=F(x)=f (%)~ (%)
That is,
N =Ya—Y
Then, in particular

Af (%) =T (% +h)=1(%)="1(x)-f(x)
= AYo=Y1— Yo

Af(x)=f(x+h)=f(x)="f(x)-f(x)
= Ay, =Y,-Y,

AY,,AY,,...,AY,,... are known as the first forward differences.

The second forward differences are defined as,
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APF(x)=A[Af (%) ]=A f(x+h)=f(x)]
— Af (% +h)—Af ()
= f(x+2h)— f(x+h)-[ f(x+h)-f(x)]
=f(x+2h)-2f(x +h)+ f(x)
= Y2 =2 T Y,

In particular,

AP F (%))=Y, =2y, + Y, OF A’y,=Y, -2y, +Y,

The third forward differences are,

A3f[>gj=A{A2f(Xiﬂ
:A{f()ﬁ +2hj—2f()ﬁ+h)+f[)ﬁ ]]
=Yi43 7 it t i Y

In particular,
AF(%)=Y;=3Y,+3y,—Y, or A’Yy=Yy,-3y,+3y,—Y,
In general the nth forward difference,
AT (x)=ATH (X +h) - AT ()
The differences Ay,,A’y,,A%,....are called the leading differences.

Forward differences can be written in a tabular form as follows:

X y Ay A%y A%y
% Yo =f(%)
AYo = Y1 = Yo
X y, = f(%) A%y, = Ay, — Ay,
AY, =Y, — Y A*y, =A%y, - A%y,
% Y, = f(x) Ay, = Ay, — Ay,
AY, = Y5 =Y,
% ¥s = F(x)
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Example Construct the forward difference table for the following x values and its

corresponding f values.

x 0.1

0.3

0.5 0.7

0.9 1.1 1.3

f 0.003 0.067 0.148 0.248 0.370 0.518 0.697

X f Af A% Af A% ASf
0.1 0.003
0.064
0.3 0.067 0.017
0.081 0.002
0.5 0.148 0.019 0.001
0.100 0.003 0.000
0.7 0.248 0.022 0.001
0.122 0.004 0.000
0.9 0.370 0.026 0.001
0.148 0.005
1.1 0.518 0.031
0.179
1.3 0.697
Example Construct the forward difference table, where f(x) = %, x=1(0.2)2, 4D.
Af A%f
F =t fi
x X irst second Nf ASF ASf
differe differe
nce nce
1.0  1.000
-0.1667
1.2 0.8333 0.0477
-0.1190 -0.0180
14 0.7143 0.0297 0.0082  -0.0045
-0.0893 -0.0098
1.6 0.6250 0.0199 0.0037
-0.0694 -0.0061
1.8 0.5556 0.0138
-0.0556
2.0 0.5000
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Example Construct the forward difference table for the data

x:-2 0 2 4
y=Ff(xX): 4 9 17 22

The forward difference table is as follows:

X y=f(x) Ay A%y A%y
-2 4
Ay, =5
0 9 A?y,=3
Ay, =8 A%y, =-6
2 17 AZy,=3
Ay, =5
4 22

Properties of Forward difference operator (A ):
(i) Forward difference of a constant function is zero.
Proof: Consider the constant function f(x)=k
Then, AF(X) = f(x+h)— f(x)=k—k=0
(ii) For the functions f(x) and g(x); A(f(X)+g(x))=Af (x)+Ag(x)
Proof: By definition,

A(F()+9(x)=A((f +9)(x)
=(f +g)(x+h)-(f +9)(x)
= f(x+h)+g(x+h) - (f(X)+g(x))
=f(x+h)— f(X)+g(x+h)—g(x)
= Af (X) + Ag(X)

(iii)Proceeding as in (ii), for the constants a and b,
A(af (X) +bg(x)) = aAf (X) + bAg(x).
(iv)Forward difference of the product of two functions is given by,

A( f (x)g(x)) = f (x+ h)Ag(X) + g(X)Af (X)

Numerical Methods Page 54



School of Distance Education

Proof:

A(T(x)9(x)=A((f9)(¥)
= (fg)(x+h) - (fg)(¥)
= f (x+h)g(x+h) - f () g(x)

Adding and subtracting f(x+h)g(x), the above gives
A( f (x)g(x)) = f(x+h)g(x+h)— f(x+h)g(x) + f(x+h)g(x)— f(X)g(x)

= f(x+h)[g(x+h)—g(x)]+gX)[ f(x+h) - f(x)]
= f (x+h)Ag(X) + g(X)Af (X)

Note : Adding and subtracting g(x+h) f (x)instead of f (x+h)g(x) , it can also be
proved that

A(F(X)9(x)) = g(x+h)Af (x) + f (X)Ag(X)

(v) Forward difference of the quotient of two functions is given by

A( f (x))z g(x)Af (x) - f(X)Ag(X)
g(x) g(x+h)g(x)

Proof:

A( f(x)j: f(x+h) f(X
g9(x) ) 9(x+h) g(x)
_ f(x+h)g(x) - f(X)g(x+h)
- g(x+h)g(x)
_ F(x+h)g(x) - F(¥)g(x) + f (¥)9(x) - f (x)9(x+h)
g(x+h)g(x)

_9O[f (x+h)— F ()] F)[g(x+h) - g(¥)]
9(x+h)g(x)

_ 9(9AT () ~ f(¥)Ag(X)
9(x+h)g(x)

Following are some results on forward differences:

Result 1: The nth forward difference of a polynomial of degree n is constant when the

values of the independent variable are at equal intervals.
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Result 2: If n is an integer,
f(a+nh) = f (@) + "CAf (a) + "C,A%f (@) + - +A"f (a)
for the polynomial f(x) in x.

Forward Difference Table

x f A NfONf A A A

xo  fo
x1 i A Ao
Ao
x2 2 A A A*fo
A, A%
3o fi A A N3 A A Afo
xs fa A A " i A 1
xs s Mo A »
Afs
X6 fo

Example Express A?fyand A%f, in terms of the values of the function f.
A2fy = Aty —Afg = T — g —(f = fg)= T — 26, + f
0~~1 o~ '271"\1"'0/" '2 170

3. 2. 2
A3t = A% - A% fg = Af, — Afy - (af) - Afg)

=(f3= ) (T2~ ) =(f2= )+ (1~ To)

=f,—3f

3 +3H—f

2 0

In general,

At = Nc ¢
n

n n n
0 C.f - C,f +..+(-D f0 .

1'"-1" ~“2'h-27 “3'h-3

If we write y, to denote f; the above results takes the following forms:
2, _
ATYyg=Yo—2y1+Yg
3, _
A”Yg =Y3-3y2+3y1 - ¥

n n n n n
AYo=Yn=Cr¥n-1t Co ¥n_o= C3¥q_3+ - - +(=D)yg
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Example Show that the value of y, can be expressed in terms of the leading value yo

and the leading differences Ay, A2 Yo - - - AN Yo-
Solution

(For notational convenience, we treat i, as f, and so on.)

From the forward difference table we have

Afy=f,—f, or f =f,+Af,
Ay =1f,—f, or f,=f +Af,
Af,=f,—f, or f,=f,+Af,

and so on. Similarly,

A*f, = Af - Af, or Af = Af, + AT,
A’ =Af, —Af, or Af, =Af +A%f,

and so on. Similarly, we can write

A f, = AP f, —A*f, or Af =A%, + A%,
A*f, = A%F,—Af, or A?f,=A%f + A%

and so on. Also, we can write f, as

f,=(f,+Afy)+(Af, + A% f,)
= f, + 2Af, + A*f,
=(1+A)* f,

Hence
f,=f,+Af,

=(f,+Af))+ Afy + 2A% £ + A%,

= fg +3Afg +3A% fg + A3,

=(1+A) f,
That is, we can symbolically write

fi=(1+A)fg, fo=1+A)fg, f3=(1+A)3 .
Continuing this procedure, we can show, in general
f,=@+A)" fg.

Using binomial expansion, the above is
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fn = fo + nC1Af0+nC2A2 fo + ... +An fo

Thus

f.=> "CAf,

i=0
Backward Difference Operator

For the values vy,,y,,...,y, of a function y=f(x), for the equidistant values x,,x,...,x,, where

X, =X +h,x, =% +2h, x,=%,+3h,...,x, = %, + nh, the backward difference operator V is defined
on the function f(x) as,

VE(X)=T(X)=FO —h)=¥% - ¥,
which is the first backward difference.
In particular, we have the first backward differences,
VE(%) =Y.~ Yo VE() =Y, — ¥, €ic
The second backward difference is given by
V(%) =V(Vf(x))=V[ f(x)- f(x —h)]=Vf(x)-Vf(x-h)
=L1O0= =M ][ T (5 -h =T (x - 2N)]

=(¥i = ¥ia) = (Vs = ¥i2)
=Y _2yi—1+ Y2

Similarly, the third backward difference, V*f(x )=y, -3y, +3y_,—-Y_, andsoon.

Backward differences can be written in a tabular form as follows:

Y Vy vy Viy

X
%, Yo =f(%)

VY=Y~ Yo
X y, = f(%) Vi, =Vy, - Vy,

VY, =Y, -V, Viy, =V, ~V?y,
X, Y, = F(%) V2y, =Vy, - Vy,

VY= Y5 - Y,
X Ys = f (%)

Relation between backward difference and other differences:

LAY, =Y, Yo =V A%y, =Y,—2y,+Y,=V7y, €tc.
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2.A-V=AV
Proof: Consider the function f(x).
Af (X) = f(x+h) = ()
v (X) = f(X)— f(x—h)
(A=V)(f(X)=Af (x) - V(%)
=[f(x+h) = F)]-[F(¥)— F(x=h)]
= Af (X) — Af (x—h)
=A[f(x)— f(x=h)]
=A[Vf(X)]
= A-V =AV
3.V=AE"
Proof: Consider the function f(x).
VE(X) = f(X)— f(x—h)=Af (x—=h) = AE'f(X) = V=AE"
4. Vv=1-E*
Proof: Consider the function f(x).

Vi) =f(x)-f(x-h)=f(x)-E*f()=(1-E*)f(x) = V=1-E*

Problem: Construct the backward difference table for the data
x:—-2 0 2 4
y=f(x):-8 3 1 12

Solution: The backward difference tableis as follows:

X Y =f(X) vy V3y V3y
-2 -8

vy, =3-(-8)=11
0 3 v2y,=-2-11= -13

vy, =1-3=-2 V3y,=13-(-13)=26

2 1 v2y,=11-(2)=13

vy,=12-1=11
4 12
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Backward Difference Table
X f Vf V2f  V3f VA VEf VEf
xo  fo
x1  fi VA V2f,

V3fs

v A VeV Vi v
PR SR 7 S 2T S & LR 2 S R
V3fe vsf
w o fi R v
vf Vs
s f v2fo
Ve

X6 fo

Example Show that any value of f (or y) can be expressed in terms of f, (or y» ) and its

backward differences.
Solution
Vi, =f,-f,1 implies f _,=f —Vf,
and Vf _,=f ,—f , implies f ,=1f ,—Vf ,
V2f, =Vf, —Vf,, implies Vf _, =Vf —V?f
From equations (1) to (3), we obtain
frp = f,—2VE, +V21,.
Similarly, we can show that
fr_g=f,—3Vf, +3v2f, - V31,.
Symbolically, these results can be rewritten as follows:
fo-1= (1_V)fn v fh2= (1_V)2 fns fng= (1_ V)B fn.
Thus, in general, we can write
f ==V 1.
ie, f_ =f —"CVf +'C,Vf - ...+ (-)'V'f,
If we write y, to denote f, the above result is:

yn—r = yn - rc:1Vyn + rC:zvzyn - ...t (_1)rvryn
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Central Differences

Central difference operator d for a function f(x) at x is defined as,

df()g):f()g+2)—f(

Let y, = 1‘(x0 +g) Then,
2

dylzdf(x0+2j=f(
2

h h
Xtsts

"2

j, where h being the interval of differencing.

1[5

)

=g +h)= (%) =f(x)-f(%)=%Y%

= dy, = Ay,
2
Central differences can be written in a tabular form as follows:
X y dy d2y d’y
X Yo = f(X,)
d Yi=Y1"Y%
2
% y, = f(x) d’y,=dy,-dy,
2 2
d3y3 :dzyz_dzyl
dyg =Y,y 2
X2 y2 (XZ) d2y2 :dy§_dy§
2 2
dy.=vy,—
X3 ¥s = F(%) =%

Central Difference Table

X f 8 ¥ &f 8

X0 fo

xi fi dfin f
& f3)2

X2 o Sz P
&fs/2

X3 fs Ofs2 &f

Sf7/2
X4 fa
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Example Show that

2¢ _ _
(@) dfp="f 4 2fm+fm_1
b) g3 = - _
(b)d fm& P IR I S
2

2c _ —(f —f)—
(@) =80 g0 =g ~fm (T )
= ey 2fm+ f
2. 2
(b) 8110~ Fry1 =8 =y o~ 21 fm)—

( 1:m+1_2fm+ fm—l) =2 _3fm|r1+3fm_ fm—l

Shift operator, E

Let y = f (x) be a function of x, and let x takes the consecutive values x, x + h, x + 2h, etc.
We then define an operator E, called the shift operator having the property

Ef(x) = f (x + h) ..(1)

Thus, when E operates on f (x), the result is the next value of the function. If we apply the
operator twice on f (x), we get

E2f(x) = E [Ef ()] = (x+ 2h).
Thus, in general, if we apply the shift operator n times on f (x), we arrive at
E " f(x) = f (x+ nh) ..(2)
for all real values of n.
If fo(=wyo), i (=11)... are the consecutive values of the function
y = f (x), then we can also write
Efo=filorEyo=yr), Efi=fa(orEyi=y)..
Efo=fa(or E2yo=12), E2fi=f(or Ey1=1ys)...
Efo=fs(or E2yo=1y3), E3fi=fi(or Ey1=ya)...

and so on. The inverse operator E'! is defined as:
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E1f)=f(x- h) -0)

and similarly
E " flx) = f(x - nh) ...(4)
Average Operator m
The average operator m is defined as
mf (x)=%[f(x+g)+ fF(x-9)]
Differential operator D

The differential operator D has the property
DFf (X) :%f(x) — (%)

D2f (x) :g—;f(x) = £"(x)
Relations between the operators:
OperatorsA,V,5,m and D in terms of E
From the definition of operators A and E, we have

Af() =flx+h)-fx)=Ef(x) - f(x) = (E- 1) f(%).
Therefore,
A=E-1

From the definition of operators V and E " 1, we have

Vi) =f@)—fl-h=fx - Eflx)=0-E")f@.

Therefore,

The definition of the operators 6 and E gives
Of () =f(x+72)=f(x- )= EV3f (x) —E"13f (x)
= (E12—E V) f().
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Therefore,
§ =E1/2_E 1/2

The definition of the operators mand E yields

1 h h 1 _
l,lf (X)=§|:f (X‘FE)'F f (X—Ej:| ZEI:EUZ + E 1/2] f (X)
Therefore,
1 _
},LZE(EHZ-FE 1/2)_

It is known that

Ef(x)=f(x+h).
Using the Taylor series expansion, we have

h2

Ef (x)=f(x)+h f'(x)+§f”(x)+...
2
=f(x)+h Df(x)+7D2(x)+...
hD h2D2
=[1+T+ o +...]f(x)=eth(x).
Thus E:ehD . Or,
hD =1log E.

Example 1If A, V,§ denote forward, backward and central difference operators, E and m
respectively the shift operator and average operators, in the analysis of data with equal
spacing h, prove the following:

(i) 1+d?n? —(1+d2]2 (ii) E? 2
2 2
2

(iii)Azd?+d4/1+(d2/4)

: AE™ A A+V

(iv) ud = > +5 (V) pud= >

Solution

(i) From the definition of operators, we have
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us :%(E”Z + E-1/2)(E1/2 B E—1/2) :%(E_ E"l).

Therefore
262 a4 l(2 2y 1 “1)?
1+ 12 —1+Z(E -2+E )—Z(E+E )
Also,

1+6—22:1+%(E1’2 —E) =2(E+EY)

From equations (1) and (2), we get

22 _[41,8°)
1+8u_1+7 .

(ii) u+§=1(EU2 +EY2LEYV2_ E—1/2) — EY2
2 2 '
(iii) We can write

2 (Euz _ E—1/2)2 )
%+5 ,1+(52/4)=f+(E1/2—El/2)\/1+%1(E1/2—E1/2)

_E-2+E* 1
T2 2

(Ellz _ E—lIZ)(ElIZ + E-1/2)

_E-2+E*' E-E’
T2 2

=E -1

=A
(iv) We write

nd :%(El/z + E—1/2)(E1/2 _ E—l/Z) :%(E— E—l)

=%(1+A—E’1)=%+%(1— E1)=%+%(E)=%+

(v) We can write
ud :%(EHZ + Efl/z)(Euz _ E—1/2) :%(E— E—l)

(1+A-(1-V)) =2(8+V).

=1
2
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Example Prove that
hD =log(1+A)=—log(1-V)=sinh™(p3).
Using the standard relations given in boxes in the last section, we have
hD =logE =log(1+A)=logE=-logE™ = -log(1+ V)

Also,

nd :%(Euz + E—llz)(Ellz _ E—1/2) :%(E+ E—l)

=>(€® -e™)=sin(hD)
Therefore

hD = sinh~1(5).
Example Show that the operations mand E commute.

Solution

From the definition of operators m and E , we have

nEf, = pf, :%( foro + fy)
and also
Euf, :%E( £+ f,l,z)zé( A
Hence
pnE =Ep.

Therefore, the operators m and E commute.

Example Show that

ex(uo+xAu0+§A2uo+...j=uo+ulx+u2§+...

X XA
@(uo +XAU, +§A2Uo +j :ex(1+xA+ > +...jo0

=g’y =e“y,
— éEL{)
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=
:(1+ xE+T+...ju0

X2
=UO+XU1+§U2+...,

as desired.
Example Using the method of separation of symbols, show that

n(n-1)

n J—
A'u,, =u,—nu, , + 5

U, ,+--+=D"u, .

To prove this result, we start with the right-hand side. Thus,

RHS =u-nu+ wuxz +o (=D u, .
=u,—nEu, ,hn=Y) E?u +-+(-)"E"y,

2

= [1— nE‘H@E-2 ot (-D)" E‘”}ux

=L.HS
Differences of a Polynomial
Let us consider the polynomial of degree n in the form
f(X)=a,x"+ax"'+ax"*+...+a_x+a,,

wherea,#0 and &, &,4a, ...,a,,, a, are constants. Let /i be the interval of differencing.
Then
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f(x+h)y=a,(x+h)"+a,(x+h)" +a,(x+h)"?+... +a,,(x+h)+a,
Now the difference of the polynomials is:

Af(x) = f(x+h) = £ (%) =a,[ (x+h)" = X" ]+a [ (x+h)" = x"*]+.. +a_,(x+h-x)

Binomial expansion yields

Af(x) = aolxn+nclx”_lh+“C2x”_2h2 +...+h"— X”J
+a[x" + "UC x"2h + ("IC,x"%h?
+...+h X"+ . +a h
= agnhx" ™ + [ag"C,h? + al(“_l)Clh x"2 4+ +agqh.
Therefore,

AF(X) = agnhx"L+b x" 2+’ x4 KX+,

where b§ c¢¢ ..., kG IC are constants involving h but not x. Thus, the first difference of
a polynomial of degree 7 is another polynomial of degree (1 - 1). Similarly,

A% £(x)=A(AF (X)) =Af(x+h)— Af(x)
= aonh[(x+ h)™" - x"‘l} + b’[(x+ h)"™* - x"‘z}
+...+K(x+h=x)
On simplification, it reduces to the form
A% f(x)=agn(n-Dh?x"2 +b"x" 3 X" 4 +q”.

Therefore, A?f (x) is a polynomial of degree (1 - 2) in x. Similarly, we can form the

higher order differences, and every time we observe that the degree of the polynomial is
reduced by 1. After differencing n times, we are left with only the first term in form

A"f (x)=a,n(n-1)(n-2)(n-3) ... (2)(1)h"

=3,(n!)h" = constant.

This constant is independent of x. Since A" f(x) is a constant AL (x)=0. Hence the (n

+1)th and higher order differences of a polynomial of degree n are 0.
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Conversely, if the nth differences of a tabulated function are constant and the (n+1)th,
(n+2)th,..., differences all vanish, then the tabulated function represents a polynomial of

degree n. It should be noted that these results hold good only if the values of x are equally
spaced. The converse is important in numerical analysis since it enables us to approximate
a function by a polynomial if its differences of some order become nearly constant.

Theorem (Differences of a polynomial)The nth differences of a polynomial of degree n is a
constant, when the values of the independent variable are given at equal intervals.

Exercises

1. Calculate f(x) :x_il’ x=0(0.2)1 to (a) 2 decimal places, (b) 3 decimal places and (c)4

decimal places. Then compare the effect of rounding errors in the corresponding

difference tables.

2. Express A%y1 (i.e. A%f1) and A%yo (i.e. A% ) in terms of the values of the function y =
ftx).

3. Set up a difference table of f(x)=x* for x=0(1)10. Do the same with the calculated
value 25 of f(5) replaced by 26. Observe the spread of the error.

4. Calculate f(x):ﬁ, x=0(0.2)1 to (a)2 decimal places, (b)3 decimal places and (c)4

decimal places. Then compare the effect of rounding errors in the corresponding

difference tables.

5. Set up a forward difference table of f(x) = x2 for x = 0(1)10. Do the same with the
calculated value 25 of f(5) replaced by 26. Observe the spread of the error.

6. Construct the difference table based on the following table.

X 0.0 0.1 0.2 0.3 0.4 0.5
cosx | 1.00000 | 0.99500 | 098007 | 095534 | 092106 | 0.87758
7. Construct the difference table based on the following table.
X 0.0 0.1 0.2 0.3 0.4 0.5
sinx | 0.00000 | 0.099 | 0.198 | 0.295 | 0.389 | 0.479
83 67 52 42
8. Construct the backward difference table, where

Numerical Methods

f(x)=sinx, x =1.0(0.1)1.5, 4D.
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9. Showthat EV=A=3EY2.

10. Prove that

11. (i) 5=2sinh(hD/2) and (i) u=2cosh(hD/2).

12.  Show that the operators 8, m, E, A and V commute with each other.

13.Construct the backward difference table based on the following table.

X 0.0 0.1 0.2 0.3 0.4 0.5

cosx 1.000 0995 0980 0955 0921 0.877
00 00 07 34 06 58

Construct the difference table based on the following table.

x 00 0.1 02 03 0.4 0.5

sin 0.000 0.099 0198 0.295 0.389 0.479
x 00 83 67 52 42 43

6. Construct the backward difference table, where
flx)=sinx, x =1.0(0.1)1.5, 4D.
7. Evaluate (2D + 3)(E + 2)(3x2 + 2), interval of differencing being unity.

8. Compute the missing values of y, and Ay, in the following table:

Y, Ay, A%y,

13
18
24
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5
NUMERICAL INTERPOLATION

Consider a single valued continuous function y= f(x)defined over [a,b] where
f(x)is known explicitly. It is easy to find the values of )’ for a given set of values of “x” in

[a,b]. i.e., it is possible to get information of all the points (x,y) where a<x<b.

But the converse is not so easy. That is, using only the points(x,,Y,), (X, Vi) ,---,
(X,,Y,) where a<x <b,i=0,12,...,n, itisnot so easy to find the relation between x and y in
the form y=f(x) explicitly. That is one of the problem we face in numerical

differentiation or integration.

Now we have first to find a simpler function, say g(x), such that f(x)and g(x)agree
at the given set of points and accept the value of g(x)as the required value of f(x)at some
point x in between a and b. Such a process is called interpolation. If g(x) is a

polynomial, then the process is called polynomial interpolation.

When a function f(x) is not given explicitly and only values of f(x) are given at a
set of distinct points called nodes or tabular points, using the interpolated function g(x) to
the function f(x), the required operations intended for f(x), like determination of roots,
differentiation and integration etc. can be carried out. The approximating polynomial g(x)
can be used to predict the value of f(x)at a non- tabular point. The deviation of g(x)from

f(x), thatis |f(X) - g(x)|is called the error of approximation.

Consider a continuous single valued function f(x)defined on an interval [a, b].
Given the values of the function for n + 1 distinct tabular points x,,x,...,X, such that
as<x <x<..<x <b. The problem of polynomial interpolation is to find a polynomial g(x)
or p,(x), of degree n, which fits the given data. The interpolation polynomial fitted to a

given data is unique.

If we are given two points satisfying the function such as(x, ¥,);(x, ¥,), where
Yo=Tf(%) and vy, =f(x) itis possible to fit a unique polynomial of degree 1. If three

distinct points are given, a polynomial of degree not greater than two can be fitted
uniquely. In general, if n+ 1 distinct points are given, a polynomial of degree not greater
than n can be fitted uniquely.

Interpolation fits a real function to discrete data. Given the set of tabular values

%, Yo)s (X, W) - - - (%, Vo) satisfying the relation y= f(x), where the explicit nature of
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f(x) is not known, and it is required to find the values of f(x)corresponding to certain

given values of x in between xo and x, . To do this we have first to find a simpler function,
say g(x), such that f(x)and g(x)agree at the set of tabulated points and accept the value

of g(x)as the required value of f(x)at some point x in between xo and x, . Such a process
is called interpolation. If g(x) is a polynomial, then the process is called polynomial

interpolation.

In interpolation, we have to determine the function g(x), in the case that f(x) is
difficult to be obtained, using the pivotal values f = f(x,), f,=f(x),..., f,=f(x,).
Linear interpolation

In linear interpolation, we are given with two pivotal values f;=f(x,) and f, = f(x),

and we approximate the curve of f by a chord (straight line) P; passing through the points
(%, f;) and (x, f,) . Hence the approximate value of f at the intermediate point x=x,+rh

is given by the linear interpolation formula

F() =P = f +r(f —f)="f +raf

where r = P 9and 0<r<1.

Example Evaluate In9.2, given that In9.0=2.197 and In9.5=2.251.

Here xo = 9.0, x1 =95 h=x1- x=95-90=05 fo= flxo)) =In9.0=2197 and
f, = f(x)=In9.5=2.251. Now to calculate In9.2= f (9.2), take x=9.2, so that
X—X, 92-90_02_

r= =05 _ﬁ—OAandhence

IN9.2=(92)~ P(9.2) = f_+r(f - )=2197+0.4 (2.251- 2.197) = 2.219

Example Evaluate f (15), given that f(10) = 46, f(20) = 66.
Here xo=10,x1=20, h=x1— x0=20-10 =10,
fo= f(xo) =46 and f = f(x1) = 66.
Now to calculate f(15), take x = 15, so that

X—X
0 _15-10_5 (g

=h 10 10

and hence f (15) ~ P(15) = f +r(f —f)=46+0.5(66-46)=56

Example Evaluate e, given that e =3.0042and e =4.0552.
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Herexo=1.1,x1=14, h=x1— x0=14-11=03, fo= f(xo) =1.1 and f1 = f(x1) = 1.24.

X=X
124 11 0.14
P 03 53 =0.4667 and

Now to calculate € =f(1.24), take x =1.24, so that r=
hence

€™ ~P(L24)=f +r(f - f)=3.0042+0.4667(4.0552~ 3.0042) = 3.4933 while the exact value of eis
3.4947.

Quadratic Interpolation

In quadratic interpolation we are given with three pivotal values f,= f(x,), f,= f(x)
and f,=f(x,) and we approximate the curve of the function f between xo and x2 = xo +2h
by the quadratic parabola P2, which passes through the points (x,, f,), (x, f,), (%, f,) and

obtain the quadratic interpolation formula
~ _ r(r-1)
FO)= P = f +rAf +=— A

where r = Sand 0<r<2.

ExampleEvaluate In 9.2, using quadratic interpolation, given that
In9.0=2197, In9.5=2251 and In10.0 =2.3026.

Here x0 =9.0,x1 =95, x1 =100, h=x1— x0=95-9.0=0.5, fo= f(xo) =1n9.0 =2.197,
fi=f(x1) =1In9.5 = 2.251 and f» = f(x2) = In10.0 = 2.3026. Now to calculate In9.2=£(9.2), take

X=X,
~9.2-90_0.2
= 05 05—04 and

x=9.2,sothat r=

_ o _ r(r-1)
IN9.2= £(92) = P,(X) = f, +rAf +——= A

To proceed further, we have to construct the following forward difference table.

x f Af &

90 21972
95 22513 0.0541 ooE)zs

0.0513
10.0 2.3026

Hence,
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IN9.2= £ (9.2) » P,(9.2) = 2.1972+ 0.4(0.0541) + W(—0.00ZB) = 2.2192, which exact to

4D to the exact value of In9.2=2.2192.

Example Using the values given in the following table, find c0s0.28 by linear interpolation
and by quadratic interpolation and compare the results with the value 0.96106 (exact to
5D)

. First Second
F(X)=cosx  gifference difference
0.0 1.00000
-0.01993
0.2 0.98007 -0.03908
-0.05901
0.4 0.92106

Here f(x), where x,=0.28 is to determined. In linear interpolation, we need two

consecutive x values and their corresponding f values and first difference. Here, since
x=0.28 lies in between 0.2 and 0.4, we take xo = 0.2, x1 = 0.4. (Attention! Choosing x,=0.2,

x =04 is very important; taking x,=0.0 would give wrong answer). Then h = x1 = xo
=0.4-0.2=10.2, fo= f(xo) =0.98007 and f1 = f(x1) =0.92106.

X— X
Also r = P 0 — 0'22_20'2 = %028 =0.4and

000.28= (0.28) ~ P(0.28) = f +r(f )
= 0.98007 + 0.4(0.92106 — 0.98007)

= (0.95647, correct to 5 D.

In quadratic interpolation, we need three consecutive (equally spaced) x values and
their corresponding f values, first differences and second difference. Here xo = 0.0, x1 =
02, x1=04, h=x1—- x=02-0.0=02, fo= 1.00000, £ =0.98007 and f> = 0.92106,

X—X
Afo=-0.01993, A2f=-0.03908 r=—0=028-000_; 4514

h 0.2
C0s0.28~ P (0.28) = T +raf + =D A%
2 0 0 2 0
=1.00+1.4(—0.-1993) + 1ada-1 (~0.03908)=0.96116 to 5D.

Numerical Methods Page 74



School of Distance Education

From the above, it can be seen that quadratic interpolation gives more accurate value.
Newton’s Forward Difference Interpolation Formula

Using Newton’s forward difference interpolation formula we find the n degree
polynomial P, which approximates the function f(x) in such a way that P, and f agrees at
n+l equally spaced x values, so that P,(x,)=f,, P,(x)= f,...,P,(x,)=f,, where f;="f(x),
f,=f(x), ..., f,=f(x,) are the values of f in the table.

Newton’s forward difference interpolation formula is

f(xX)=P,(X) =
Cfoaraf L SO=D e T =) (-0t D) o
° ° 2! 0 n! 0
X—X
WhereXZXOHh,r: hO,OSrsn.

Derivation of Newton’s forward Formulae for Interpolation
Given the set of (n+1) values, viz., (x,, f,),(x, f,), (X, ,),....,(X,, f.)

of x and f it is required to find p,(x), a polynomial of the nth degree such that f(x) and
p.(x) agree at the tabulated points. Let the values of x be equidistant, i.e., let

X =X, +rh, r=0212,..,n
Since p,(x) is a polynomial of the nth degree, it may be written as
Pa (%) =8 +8,(X= %) +8, (X=X )(X= %)

85 (X=X )(X=X)(X= %) +..
+8, (X=3) (X=X )(X= %) (X=X, )

Imposing now the condition that f(x) and p,(x) should agree at the set of tabulated

points, we obtain

f—f Af A*f A3f A"f
ST AT T TR T2 2T !

Setting x = x, +rh and substituting for a,,a,,...,a,, we obtain the expression.
Remark 1:

Newton’s forward difference formula has the permanence property. If we add a new set
of value (x,,,,¥,.,), to the given set of values, then the forward difference table gets a new

column of (n+1)th forward difference. Then the Newton’s Forward difference
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Interpolation Formula with the already given values will be added with a new term at the

1

n+1 . . .
W[A yo} to get the new interpolation formula with the

newly added value.

Remark 2:

Newton’s forward difference interpolation formula is useful for interpolation near the
beginning of a set of tabular values and for extrapolating values of y a short distance
backward, that is left from y,.The process of finding the value of y for some value of x

outside the given range is called extrapolation.

Example Using Newton's forward difference interpolation formula and the following
table evaluate £(15) .

X f) A Nf Nf A

10 46
20
20 66 -5 2
15
30 81 3 -1 3
12
40 93 -4
8
50 101

Here x =15, x0=10, x1=20, h =x1—x0=20-10=10, r = (x - x0)/h = (15-10)/10= 0.5, fo=
—46, Afo = 20, A%fo= -5, A3fo= 2, A*fo=-3.

Substituting these values in the Newton's forward difference interpolation formula for
n =4, we obtain

F()=P(x)="f +rAf + r(rZTl) AR r(r-1). .L.u(r —4+1) 4 »
so that
f (15) ~ 46+ (0.5)(20) +w(_5) N (0-5)(0.5—3 l1)(0.5— 2) @
L (0505-1(05-2)(05-3)

4

= 56.8672, correct to 4 decimal places.
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Example Find a cubic polynomial in x which takes on the values -3, 3, 11, 27, 57 and
107, when x=0, 1, 2, 3, 4 and 5 respectively.

x o fx) A A2 A3
0o 3

6
1 3 2

8 6
2 11 8

16 6
3 27 14

30 6
4 57 20

50
5 107

Now the required cubic polynomial (polynomial of degree 3) is obtained from Newton’s
forward difference interpolation formula
r(r-1)

N B 2 rr=0(r-3+2) ,s
f(x)~P3(x)— f0+rAf0+TA f0+ 30 A fo,

where r=(x - x0)/h = (x - 0)/1 = x, so that

f(X)~ P (x) = -3+ X(6) + X("Z!‘l) @)+ X(X-l)g:—3+1) ©)

or f(x):x3—2x2+7x—3

Example Using the Newton's forward difference interpolation formula evaluate f(2.05)
where f(x)=+x, using the values:

b 2.0 21 2.2 23 24

Jx | 1414214 | 1449138 | 1.483240 | 1.516 575 | 1.549 193
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The forward difference table is

x WX A A2 A3 A
2.0 1.414214
0.034 924
21 1.449138 -0.000 822
0.034 102 0.000055
2.2 1.483 240 -0.000 767 —0.000 005
0.033 335 0.000050
23 1516575 -0.000 717
0.032 618
24 1549193
X—Xo

Here r = =(2.05-2.00)/0.1=0.5, so by substituting the values in Newton’'s formula (for

4 degree polynomial), we get

L (05)(05-1)

(2.05) ~ P, (2.05) = 1414214+ (0.5)(0.034924) 51— (-0.000822)
. (0.5)(0.5—3 !1)(0.5- 2 (0.000055
+ (0'5(0'5_1)((2!5_ 2(05-3) (0.000005) = 1.431783.
Example Find the cubic polynomial which takes the following values;

f (1) =24, f(3) =120, f (5) =336, and f(7) =720. Hence, or otherwise, obtain the value of f (8).
We form the difference table:

y A A A
1 24

96

3 120 120
216 48

5 336 168
384

7 720

Here h=2 with x,=1, we have x=1+2p or r=(x-1)/2. Substituting this value of r, we

obtain

f(x) = 24+ Xgl(ge) + (X;l)(xgl_l) (120)
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+

x=1) x-1 x-1
S
(48) =x3+6x°+11x+6.

6

To determine f(9), we put x=9 in the above and obtain f(9)=1320.
. X =% 9-1
With x,=1, x =9, and h=2, we have r =T=T=4. Hence

r(r-12)
2!

£(9)~ p(9) = f, +rAf, + A2f0+wA3fo

4x3 4x3x2

=24+ 4%x96+ > x120+ x 48=1320

X
Example Using Newton’s forward difference formula, find the sum

S =C+2+3+..+n’.

Solution
S, =L+22+F+..+n’+(n+1°
and hence
S-S =(n+1?%
or
AS, =(n+1)°.
it follows that

A’S, =AS,,,-AS, =(n+2)°-(n+1)°*=3n*+9n+7
A’S =3(N+1)+9n+7-(3n° +9n+7)=6Nn+12
A*S, =6(n+1)+12—(6n+12) =6
Since A°S, =A°S, =..=0,S, is a fourth-degree polynomial in the variable n.
Also,
S=1 AS=(@1+1°=8  A’S=3+9+7=19,
A’S =6+12=18, A'S=8.

formula (3) gives (with f,=S and r-n-1)

S =1+ (n-1)(8) +W(19) L(n _1)(”?)(”_3) (18)
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(n=Y(n-2)(n-3)(n-4)
* 24 6)

14,15 1
—4n+2n+4n

| n(n+1) ?
1)

Problem: The population of a country for various years in millions is provided. Estimate the
population for the year 1898.

Year x: 1891 1901 1911 1921 1931
Population y: 46 66 81 93 101

Solution: Here the interval of difference among the arguments h=10. Since 1898 is at the
beginning of the table values, we use Newton’s forward difference interpolation formula for finding
the population of the year 1898.

The forward differences for the given values are as shown here.

X y Ay A%y A%y A*y
1891 46
Ay, =20
1901 66 A%y, =-5
Ay, =15 A%y, =2
1911 81 A%y, =-3 A'y,=-3
AyZ = 12 Asyl = —1
1921 93 5
A%y, =-4
Ay, =8
1931 101

Let x=1898. Newton’s forward difference interpolation formula is,

00 = Yo+ (=305 8% ]+ (x=3) (x= %) 5 %%
+ (X =% ) (X=x)(x— x2)3!—:t13[A3y0]+....+

(X_ XO)(X_ Xl) """ (X_ Xn—l)TJhn[Anyo}
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Now, substituting the values, we get,

f (1898) = 46+ (1898 —1891)%[20] +(1898-1891)(1898 - 1901)W102[_5]
1

+(1898-1891)(1898-1901)(1898- 1911) _ - 5[2] +
(1898-1891) (1898—1901)(1898—1911)(1898—1921)F104[—3]
B 21 91 18837 _
= 1 (1898) = 46+ 14+ 55+ g5 + 35555 = 61.178

Example Values of x (in degrees) and sinx are given in the following table:

x(indegrees) sinx

15 0.2588190
20 0.3420201
25 0.4226183
30 0.5

35 0.5735764
40 0.6427876

Determine the value of sin38°.

Solution
The difference table is

X snx A A? A3 A* A®

15 0.2588190
0.0832011
20 0.3420201 ~0.0026029
0.0805982 ~0.0006136
25 0.4226183 ~0.0032165 0.0000248
0.0773817 ~0.0005888 0.0000041
30 05 ~0.0038053 0.0000289
0.0735764 ~0.0005599
35 05735764
00so211p 00043052

40 0.6427876

As 38 is closer to x,=40 than x, =15, we use Newton’s backward difference formula with

X, =40 and x=38. This gives
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X=X, _38-40__2

h 5 5= 04

r =

Hence, using formula, we obtain

~0.4-1)

f (38) = 0.6427876 — 0.4(0.0692112) + —>X > (~0.0043652)

,(-04)(-04+1)(-04+2)

5 (~0.0005599)

, (-04)(-04+1)(-0.4+2)(-04+3)

o (0.0000289)

, (C04)(-04+ 1)(—0.41 ; 02)(—0-4 +3)(04+4)  0000041)

=0.6427876—0.02768448 + 0.00052382 + 0.00003583

—0.00000120
=0.6156614

Example Find the missing term in the following table:

y=1(x)

1
3
9

81

A W N PP O|X

Explain why the result differs from 3° =27?

Since four points are given, the given data can be approximated by a third degree
polynomial in x. Hence A*f,=0. Substituting A=E-1 we get, (E-1)*f,=0, which on

simplification yields
E*f, —4E%f, + 6E*f, — 4Ef, + f, =0.

Since E'f, = f, the above equation becomes
f,—4f,+6f,-4f + f,=0

Substituting for f,, f,, f, and f, in the above, we obtain

f,=31
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By inspection it can be seen that the tabulated function is 3" and the exact value of f(3) is

27. The error is due to the fact that the exponential function 3" is approximated by means
of a polynomial in x of degree 3.

ExampleThe table below gives the values of tanx for 0.10<x<0.30

X y = tan Xx
0.10 0.1003
0.15 0.1511
0.20 0.2027
0.25 0.2553
0.30 0.3093

Find: (a) tan0.12 (b) tan0.26. (c) tan0.40 (d) tan0.50

The table difference is

X y = f(x) A A2 A3 A?
0.10 0.1003
0.0508
0.15 0.1511 0.0008
0.0516 0.0002
0.20 0.2027 0.0010 0.0002
0.0526 0.0004
0.25  0.2553 0.0014
0.0540

0.30 0.3093

a) To find tan(0.12), we have r =04 Hence Newton’s forward difference interpolation
formula gives

0.4-1)

tan (0.12) = 0.1003+ 0.4(0.0508) + 2 5——(0.0008)

,04(0.4-1)(04-2)

5 (0.0002)

0.4(0.4-1)(0.4—2)(0.4-3)
* 24

(0.0002)

=0.1205

b) To find tan(0.26), we use Newton’s backward difference interpolation formula
with
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which gives

-0.8(-0.8+1)

tan (0.26) = 0.3093— 0.8(0.0540) + >

(0.0014)

, ~08(-08+1)(-08+2)

5 (0.0004)

, ~0-8(-0.8+1)(-0.8+2)(-08+3

o (0.0002) =0.2662

Proceeding as in the case (i) above, we obtain
(c) tan0.40=0.4241, and
(d) tan0.50 = 0.5543

The actual values, correct to four decimal places, of tan (0.12), tan(0.26) are respectively
0.1206 and 0.2660. Comparison of the computed and actual values shows that in the first
two cases (i.e., of interpolation) the results obtained are fairly accurate whereas in the last-
two cases (i.e., of extrapolation) the errors are quite considerable. The example therefore
demonstrates the important results that if a tabulated function is other than a polynomial,
then extrapolation very far from the table limits would be dangerous-although
interpolation can be carried out very accurately.

Exercises

1. Using the difference table in exercise 1, compute c0s0.75 by Newton’s forward difference
interpolating formulawith n=1, 2, 3, 4 and compare with the 5D-value 0.731 69.

2. Using the difference table in exercise 1, compute c0s0.28 by Newton’s forward difference
interpolating formulawith n=1, 2, 3, 4 and compare with the 5D-value

3. Using the values given in the table, find cos0.28 (in radian measure) by linear interpolation and
by quadratic interpolation and compare the results with the value 0.961 06 (exact to 5D).

Numerical Methods Page 84



School of Distance Education

« ()= cosx First Second
difference difference

0.0 1.000 00
-0.019 93

0.2 0.980 07 -0.03908
-0.059 01

0.4 0.921 06 -0.03671
-0.095 72

0.6 0.825 34 -0.03291
-0.128 63

0.8 0.696 71 -0.02778
-0.156 41

10 0.540 30

4, Find Lagrangian interpolation polynomia for the function f having

f(4)=1 f(6)=3, f(8)=8, f(10)=16. Also calculate f(7).

5. Thesalesin aparticular shop for the last ten yearsis given in the table:

Y ear 1996 1998 2000 2002 2004
Sales (in 40 43 48 52 57
lakhs)

Estimate the sales for the year 2001 using Newton’s backward difference interpolating formula.

6. Find f(3), using Lagrangian interpolation formula  for the function f  having
fQ=2 f(2)=11, f(4=77.

7. Find the cubic polynomial which takes the following values:
X 0 1 2 3
f(x) 1 2 1 10

8. Compute sin0.3 and sin0.5 by Everett formula and the following table.

sinx &2

0.198 67 -0.007 92

0.38942 | -0.01553

> |do |Idvo

056464 | -0.022 50
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9. The following table gives the distances in nautical miles of the visible horizon for the given
heights in feet above the earth’s surface:

Xx=height :|100 |150 |200 |250 |300 |350 |400

y=distance: | 10.63 | 13.03 | 15.04 | 16.81 | 18.42 | 19.90 | 21.27

Find the value of y when x = 218 ft (Ans: 15.699)

10. Using the same dataasin exercise 9, find the value of y when x = 410ft.
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6
NEWTON’ S AND LAGRANGIAN FORMULAE - PARTI

Newton’s Backward Difference Interpolation Formula
Newton'’s backward difference interpolation formula is

F()~P(X)= www%vzfﬁ...

N r(r+1)...('r+n—1)vnfn

X—X
where x=xn+rh,r= P n —n<r<0.

Derivation of Newton’s Backward Formulae for Interpolation
Given the set of (n+1) values, viz., (x,, f,),(x, f,),(X,, ,),....,(X,, f.)

of x and f it is required to find p,(x), a polynomial of the nth degree such that f(x) and
p.(x) agree at the tabulated points. Let the values of x be equidistant, i.e., let

X =X, +rh, r=0212,..,n

Since p,(x) is a polynomial of the nth degree, it may be written as

P, (X) =8 + & (X—X,) +a,(X—X (X=X, ;)
+85(X—X,) (X=X, ) (X=X, ) + ...
+a,(X=%,) (X=X, ;)..(X=X)

Imposing the condition that f(x) and p,(x) should agree at the set of tabulated points

we obtain (after some simplification) the above formula.
Remark 1.

If the values of the k™ forward/backward differences are same, then (k+1)™ or higher differences
are zero. Hence the given data represents a “"" degree polynomial.

Remark 2:

The Backward difference Interpolation Formulais commonly used for interpolation near the end of
aset of tabular values and for extrapolating values of y a short distance forward that isright fromy,

Problem: For the following table of values, estimate f(7.5), using Newton’s backward difference
interpolation formula.
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X f vf V& SR Ve, SR VAL

1 1
7
2 8 12
19 6
3 27 18 0
37 6
4 64 24 0
61 6
5 125 30 0
91 6
6 216 36 0
127 6
7 343 42
169
8 512

Solution:

Since the fourth and higher order differences are 0, the Newton’s backward interpolation
formulais

f(x, +uh):yn+u[Vyn]+u(uZ:rl)[V2yn]
u(u+1)(u+2)r_, u(u+1)(u+2)..u+n-r__ -’
+%[V yn:|+""+ ( )( n!) [V yn:l

X—X
Where, u= h"=7'518'0:—0.5 and

vy, =169, V’y =42, V®y =6and V'y, =0.

Hence,

£ (7.5 =512+ (-0.5)(169) +w () 0905405+ ¢

3
=421.875.

Example For the following table of values, estimate f(7.5), using Newton’s backward
difference interpolation formula.
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x f Vf V¥ V¥ Vif

1
7

2 8 12
19 6

3 27 18 0
37 6

4 64 24 0
61 6

5 125 30 0
91 6

6 216 36 0
127 6

7 343 42
169

8 512

Since the fourth and higher order differences are 0, the Newton’s backward
interpolation formula is

F)=P()=f +IVF + r(';])vzfn AL ”;fr 2%, where

_ X% _75-80_ - 2 = 3 =
r=—pt=—"7 =-0.5and Vf, = 169, V2f,, = 42, V3f, = 6. Hence

, (05(-05+1)(-05+2)

f (7.5) ~512+ (-05)(169 + .

(42

(-05(-05+)
2

=421.875

Gauss’ Central Difference Formulae
We consider two central difference formulae.
(i) Gauss’s forward formula

We consider the following table in which the central coordinate is taken for convenience
as y, corresponding to x=x,

Gauss’s Forward formula is
f = +GAf +GA*f  +GA T +G A, +..,,

where G,,G,,...are given by
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G1:p

-1
G, Pp-D

1 -1
6, (P+DR(P-D),

1 -D(p-2
G4:(|0+)|0(|2” )(P-2)

Table: Gauss” Forward Formula

X y A A2 A3 A? A® A®
X_3 Y_s3
Ay_,
X, Y, A%y,
Ay, A%y,
X1 Yo Aty Aty g
Ay, Ay, Ay,
Xo Yo A%y, Aty Aty g
AyO Aayfl A5y72
X, Vi A’y Aty
Ay, A%y,
X, Y, Ay,
Ay?
Xs  Ya

Derivation of Gauss’s forward interpolation formula:

We have Newton'’s forward interpolation formula as,

f (%, +uh) =y, +ufAy, |+ U(UZI_:L) [Azyo]

u(u-1)(u-2)

+T[A3yo]+....+ =

(x=%)

where, u= P

we have,
Ay, =A’Ey, =A*(1+A)y, =A%y + A%,

A%y, =A’Ey =A% (1+A)y, =A%y  + A%y,

u(u-1)(u-2)...(u- n+1)[

AnYo]
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In similar way, A%y, =A%y, +A%y,; A%y, =A%y, +A%, and so on.

Substituting these values in Newton’s forward interpolation formula, we get,

u(u-1

f (%, +Uh) =y, +ufAy, ]+ ( 5 )[Azy_l + A3y_1]

u(u-1)(u-2)
T3

[A%y,+A"y, ]+ u(u —1)(u4? 2)u-9 [A'y +A%Y ]+

Solving the above expression, we get,
f (% +Uh) =y, +U[AY, ]+ 'C, [ A%y, |+ *C,[ A%y, |+ “C,[ A'y, |+ *7C [ A%y, |+ ..

This formula is known as Gauss’s forward interpolation formula.

(ii) Gauss Backward Formula

Gauss backward formula is

fo="f,+G/Af +G/Af | +G/Af , +G/A*f , +...
where G/,G, ,... are given by

G =p,

' +1
G, - p(g! )

' 1 -1
6/ - (P+DR(P-D),

o _(P+2)(p+1p(p-1)
4 4 '

Example From the following table, find the value of €' using Gauss’ forward formula.

x | 1.00 1.05 1.10 1.15 1.20 1.25 1.30

e | 27183 | 2.8577 | 3.0042 | 3.1582 | 3.3201 | 3.4903 | 3.6693

Solution

Here we take x,=1.15, h=0.05.
Also, x, =X, + ph

1.17=1.15+ p(0.05),
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which gives

002 1
P=005"2

The difference table is given below:

X e” A A A3 A?

1.00 2.7183
0.1394

1.05 2.8577 0.0071
0.1465 0.0004

1.10 3.0042 0.0075 0
0.1540 0.0004

1.15 3.1582 0.0079 0
0.1619 0.0004

1.20 3.3201 0.0083 0.0001
0.1702 0.0005

1.25 3.4903 0.0088
0.1790

1.30 3.6693

Using Gauss’s forward difference formula we obtain

2/5-1)

e = 3.1582+é(0.1619) , (275 === (0.0079)

L (2/5+2)(2/5)(2/5-1)

5 (0.0004)

=3.1582 + 0.0648 - 0.0009 =3.2221.
Derivation of Gauss’s backward interpolation formula:

Starting the substitution in Newton’s forward interpolation formula with
Ay, =AEy,=A(1+A)y,=Ay ,+A%, and the substitutions done in the case of Gauss's
forward interpolation formula A?y, =A%y , + A%y ;; A%y, =A%y, +A'y, etc., we obtain
u(u-1
f(x,+uh)=y,+ u[Ay_1 + Azy_l] + ( 5 )[Azy_l + A3y_l]

N u(u—]:?)’!(u—Z) [A3y71+A4y71]+ u(u_l)(udr? 2)(u-9 [A4y71+A5y,1].+...

Solving the expression, we get,

f (% +uh) =y, +u[Ay, ]+ “IC, [ A%y, [+ “IC,[ A%y, |+ “PC,[ Aty |+ "PC [ A%y, |+ ...
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This is known as Gauss’s backward interpolation formula.
Central difference interpolation formulas:

Newton’s forward and backward interpolation formula are applicable for
interpolation near the beginning and near the end of the tabulated arguments,
respectively. Now in this session we discuss interpolation near the centre of the tabulated
arguments. For this purpose we use central difference interpolation formula. Gauss’s
forward interpolation formula, Gauss’s backward interpolation formula, Sterling’s
formula, Bessel’s formula, Laplace-Everett's formula are some of the various central
difference interpolation formulas.

Let us consider some equidistant arguments with interval of difference, say; h and
corresponding function values are given. Letx, be the central point among the

arguments.

For interpolation at the point x near the central value, let f(x,)=y,, f(x,-h)=y,,
f(%+h) =y, f(x-2h)=y,, f(x+2h)=y,, f(x-3n)=y,, f(X+3n) =y, and so on.

For the valuesy ,,y,,Y, Y, Yi: ¥, ¥; the forward difference table is as follows:

X y Ay A%y A%y A%y A’y A%y
=3y,
Ay 4
Yor Ay
oo Ay, A%y
Y A%y, A"y
x,—h Ay, A%y, Ay,
Yo A%y, A'y, A%y,
X, AYo Ay, Ay,
Y1 A%y, Ay,
X +h Ay, Asyo
Y2 A%y,
X, +2h Ay,
Ys
%, +3h

Numerical Methods Page 93



School of Distance Education

The above table can also be written in terms of central differences using the operator das
follows:

X y dy d?y d®y d*y d’y d®y
X, —3h '
dy
2 2
Yo dvy,
- dy._
Y1 d’y, i d'y,
dy,l dsyfl
% —h 2 d’y_ 2
Yo d?y, 7 d*y, d°y,
X dyl d5y1
Y1 2 d2y, d’y, d*y, 2
2
X, +h
dy3 2
y2 2 d y2 dsyg
X, +2h . dyg 2
3
X, +3h

The difference given in both the tables are same can be established as follows:

1 1
We haved = AE 2. Then, dy =AE2(y 5) = A(y s 1jsz3;
2 2 272

2

1 3
d’y . =(AEZJ (y s 3) =A%y, andsoon.
2

22

We use the central differences as found in the first table for interpolation near the central
value. Among the various formulae for Central Difference Interpolation, first we consider Gauss’s
forward interpolation formula.

INTERPOLATION - Arbitrarily Spaced x values

In the previous sections we have discussed interpolations when the x-values are
equally spaced. These interpolation formulae cannot be used when the x-values are not
equally spaced. In the following sections, we consider formulae that can be used even if
the x-values are not equally spaced.
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Newton’s Divided Difference Interpolation Formula

If xo, x1, . . ., xu are arbitrarily spaced (i.e. if the difference between xo and x1, x1 and x2
etc. may not be equal), then the polynomial of degree n through (x,, f,), (x, f,), -, (X, f.),
where f; = f(x), is given by the Newton’s divided difference interpolation formula (also

known as Newton’s general interpolation formula) given by

f(X)~ fo+(x—%g)F[Xg. Xq ]+ (X = %o N X=X ) F[X0r X, X5 |+ - . .

with the remainder term after (n+1) terms is given by
(X=%) (X=%) -+ (X=%,) F[X, %o, %7+, %]
where f[xg,%], f[x0,%,%;], ... are the divided differences given by

1 10a)=Flx)
f[XOv 1] X — %o ’

[, X0, o] = f[Xb);z]—)‘:o[Xo,Xl],
-

fIXg, . o X = flXo, -+ 0 X
bor oAb ][ il

FIX %, %] = (X %.]%,
X, — X

Also, X, X5, X, X,]=

Note If xo, x1, ..., xpare equally spaced, i.e. when x, = x,+kh, then f[xo, . . ., X |=

and Newton’s divided difference interpolation formula takes the form of Newton's
forward difference interpolation formula.

Derivation of the formula:

For a functiony=f(x), let us given the set of (n+1) points,

(% F(%))s(%0 F(%))s(%0 F (%)) i(%,, F(%,)) . The values x,x,,...%, of the independent
variable x are called the arguments and the corresponding values
Vo= (%), ¥, = f(%),...y, = f(x,) of the depending variable y are called entries. We define

the first divided difference of f(x) between two consecutive arguments x and x,, as,

f()ngl)_ f ()Q)

fori=0,1...,.n-1
)§+1_)§

f(%.%,)=
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The second divided difference between three consecutive arguments x,x, and x,, is

given by,

()ﬁ+11)§+2)_ f (Xi’)g*'l) fOI’ | :0,1,...,”-2
)ﬁ+2_)§

f
f (X X1 %00) =

In general the nt" divided difference (or divided difference of order n) between

_ (X020 X, ) = £ (X Xreen X g )
X =%

Hence, in particular, the first divided difference between x, and x, is,

fF(x)-f(%)

f(%:%)= =

The second divided difference between three consecutive arguments x,,x and X, is

NM&%FJO%Q:Q%%)

_ 1 l?(&%*(&)_ﬂ&%*(&q
%% | X=X X — %,
) le){ 1 1 } f(%)
(% =%)%-%) (%=%) (6-%) (x=%)] (%=%)(%-%)
__ ) flx) %)
(6 =%)0%=%) (%=X)(X=%) (% —=%)(%=%)
) ) f(x)

= o) = %) ()% %) | (%)% %)
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Properties of divided difference:

1. The divided differences are symmetrical about their arguments.

fF(x)-f(%)

We have, f(x,,x)= =

f(%)-f(x)
= = f y
%% (%:%)
= f(%,%)=f(X.%). Hence, the order of the arguments has no importance.

When we are considering the n™ divided difference also, we can write, f (X)X X, ) @S

(%) . f(%) . f(x)
X=X ) (% =% ) (% =%) (% =%)00 =% ) (X =%) (% =% ) (X = X)- (X = Xy0)

f(Xgs Xpyeven xn)=(
From this expression it is clear that, whatever be the order of the arguments, the expression is
same.

Hence the divided differences are symmetrical about their arguments.

2. Divided difference operator is linear.

For example, consider two polynomials f (x) and g(x) . Let
h(x) = af (x)+bg(x),

where ‘a’” and ‘b’ are any two real constants. The first divided difference of h(x) corresponding to
the arguments x, and x;is,

h(x)-h(x) _af (x)+bg(x)-af (x)+bg(x)
X =% X =%

_a[f (%)= f(%)]+b[g(x)-g(x)]
X =%

h(%, %)=

F00)- (%), 909)-g(x)
X =% X =%

=a

=a f(%,%)+bg(%,%)
3. The n" divided difference of a polynomial of degree n is its leading coefficient.

Consider f (x) = X", where n is a positive number

f(x)-f " x,"
Now, f (%)= (Xl)(? (Xo):)&)(l_z

—%
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— Xln—l + Xln—zxo + Xln—SXOZ +.+ Xon—l

This is a polynomial of degree (n-1) and symmetric in argumentsx, and x with

leading coefficient 1.

The second divided difference,

(% %) = (%, %)
X, — X%,

f
f (%%, %)=

_ (%" %,"2% 4 &”2:():0“ + XX et xl”’l)  which

can be expressed as a polynomial of degree n-2, is symmetric about x,,x and x, with

leading coefficient 1.

Proceeding like this, we get the n™ divided difference of f (x)=x"is 1.
Now we consider a general polynomial of degree n as,
g(x)=aX"+ax" " +a,x"*+..+4a,

Since the divided difference operator is linear, we get n" divided difference of g(x) as a,, whichis
the leading coefficient of g(x).

Example Using the following table find f(x) as a polynomial in x

X f(x)
-1 3
0 -6
3 39
6 822
7 1611

The divided difference table is

x 00 fIx, Xyl
-1 3
-9
0 -6 6
15 5
3 39 41 1
261 13
6 822 132
789
7 1611

Numerical Methods Page 98



School of Distance Education

Hence
f(X) =3+ (x+2) (-9) + x(x+12) (6) + x(x+1) (x—3)(5)
+X(X+1) (x—3)(x—6)

=x*-3x3+5x>-6.

Example Find the interpolating polynomial by Newton’s divided difference formula for

the following table and then calculate f(2.1).

X 0 1 2 4

fx) 1|1 2] 5

First Second . o
divided divided Third divided
iff
* f) difference difference difference

Xk -1, Xk, Xk+1, Xk+2
f[xk-l; xk] f[xk-l, Xk, xk+1] f[ 1, Xk, Xk+1, Xk+ ]

f(X,, %)=0
0 1 (% %)
11 ex)=l ~1/2 .
f(x,, =3/2 N
2| 2 Tt 16 ’
4 5
Now substituting the values in the formula, we
£(x) ~1+ (X—0)(0) + (X— O)(x—l)(%) T (x—0)(x—T)(x— 2)(— 1—12J
1.3, 3,2 2
—EX +ZX §X+1

Substituting x = 2.1 in the above polynomial, we get f(2.1)=2.135,

get
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7
NEWTON’ S AND LAGRANGIAN FORMULAE - PARTII

Problem: Obtain Newton’'s divided difference interpolating polynomial satisfied by
(~4,1245), (-1,33),(0,5),(2,9) and (5,1335).

Solution: Newton’s divided difference interpolating polynomial is given by,
P9 =1 06)+(x=36) f (60:) +(x=%) (x=%) T (%%, %)

+(X=2%) (X=2) (X=%) F (%245, % )+ ..o
(X=% ) (X2 ) X=%,5) T (%9 X000 %)

Here x values are gives as, -4, -1, 0, 2 and 9. Corresponding f(x) values are
1245,33,5,9 and 1335.

Hence the divided difference as shown in the following table:

X First divided | Second divided | Third Fourth
differences differences divided divided
differences | differences
-4
-404
-1 94
-28 -14
0 10 3
2 13
2 88
442
5

Given f (x,)=1245. From the table, we can observe that

Numerical Methods

F(%,%)=—404 (%, %,%)=%;
F(0%0%:%)=—14 and f(%,%,%,%,%,)=3

Page 100




School of Distance Education

Hence the interpolating polynomial is,

f(X) =1245+ (X~ (—4) ) x (-404) + (x— (-4) ) (x— (-1)) x 94
+(x=(=4))(x=(-D))(x—0)x14+ (x—(-4))(x— (-1))(x—0)(x—2)x 3

= f(X)=1245-404(x+4)+A(x+4)(x+1)
+14( x+4)(x+1)(x—0)+3(x+4)(x+1)(x—0)(x—2)

On simplification, we get,

f(X)=3X"—5¢ +6¢ —14x+5,

Newton’s Interpolation formula with divided differences

Consider two arguments x and x,. The first divided difference between x and x, is,

fF(x%)= S
= F(3)=100)+(x=%)f(x%) — ()
Consider x, x,and x,. Then,

f(%%,%)= f(’%%)z:;(x,%) _ f(X%))(:;(m&)

=T (%%)=F 06%)+(x=%) f (%%, %)

Put it in (1), we get,
F(3)=1 () +(x—%)]f (%) +(x=%) f (x3,%)]
That is,
F(X)=1(3)+(x=%)  (%,%)+(x=%)(x=%) F (x%.%) - ()

Again, for x, x;, x, and x,

(0% %,,) = f(>@><o,><1))<2—_fx(xo,xp><z) ) f(xo,xl,x)z()_—xz (%%:X)

= 100%,%)=(%=X) F (%%, %,%)+ (%%, %)
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Hence (2) implies,
F ()= () +2%)  (6,20) 26 (X2 ) () F (06,6.06)+ T (5, %% |

= £ (06)+(x=%) F (26:20) (X% )(x=2) f 06,5 ) +(x =2 ) =% ) (x=2%) f (6., %)

Proceeding like this, we obtain for f(x) as,

P00 =1(%)+(x=%) T (%) +(x=%)(x=%) f (%%, %)
(X)) (X=X ) (X=%) T (X1 X, %, %5 )+t
(X=26) (X=X )-ore (X=20) F (X, %,)

If f(x) is a polynomial of degree n, then f (X, %, X....,x,) =0, because it is the (n+1)th

difference.

Hence we get,

F0=1 (%) +(x=%) F (%) +(X=%)(x=%) f (%, %.%,)
(X% ) (X=X)(X=%) f (%%, %, % )+ oove F
(X=2) (X=X )-ore (X=X 1) T (X0 XX,

This is known as Newton’s interpolation formula with divided difference.
Note:

1. For the given arguments x,X,,...,x,, if all the kth , (k<n) divided differences are equal,

the k+1th divided differences are zeroes. =~ Then Newton’s interpolation formula gives a
polynomial of degree k for the given data.

2. Newton’s divided difference interpolation formula possesses the permanence property.
Apart from the given arguments x,x,,...,x, along with the corresponding function values,
suppose that on a later time a new argument x,, with corresponding entry f(x,,,) are
given. The new set of data values can be represented by a polynomial of degree (n+1). To
obtain the required polynomial we add the term (X—X,)(X—=%).....(X=X,) f (X X0s-0s X, X1 ) tO

the previously obtained nth degree polynomial.

Problem 2: The following table gives the relation between steam pressure and
temperature. Find the pressure at temperature 3750.

Temp.: 3610 3670 3780 3870 3990
Pressure: 1549 1679 191 2125 2442
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Solution:

To find the pressure at temperature 3759, it is to establish the relation giving
pressure in terms of temperature. Let us consider temperature as x values and pressure a
s corresponding f(x) values.

The given x values are 3619, 3679, 3780, 3870 and 3990. Corresponding f(x) values
are 154.9,167.9, 191,212.5 and 244.2.

f(x) is obtained by Newton’s divided difference interpolating polynomial as,
F09= (%) +(x=%) f (3, %) +(x=%)(x=%) f (%%, %)

) (K %) (25 .
(X3 (X o (X T (531,

Given f (x))=(361°)=154.9. The divided differences for the given points are as

shown in the table.

X First divided Second divided | Third Fourth
differences differences divided divided
differences | differences
361
2.01666
367 0.00971
2.18181 0.0000246
378 0.01035 0.00000074
2.38888 0.0000528
387 0.01204
2.64166
399

From the table, we can observe that

f(%,%)=201666, f(x;,x,%,)=000971;
f (%X, %,%)=00000246 and f(),X,%,X;,X,)=0.00000074

Hence,

f (X) =154.9+ (x—361) x 201666+ (x— 361)( X 367) x 0.00971+
(x—361)(x—367)(x—378) x 0.0000246 +( X — 361)( X — 367) (x— 378)( X — 387) x 0.0000074

Substituting x=375 in the above expression gives, f(375)= 184.21548.
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Problem 3: Obtain Newton’s divided difference interpolating polynomial satisfying the
following values: x: 1 3 4 5 7 10

f(x): 3 31 69 131 351 1011
Also find £(4.5), {(8) and the second derivative of f(x) at x=3.2.

Solution:

To obtain the Newton’s divided difference interpolating polynomial f(x), we need
the divided difference using the given values.

It is calculated and listed in the following table

X First divided Second divided | Third Fourth
differences differences divided divided
differences | differences
1
14
3 8
38 1
4 12 0
62 1
5 16 0
110 1
7 22
220
9

Since the fourth divided differences are zeroes, f(x) is of degree 3 and it is obtained as,

FOY= (%) +(X=3%) T (%, %) +(X=%)(X=%) (%, %, %)
+(X=%)(X=%)(X=%) T (%%, %1 %)

F0)=f@=3 1 (%.x)=14 f(x.%%)=8 and f(x,x,%,%)=1
= f(X) =3+ (Xx—1)x14+(x—1)(x—-3)x8+(x—-1)(x-3)(x-4)x1
That is,
() =X +x+1
Hence, f(45)=(45) +45+1=96625 and f(8)=(8)’+8+1=521

Second derivative of f (x) is 6x. Now second derivative of f(x) at x=3.2is6x3.2=19.2
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Lagrangian Interpolation

Another method of interpolation in the case of arbitrarily spaced pivotal values xo, x1, . . .
, xp is Lagrangian interpolation. This method is based on Lagrange’s n+1 point
interpolation formula given by

fg=Log-> K g,

k:olk(xk)

where
Io(x):(x—xl)(x—xz)....(x—xn),
L () =(X=%) -+ (X=X )(X= %) -+ (X=%),  0<k<n.
In(x) =(x-— xo)(x— xl) . "(X_Xn—l)
Remark: L (x)=f . For, Ik(xj) =0, when j =k, so that for x= X, the sum on the RHS of the

formula reduces to the single term f , which indicates that f and L _agrees at n+l

tabulated points.

Derivation of the formula:

Given the set of (n+1) points, (%, f(%)).(% f(%)).(%, f (%)), (%, T (X)) of x and f(x), it is
required to fit the unique polynomial p,(x) of maximum degree n, such that f(x) and p,(x) agree
at the given set of points. The valuesx,, x,,..., x, may not be equidistant.

Since the interpolating polynomia must use al the ordinates f (x, ), f (x,),..., f (x,), it can be
written as alinear combination of these ordinates. That is, we can write the polynomial as

P () =1 F (%) +1L,0)F (3)+--+1,00 T (%,).
where f(x)and |, (x), fori=012,..,n arepolynomials of degreen.
This polynomial fits the given data exactly.

Atx=x,,as p,(x) and f(x) coincide, we get,

F (%) = Pa(%) =lo (%) T (%) +1,(%) (%) +-.+1,06) T (x,)
This equation is satisfied only when 1,(x,) =1and I,(x,) =0,i #0
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At ageneral point x=x , we get,
)= P06 =l () T (%) + L) F () +.+ 1, (x) T ()
Thisequation is satisfied only when |, (x)=1 and I, (x)=0,i # ]

Therefore, 1,(x) , which are polynomials of degree n, satisfy the conditions

I‘(Xi):{]c; I:j

Since, 1(X)=0 a X=Xy, X0 X_1s X 1,00 X, , WE KNOW that

(X=% ) (X=%) e (X=X 1 ), (X= X1 ),.... (X=X, ) @refactorsof I,(x). The product of these factorsisa
polynomial of degree n. Therefore, we can write

() = C(X—=% ) (X=X ).e.(X=%_; ) (X=X, )..(X— X, ), where C is a constant.

Now, sincel, (x) =1, we get

(%) =1=C(% =% ) (% =% )--(X =X 1) (X = X,1)--(X =X,

~ 1
R T e N e W ey
Therefore,
() = (X =% ) (X= %) (X= %1 ) (X= X1 ) e( X=X,
(6= %) (6 = %) (X =X ) (6 = X)X = %)

Now the polynomial

P, () =100 (%) + L) () +...+1,00 F(x,),

with Ii(x)z((x_xo)(x_&)"'(x“1)(X‘>9+1)---(X—Xn) is caled Lagrange interpolating

X =% ) (% = %) (% = %) (X = %,) (% = %)
polynomial and |, (x) are called Lagrange fundamental polynomials.

To fit a polynomial of degree 1, we require at least two points. Let (x,, f(%,)).(x. f (%))
arethe points. Then the Lagrange polynomial of degree one or a straight line for the given dataiis,

(x=x)

. =100 f (%) +1,(x) f (%), where, 1,(x) = o) and I,(x) = (x=%)

(=%)"
Let (%, f(%)).(% f(x))(x.f(x,)) are the given three points. Then the Lagrange

polynomial of degree two for the datais given by
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B, (0 =100 F (%) +L,0) T (%) +1,(0 T (%), where,

(X=X)(X=%) | o (X2 %)(X=%,) o= (X=%)(x=x)
(% =% ) (% = %) ’ll()_(xl—xo)(&—xz) nd 1209 (% =% )(%—%)

For the four points (x,, f (%)).(X. f (%)).(%, f (%,)).(%: f (%)) , the Lagrange polynomial of
degree three is given by,

|0(X)=

(x=%)(x=%)(x=%)
(% =%) (% =% ) (% = %)

P (X) =1o() f (%) + L) F (%) +1L,)f(%)+1,(x)f (%), where, (X =

o (X=%)(X=%)(X=%) = (X% (X=%)(X=%)
= ) (%) P T ) %) (%) T
x)(

(X=%)(x=%)(x=%) and so on.

0 ) (= %) (= %)

Problem : Given f(2) = 9, and f(6) = 17. Find an approximate value for f(5) by the method of
Lagrange’s interpolation.

Solution:
For the given two points (2,9) and (6,17), the Lagrangian polynomia of degree 1 is

B9 =10 (%) f (%) + L) F (%), where, |0(x)=((;0__’2)) and Il(x)=(()z__);';)). That is,

(X_Xi) f
(%-%)

(x-6)
(2-6)

2-6

p(X) =

= px)=

Hence,

Problem: Use Lagrange’s formula, to find the quadratic polynomial that takes the values

X 0 1 3
fx): 0 1 O
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For the given three points (0,0) , (1,1) and (3,0), the quadratic polynomial by Lagrange’s
D)%) ¢y, (2%)(x2%) (X=%)(x=x)
(% =% ) (% = %) (% =%)(%=%) % =%)(% =X

interpolation is p,(x) = (X1)+( )f(Xz)

We are considering the given x values 0,1, and 3 as x,,x andx, . Given, f(x,)and f(x,)
are zeroes. Hence the polynomidl is,

o= (X2%)(x=%)
Q(LY&—&X&—&)NM)

Then,

(x=0)(x-3) 1
(1-0)(1-3)

= p,(X)= x(>i53) xl:%(?,x— x°).

pz(x) =

Example Find Lagrange’s interpolation polynomial fitting the points f(1) = -3, f(3) =0,
f(4) = 30, f(6) =132. Hence find f£(5).

Here 4 tabulated points are given. Hence we need Lagrange’s polynomial for (n + =3
+1 =4 points) and is given by

s |
fI~L0=)" k((;()) f

k=0 "k \"k

Now substituting the values, we obtain

J(x)= (Xx=3)(x—4)(x-6) -3+ (X=D(x-4)(x-6) )
1-3(1-4@a-9) (B3-D(B-4(3-6)

N (X=D(x—3)(x—16) (30) + (X=D(x-3)(x—4)

(132)
(4-1)(4-3)(4-6) (6-1)(6-4)(6-4)

= %(—x3 427X —92x+ 60), on simplification.

Now f(5)~L (5)= %(—(5)3 +27(5)2 - 92(5) + 60) —75.

Example Find In9.2 with n=3, using Lagrange’s interpolation formula with the given
table:
X 9.0 9.5 10.0 11.0

Inx 2197 2251 2302 2397
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22 29 59 90
S (9 2)

O

_ (9.2-95)(9.2-10.0)(9.2—-11.0)
= (9.0-9.5)(9.0-10.0)(9.0-11.0)

(2.19722)

(9.2-9.0)(9.2-10.0)(9.2—11.0)

(95-9.0)(9.5-100)(9.5-11.0) > 2129

(9.2—9.0)(9.2—9.5)(9.2-11.0)

+{10.0-9.0)(10.0-95)100-11.0) > 30%9

(9.2—9.0)(9.2-9.5)(9.2—10.0)
" 11.0-9.0)(1L.0-9.5)1L.0-10.0)

(2.39790)

= 2.219 20, which is exact to 5D.

Example Certain corresponding values of X and log,q X are
(300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find log,, 301.

(=3) (-4) (=6) () (-4) (-6)
1060 301 = 5 (7 B4+ oy (1) () (24829

(3 (H @) (-3) (-4)
YO0 CP e @R

=1.2739+4.9658-4.4717 + 0.7106

=2.4786.
Inverse Lagrangian Interpolation Formula

Interchanging x and y in the Lagrangian Interpolation Formula, we obtain the inverse

Lagrangian interpolation formula given by

L= 3

Example If y,=4,y,=12,y,=19 and y, =7, find x. Compare with the actual value.

Using the inverse interpolation formula,

x=L, (7)= Z Ik((;))xk

L

where x, =1 y,=k, x,=3,¥,=12 x=4,y,=19 and y=7
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=W 0= o (T2 Y0) (72 Ys)
(yO_yl) (yo_yz) (yl_yo) (yl_yz)

(7_ yo) (7_ y1)
(Y2 = Yo) (Y= W)

ie., X

X+ %

9D, @12, (B
e YT oo Pt n®
1,27 4
=2"177
=1.86

The actual value is 2.0 since the above values were obtained from the polynomial

y(x) = x* +3.

Example Find the Lagrange interpolating polynomial of degree 2 approximating the
function y=Inx defined by the following table of values. Hence determine the value of In

2.7.

X y=Inx

2 069315
25  0.91629
3.0 1.09861

Similarly,
l,(X) = —(4x* —20x+24) and 1,(x) = 2x* —9x +10.

Hence

00 . L0 . L)
L2091 ) i) B Ty ()

_(x=25) (x-3.0) ot (x=2) (x-3) f +(x—2) (x—2.5)f
(-05(-1.0)0 ° (25-2)(80-25 ' (3-2)(3-25) *

= (2x% —11x +15) (0.69315) — (4x* — 20x + 24) (0.91629)
+(2x? —9x +10) (1.09861)

=-0.08164x> + 0.81366x — 0.60761.

which is the required quadratic polynomial.
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Putting x = 2.7, in the above polynomial, we obtain

In2.7~ L,(2.7) = —0.08164(2.7)? + 0.81366(2.7) — 0.60761= 0.9941164. Actual value of
In2.7=0.9932518, so that

| Error |= 0.0008646.

ExampleThe function y=sinx is tabulated below

X y=sinx
0 0

p/4 0.70711
p/2 10

Using Lagrange’s interpolation formula, find the value of sin(p /6).

Solution We have

.p  (P/6-0)(p/6-p/2) (p/6-0) (p/6-p/4) 8 1
SN 6~ 74-0) (0 /4-p/2) (0'70711)+(p/2—0)(p/2—p/4) (1) =g 070713

- 25558 _ 051743

Example Using Lagranges’ interpolation formula, find the form of the function y(x) from

the following table.
X oy
0o -12
1 0
3 12
4 24

Since y=0 when x=1, it follows that x-1 is a factor. Let y(x)=(x-1)R(x). Then

R(X) = y/(x—1). We now tabulate the values of x and R(X): For x=0, R(0) =6—121 =12, and
SO on.

X R(x)

0 12

3 6

4 8

Applying Lagrange’s formula to the above table, we find

X-3)(x—4)
(=3) (-4

(x=0)(x—4)
(3-0) (3-4)

(x=0)(x-3)
@@y

R(x) = ¢ 12)+ 6)+ ®
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=(X—=3)(X—4) —2x(x—4) + 2x(x—3)
= x* -5x+12.
Hence the required polynomial approximation to y(x) is given by
y(X) = (x—1) (x* —5x +12).

Example With the use of Newton’s divided difference formula, find log10*. Given the
following divided difference table

X f(x) =log,, X %10 %] F[X2, X Xial

300 247714
0.00145

304 2.4829 0.00001
0.00140

305 2.4843 0
0.00140

307 2.4871

log,, 301 = 2.4771+ 0.00145+ (~3) (—0.00001) = 2.4786, as before.

It is clear that the arithmetic in this method is much simpler when compare to that in
Lagrange’s method.

Exercises

9. Using the difference table in exercise 1, compute cos0.75 by Newton’s forward
difference interpolating formula with n=1, 2, 3,4 and compare with the 5D-value 0.731
69.

10. Using the difference table in exercise 1, compute co0s0.28 by Newton’s forward
difference interpolating formula with n=1, 2, 3, 4 and compare with the 5D-value

11. Using the values given in the table, find cos0.28 (in radian measure) by linear

interpolation and by quadratic interpolation and compare the results with the value
0.961 06 (exact to 5D).

. fx)=cosx Fi'rst S§Cond
difference difference
0.0 1.000 00 -0.019 93 -0.03908
0.2 0.980 07 -0.059 01 -0.03671
0.4 0.921 06 -0.095 72 -0.03291
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0.6 0.825 34 -0.128 63 -0.02778
0.8 0.696 71 -0.156 41
1.0 0.540 30

12. Find Lagrangian interpolation polynomial for the function f having
f(4)=1 f(6)=3 f(8) =8, f(10)=16. Also calculate f (7).

13. The sales in a particular shop for the last ten years is given in the table:

Year 1996 1998 2000 2002 2004
Sales (in 40 43 48 52 57
lakhs)

Estimate the sales for the year 2001 using Newton’s backward difference interpolating
formula.

14. Find f(3), using Lagrangian interpolation formula for the function f having
f()=2 f(2) =11, f(4)=77.

15. Find the cubic polynomial which takes the following values:
x 0 1 2 3
f(x) 1 2 1 10

16. Compute sin0.3 and sin0.5 by Everett formula and the following table.

sinx 02

0.2 | 0.198 67 | -0.007 92

0.4 | 038942 | -0.01553

.6 | 0.56464 |-0.02250

9. The following table gives the distances in nautical miles of the visible horizon for the
given heights in feet above the earth’s surface:

x =height : 100 |150 |200 |250 |300 |350 |400

y = distance : | 10.63 | 13.03 | 15.04 | 16.81 | 18.42 | 19.90 | 21.27

Find the value of y when x = 218 ft (Ans: 15.699)

10. Using the same data as in exercise 9, find the value of y when x = 410ft.
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8
INTERPOLATION BY ITERATION

Interpolation by Iteration

Given the (n+1) points (X, fo), (X, f;), -, (X,, f,), where the values of x need not

necessarily be equally spaced, then to find the value of f corresponding to any given value
of x we proceed iteratively as follows: obtain a first approximation to f by considering the
tirst-two points only; then obtain its second approximation by considering the first-three
points, and so on. We denote the different interpolation polynomials by A(x), with

suitable subscripts, so that at the first stage of approximation, we have

fo X —X

f, x —-X

1
X — %o

Ao (X) = o +(X=Xg) F[ %9, %] =

Similarly, we can form A, (X), Ag(X),--
Next we form Ay, by considering the first-three points:

Ap(X) X =X
Ap(X) X, —X

1
Xy = X

Agp(X) =

Similarly we obtain Ag;5(X), Ag.(X), etc. At the nth stage of approximation, we obtain

1 | Bp.ra® X _:j

X=X

Agrz (¥ = Ay () % A

The computations is arranged as in the following Table

Table 1 Aitken’s Scheme
X f
f

o ’ Api(X)
X, f, Apip(X)

Agp(X) Agia(X)
X5 f, Apiz(X) Ag1234(X)

Agz(X) Ag124(X)
X3 fa Ag14(X)

Aps(X)
X4 f,
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A modification of this scheme, due to Neville, is given in the following Table. Neville’s

scheme is particularly suited for iterated inverse interpolation.

Table 2 Neville’s Scheme

K fo Ay (X)
% f Aop(¥)
! Ap(¥) Agiz(¥)
% f, Aps(X) Aoizsn(X)
Az(X) Appy(%)
X3 fs Ay(X)
IR

Example 26 Using Aitken’s scheme and the following values evaluate log,,301.

X
300
304
305
307

Solution

log,, 301 = 2.4786.

log,, X
24771

2.47855
2.4829

2.47854
2.4843

2.47853
24871

Inverse Interpolation

2.47858
2.47860
2.47857

Given a set of values of x and y, the process of finding the value of x for a certain value of y

is called inverse interpolation. When the values of x are at unequal intervals, the most

obvious way of performing this process is by interchanging x and y in Lagrange’s or
Aitken’s methods.

Example If y,=4,y,=12,y,=19 and y, =7, find x. Compare with the actual value.

Solution

Aitken’s scheme (see Table 1) is

Numerical Methods
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y X
4 1
1.750
12 3 1.857
1.600
19 4
whereas Neville’s scheme (see Table 2) gives
y X
4 1
1.750
12 3 1.857
2.286
19 4

In this examples both the schemes give the same result.
Method of Successive Approximations
We start with Newton’s forward difference formula which is written as

Vi = Yo + UAY, + u(u2— 1 A2 uu-(u-2)

Yo +TA3yO +

From this we obtain

uu-1) .o uu-Hu-2) 3 o
Ay ‘:yu yO 2 A yO 6 A yO :
Neglecting the second and higher differences, we obtain the first approximation to u as
follows
=50~ Yo)

Next, we obtain the second approximation to u by including the term containing the
second differences. Thus,

_uWw-D .
u, = AY, |:yu Yo > A YO}

where we have used the value of u, for u in the coefficient of Ay, . Similarly, we obtain

u,(u, -1 u,(u, - (u, —2)
U = y{yu Yo =L gAYy~ 2N
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and so on. This process should be continued till two successive approximations to u agree
with each other to the required accuracy. The method is illustrated in the following
example.

ExampleTabulate y= x® for x=2,3, 4 and 5, and calculate the cube root of 10 correct to

three decimal places.

Solution
X y=x’ A A2 A3
2 8
19
3 27 18
37 6
4 64 24
61
5 125

Here y, =10, y, =8, Ay, =19, A’y, =18 and A%y, =6. The successive approximations to u are

therefore

_ Lo
b =55(2-01

wn=-% 2—%(18)}:0.15

b= 1_19 5 0.15(oé15—1) (18 215015 é) (0.15-2) (6)} 01532

o, = L[, 015410.1541-1) ) 01541(01541-1) (0.1541-2) o
19 2 6
=0.1542.

We take u=0.154 correct to three decimal places. Hence the value of x (which corresponds
to y=10), i.e., the cube root of 10 is given by x; +uh=2+(0.154)1=2.154.

Exercises

1. The values of x and u, are given in the following Table.

X 2 3 5

u | 113 | 286 |613

Find the value of x for which u, =1001.
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2. Using Lagrange inverse formula, find the value of x corresponding to y=100 from the

following Table.

X 3 5 709 11

y 6 24 | 58 | 108|174

3. The values of x and f(x) are given in the following Table.

X 5 6 9 | 11

f(x) | 12 13 | 14 | 16

Find the value of x for which f(x)=15.

4. The values of x and u, are given in the following Table.

X 0 5 10 15

u, | 16.35 | 14.88 | 13.59| 12.46

Find correct to one decimal place the value of x for which u, =14.
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9
NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation

The problem of numerical differentiation is the determination of approximate value
of the derivative of a function f at a given point.
Differentiation using Difference Operators

We assume that the function y = f(x) is given for the equally spaced x values x, =
xo + nh, forn=0,1, 2, ... To find the derivatives of such a tabular function, we proceed as
follows:

e Using Forward Difference Operator

Since A=E-1and hD =logE, where D is a differential operator, E a shift operator, we
have seen earlier that

hD =logE = log(1+A)

Hence
2 A3 A4 45
Dzilog(1+A):1 A A A
h h 2 3 4 5
Also,
D2 L[, A0, A0 AT A i
h? 2 3 4 5
:%(AZ—A3+EA4 §A5 j
h 12
Therefore,
10 =9 (5 = _1 CAPE() ATE() ATE(O) | ACE(N)
f(x)_dxf(x)_Df(x)_h(Af(x) S e

f”(x):sz(x):h—lz(Azf(x)—ASf(x)+%A4f(x)—gA5f(x)+ . j

e Using Backward Difference Operator N.
Recall that
hD =—log(1-V).
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On expansion, we have

2 3 4
D=1LV+V_+V_+V_+._. J

h 2 3 4
Also,
1(_ vz v v ’
D= | V4—+—+—+
h 2 3 4
:i2 v24vetlye, Dys, j
h 12
Hence,

f’(x):%f(x): Df (X)

:1[Vf(x)+vzf(x)+V3f(x)+v4f(x)+... J
h 2 3 4

f"(x):sz(x):h—lz[vzf(x)+V3f(x)+%v4f(x)+gv5f(x)+... j

Example Compute f'(0.2) and f&(0) from the following tabular data.
x | 00]02)|04]| 06 | 08 1.0
f(x)|1.00 | 1.16 | 3.56 | 13.96 | 41.96 | 101.00

Since x = 0 and 0.2 appear at and near beginning of the table, it is appropriate to use
formulae based on forward differences to find the derivatives. The forward difference
table for the given data is:

x )| Afx) | O ) | A f) | M) | A5 )
00| 1.00
0.16
02| 1.16 2.24
2.40 5.76
04| 3.56 8.00 3.84
10.40 9.60 0.00
0.6 | 13.96 17.60 3.84
28.00 13.44
0.8 ] 41.96 31.04
59.04
1.0 | 101.00
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Using f’(x):Df(X):1{Af(x)_A2f(X)+A3f(X)_A4f(X)+ . J

h 2 3 4
we obtain
£(02)= 1 |240-290, 200 _3841_5,
0.2 2 3 4
Using
7 1 11
f (x):sz(x)th(Azf(x)—A3f(x)+12A4f(x)— L j
we obtain
1 11 5
f"(0)=—|2.24-5.76 + —=(3.84)-=(0) | = 0.0
© (0.2)2{ 12( ) 6( )}

Example Compute f'(2.2) and f&(2.2) from the following tabular data.

X 1.4 1.6 1.8 2.0 2.2
f(x) | 4.0552 | 4.9530 | 6.0496 | 7.3981 | 9.0250

Since x = 2.2 appears at the end of the table, it is appropriate to use formulae based on
backward differences to find the derivatives. The backward difference table for the given
data is:

x |f) VAW | VAfx) | VEAX) | V)
1.4 | 4.0552
0.8978

1.6 | 4.9530 0.1988
1.0966 0.0441
1.8 | 6.0496 0.2429 0.0094
1.3395 0.0535
2.0]7.3891 0.2964

1.6359
2.219.0250

Using the backward difference formula

f'(x)= Df(x):i[vf(x)+ sz(x)+ V3f(X)+ V4f(x)+ . J

2 3 4

we obtain

1

£/(2.2)= 5[1'6359 02964 00535 0.0094

+
3 4

} =9.0215
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Also, using backward difference formula for D? f(x), i.e.

£7(x) = D2f (x)= L (vzf(x)+v3f(x)+i;v4f<x)+ » J

h?
we obtain
" 1 11
f"(2.2) = —| 0.2964 + 0.0535+ -—(0.0094) | = 8.9629
(0.2) 12
2
Example From the following table of values of x and y, obtain % and 2)(2/ for x=1.2:

x | 1.0 1.2 1.4 1.6 1.8 2.0 2.2
y | 2.7183 | 3.3201 | 4.0552 | 4.9530 | 6.0496 | 7.3891 | 9.0250

The difference table is

X y A A? A® A* A® A®
1.0 27183
0.6018
1.2 3.3201 0.133
0.7351 0.0294
1.4  4.0552 0.1627 0.0067
0.8978 0.0361 0.0013 0.001
1.6 4.9530 0.1988 0.0080
1.0966 0.0441 0.0014
1.8 6.0496 0.2429 0.0094
1.3395 0.0535
20 7.3891 0.2964
1.6359
2.2 9.0250

Here x=1.2, f(x)=3.3201 and h=0.2. Hence

dy e
|:&:|X—l.2 - f (11 2)

_1 1 1 _1 1
- {0.7351 2(0.1627)+ £(0.0361) - (0.0080) + £ (0.0014)}
—3.3205.
2
Similarly, {%} _ ﬁ[oaez? —0.0361+ % (0.0080) - % (0.0014)} ~3318
x=1.2 '

ExampleCalculate the first and second derivatives of the function tabulated in the

preceding example at the point x=2.2 and also % at x=2.0.
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We use the table of differences of Example 1. Here x,=2.2, y,=9.0250 and h=0.2.
Hence backward difference for derivative gives

dy Y _ 1
|:&:|x—2.2 - f (22) - 02

[1.6359 ; % (0.2964) + % (0.0535) + % (0.0094) + % (0.0014)}
=0,0228.

_dzy e 1
?Lﬁ 2=00

0.2964+ 0.0535+ % (0.0094) + % (0.0014)} ~8.992.

Also,
“dy » 1
_&:|x—2.0 - f (22) - 02

:1.33%%(0.2429)%(0.0441) +L11(o.ooso)+é(o.0013)(15(o.ooon}

= 7.3896.
e Derivative using Newton’s Forward difference Formula

For finding the derivative at a point near to the beginning of the tabular values,
Newton’s Forward difference Formula is used. For the values vy,,y,,..,y, of a function
y=£(x), corresponding to the equidistant values x;, X, %,,., X, , where
X =X, +h,%, =X, +2h, %, =X, +3h,...,%, =% +nh, Newton’s Forward difference Formula is,

u(u-1
f(x)= f(x+uh)=y,+ u[Ayo]+%[A2yoJ

. u(u —132!(u -2) [A3y0]+ . u(u—l)(u—rz]!)....(u— n+1) [A"yo]

where, u= %

The derivative of f(x) with respect to x, where x is any point in the interval [Xx,, X ]

is obtained as follows:

d _d du .
&f(x)_du f(x)xdx, by chain rule

. d d ((x=%)) d 1
= 100X £—h }_af(x)xﬁ

Numerical Methods Page 123



School of Distance Education

N f(x) [Ayo 2u2I 1[A2y0] 3u2—36!u+2[A3yo]+4u3—18u2+22u—6[A4y0]Jr _____ }

When x = x,, we get u=0. Thus,

2

—f(x) [Ayo SNy, += A3y0 A Yo + e }

The second derivative of f(x) is
%f(x):%(%f(x)}%
ddu G[Ayo 2u— 1[A2y0] %[Asyo}r4U3—18u224+22u—6[A4y0]+ ..... Dx%
hl{;[Azyo] ou— 6[ A%y, |+ W[A%} ..... }

hlz{Azy0 (u—l)[A3y0]+&jz+§u+ll[A4yoJ+ ..... }

In similar way,

d d[ d? 12u—18F , 4
yf(x):m[yf(x)}x h{ R (A", [+ }

When x=x,, and u=0, we have

e Derivative using Newton’s Backward difference Formula

To find the derivative at a point near to the end of the tabular values, Newton’s
backward difference Formula is used. For the equidistant arguments, Newton’s backward
difference Formula is,

f(X) = f(x,+uh) =y, +u[Vy,]+ (u+l)[V2ynJ
u+)(u+2)r_, u(u+1)(u+2)...u+n-2__
+—( :;( )[V yn]+....+ ( )( n!) [V yn]
where u=%
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d 29 g du
&f(x)_duf(x)xdx

. d d ((x=x%))_ d
_mf(x)x&( H ]_m

f(x)x%

d 1 2u+1ro2 3U% +6U+ 21 o3 4U° +18u° + 22U+ 64
=g [0 =R Vet T [V [+ 3 [ V% 5 [viy, ]+
d? _d[d 1 s 7 BUZ+18u+11r .
v ( )—m_&f(x)}x X T [V y. + (u+1)[V yn]+T[V yn]+..},and
d° df 1[ys, , 120+18
ﬁf(x)_ du ( ):| dX h3 l:v yn+ 12 yn+"':|

At x=Xx,, u=0. The above gives,

d o= py s Lyzy o Lysy 4 Ly
dXf(x)_h_Vyn+2V yn+3V yn+4V yn+..}
d’ i

—f(x)= Vy+V y, + Vyn }and

dx’ L

d? _1fos 3y

Ff(x)_ﬁ \% yn+§V yn+..}.

Problem: Compute f@(0) and f'(0.2) from the following tabular data.

X

0.0

0.2

0.4

0.6

0.8

1.0

1.00

1.16

3.56

13.96

41.96

101.00

f )

Solution:

Since x = 0.0 and 0.2 appear at and near beginning of the table, it is appropriate to
use formulae based on forward differences to find the derivatives. The forward difference

table for the given data is:

x| y=fx) Ay [Ny [Ny Ay ANy
0.0| 1.00
0.16
02| 1.16 2.24
2.40 5.76
04| 3.56 8.00 3.84
10.40 9.60 0.00
0.6 | 13.96 17.60 3.84
28.00 13.44
0.8 | 41.96 31.04
59.04
1.0 | 101.00
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Herex,=0,and h=0.2. At x=0, u:(x_hxo)zo,

The second derivative at x=0 is given by Newton’s forward formula:

d2
e

1

FO)=-3

[Azyo A%y, + A“y0 ..... }
(0)—( 027 [224 5.76+ (3.84)—%(0)}:

0.2-0.0)

_ _( _
For x=0.2, u= 07 =1.

By Newton’s forward formula, we have the derivative of f(x) at a point x is,

_f(x)_ [Ayo 2u— 1[A2y0] 3u2—6u+2[A3y0]+4u3—18u2+22u—6[A4y0]+ }

3l on LA Yo ]t

Hence,

1
" 02

2><1 1 3x1?—6x1+2

3

d
X

212105 o)+ [5.76] +

4x1%-18x1% +22x1-6
[o 16+ L [3.84]}

x=0.2
= 3.2, on simplification.
If the arguments are not equidistant, the approximating polynomial for the given

tabular points is found by Newton's divided difference formula or Lagrange’s
interpolation formula. Then the derivative of the function can get at any x in the range.

For example: We find the first derivative of a function at 0, using the points
(-4,1245), (-1,33),(0,5),(2,9) and (5,1335) where x values are not equidistant. We can get the

approximating polynomial by Newton’s divided difference formula.

The table of divided differences is,

X y First divided | Second divided | Third divided | Fourth divided
differences differences differences differences
-4 | 1245
-404
-1 33
-28 94
0 5
) -14
2 9 10 3
442
5 1335 13
88
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Given f(x,)=1245. From the table, we can observe that

F3%)=—404 f%,%%)=%
F(3%:%,%) =14 and f(%,%,%,%,%) =3
Hence the interpolating polynomial is
f (X) =1245+ (X — (—4) ) x (—404) + (x— (-4) ) (x— (-1)) x 94
+(x=(-4))(x=(-1))(x=0)x (-14) + (x— (-4) ) (x— (=D ) (x—0)(x—2)x 3
On simplification, we get

f(X) =3x* —5x° + 6x* —14x+5.

Then,

f'(x) =12x* —15x* +12x—14
Hence, f'(0)=-14.
Exercises

1. From the following table of values, estimate f ¢(1.10) and f"(1.10):

x  1.00 1.05 1.10 1.15 1.20 1.25 1.30
f(x) 1.0000 1.0247 1.0488 1.0724 1.0954 1.1180 1.1402

2. Find the first derivative of f(x) at x = 0.4 from the following table:
x 0.1 0.2 0.3 0.4
f(x) 1.10517 1.22140 1.34986 1.49182

3. A slider in a machine moves along a fixed straight rod. Its distance x cm along the

rod is given below for various values of time t (seconds). Find the velocity of the

slider and its acceleration at time f = 0.3 sec.
t 0.0 0.1 0.2 0.3 0.4 05 0.6
x 3.013 3.162 3.287 3.364 3.395 3.381 3.324

Use both the forward difference formula and the central difference formula to find

the velocity and compare the results.
4. Using the values in the table, estimate y "(1.3):
x 13 1.5 1.7 1.9 21 2.3
y 29648 2.6599 23333 1.9922 1.6442 1.2969
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10
NUMERICAL INTEGRATION

THE TRAPEZOIDAL RULE

b
In this method to evaluate Ja f(X)dX, we partition the interval of integration [a, b]

and replace f by a straight line segment on each subinterval. The vertical lines from the

ends of the segments to the partition points create a collection of trapezoids that
approximate the region between the curve and the x-axis. We add the areas of the
trapezoids counting area above the x-axis as positive and area below the axis as negative
and denote the sum by T. Then

11

—E(yo +y1)h+%(y1+yz)h+ +%(sz +ym1)h+é(ym1+yn)h

=h(%y0 +Vi+Yo+...+Ym +%ynj

:g(yo +2y1+2y2 +...+2yn—1+yn)

where

yo=f(a), yi=f(x), . , Yo1=T(Xn1), Yn=f(b).

The Trapezoidal Rule
To approximate j: f (x)dx,
(for n subintervals of lengthh :b;na and yj = f(x))).
use
T :g(yo +2y14+2Y2 4.+ 2Yn-1+ Yn)
or T:%[yo+yn+2(y1+yz+...+ Yn-1)]

Example Use the trapezoidal rule with n=4 to estimate
.[zxzdx.
1

Compare the estimate with the exact value of the integral.
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To find the trapezoidal approximation, we divide the interval of integration into four
subintervals of equal length and list the values of y=x* at the endpoints and partition
points.

J | X y; =%’
0| 1.0 1.0000
1| 125 1.5625
2 | 1.50 2.2500
3| 175 3.0625
4 | 200 | 4.0000

Sum | 5.0000 6.8750

With n=4 and h=P=2a_2-1_
n 4

NI

T :g[yo +Ya+2(y1+ Y2+ Ys)]
1
==|1.4+2(6.875

= 2.34375

The exact value of the integral is

2

3
J.ZXZdXIX—j| zg_lz
1 3 3 3

1

=2.33334

W~

The approximation is a slight overestimate. Each trapezoid contains slightly more than the
corresponding strip under the curve.

1
Problem: Using Trapezoidal rule solve the integral, J%dx with four
o X +6x+10
subintervals.
Solution:

For n subintervals, the trapezoidal rule for the integral of a function in the range [a,b]
is,
b

h
I f(x)dx:E[y0 +2Y,+2Y, + .+ 2y, + Y, ]

a

Here to consider n=4.
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b
h
Now, [ F9ex="1yo+2y,+2y, + 2y, +¥,]

a

1

In our integral, | 5————
J(; X* +6x+10

subinterval of width h=0.25, by the points, 0.0,0.25,0.50,0.75and 1.

dx, the range of integral [0,1] is divided into four equal

Considering them as the x values, corresponding values of the integrand ————
X“+6x+10

denoted by Y, y,, Y., Y5, Y, are 0.10, 0.08649, 0.07547, 0.06639 and 0.05882 respectively.

Hence,

dx

i 1 _025
X2 +6x+10 2

[0.10+ 2x0.08649 + 2% 0.07547 + 2x 0.06639 + 0.05882]

0

= 0.07694.

Example Use the trapezoidal rule with n=4 to estimate
2
J'ldx.
1 X
Compare the estimate with the exact value of the integral.
To find the trapezoidal approximation, we divide the interval of integration into four

subintervals of equal length and list the values (correct to five decimal places) of y:% at

the endpoints and partition points.

1

ilox Yi = X

0| 1.0 | 1.00000

1| 1.25 0.80000
2 | 1.50 0.66667
3175 0.57143
4 | 2.00 | 0.50000

Sum | 1.50000 2.0381

With n=4 andh=2=2_2-1_1_4s.
n 4 4

Numerical Methods Page 130



School of Distance Education

T :g[yo + Ya+2(Y1+ Y2+ VY3)]

1 -
= g[1.5+ 2(2.0381) | = 0.69702.

The exact value of the integral is

2
[Ldx=Inx] =In2-In1=069315
1 X 1

The approximation is a slight overestimate.

1_,2
Example Evaluate [e”* dx by means of Trapezoidal rule with n=10.
0

Here h:b;a -0

o—r

1.2
Hence e X dx~T= 0—é1[1.367879 +2(6.778167)] = 0.746211
0

Numerical Methods

=——=01and
1

2
A
e X dXzT:%[yo + Yo +2(y1+y2 +ort+ Yy )]

~x2

joy %] P f(x;)=e J
0 0.0 | 0.00 | 1.000000 | 0.990 050
101|001 0.960 789
2 02004 0.913 931
303|009 0.852 144
4 04 |016 0.778 801
5 05025 0697 676
6 06 | 036 0.612 626
7 0.7 | 049 0.612 626
8 08 | 0.64 0.527 292
9 09 | 081 0.444 858
1 10 | 1.00 | 0.367 879
0

Sums 1367879 | 6.778167
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SIMPSON'’S 1/3 RULE

Simpson’s rule for approximating J.:f(x)dx is based on approximating f with

quadratic polynomials instead of linear polynomials. We approximate the graph with
parabolic arcs instead of line segments .

The integral of the quadratic polynomial y=Ax*+Bx+C in Fig.3 from x=-h to x=h is
fh(sz +Bx+C)dx= %(yo +4y1 +Y?)

Simpson’s rule follows from partitioning [a, b] into an even number of subintervals of
equal length h, applying Eq. to successive interval pairs, and adding the results.

Algorithm: Simpson’s 1/3 Rule

. b
To approximate L f(x)dx, use

Szg(yo +4y1+2Y2 + 4y3 + ...+ 2Yn-2 + 4Yn-1+ Yn).

The y’s are the values of f at this partition points
Xo=axi=a+hx.=a+2h..,. X1 =a+({n-Dhx,=b

The number n is even, h=P=2 aq yi = f(xj)).
n

Simpson’s 1/3 Rule given by (5) can be simplified as below:

S:g(so+451+232), ...(A)

where S=Yo+Y¥, S=V1+¥s+...+ Y1, S=Vo+VYs+..4+Vho.

5
Example Find an approximate value of log.5 by calculating j%, by Simpson’s 1/3
0

rule of integration.
We note that

5
_[4Iog(4x+5)} 4[IogZS logs] 4Iog5 4IogS.

5
dx

[
0

04X+5

5
Now to calculate the value of | 4d_x5, by Simpson’s rule of integration, divide the interval
04X +

[0, 5] into nn = 10 equal subintervals, each of length hzﬁz%o:%
n
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j 9] s fjzf()(j)=4le+5
0 0.0 5 0.20
1 0.5 7 0.1429
2 1.0 9 0.1111
3 1.5 11 0.0909
4 2.0 13 0.0769
5 2.5 15 0.6666
6 3.0 17 0.0588
7 3.5 19 0.0526
8 4.0 21 0.0476
9 4.5 23 0.0434
10 5.0 25 0.04
Sums s0=0.24 | 51=0.3963 | 52=0.2944
Hence,
24:i 5~ S= 0;35 [0.24 + 4(0.3963) + 2(0.2944) | = 0.4023.
and log. 5 = 4(0.4023) = 1.6092.
Problem: Find 1-f1+ v dx using Simpson’s one third rule.

Solution:

b
By Simpson’s one third rule, _[ f (x)dx = g[yo HA(Yy+ Yo+ +2( Yo+ Yt o)+ Y, |

a

> dx, let the range [0,10] is subdivided into 10 equal interval of

10
In our integral,
8 £1+x

width h=1, by the x values 0,1,2,3,4,5,6,7,8,9 and 10. Corresponding y values of the

function are listed below:

1+ x°

X 0| 11|23 4 5 6 7 8 9 10
y 1]105(02]0.1]0.0588 | 0.0385 | 0.0270 | 0.02 | 0.0154 | 0.0122 | 0.0099

Thus,
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10
| : L = %[u 4(0.5+0.1+0.0385+ 0.02+0.0122) + 2(0.2+0.0588 + 0.027 + 0.0154) + 0.0099 |
oLt X

= %[1.0099+ 4(0.6707)+2(0.3012) |

_ %[4.2951] ~1.4317.

6

Problem: Evaluate I
53+ X

> dx using Simpson’s three eight rule.

Solution:

By Simpson’s three eight rule,
3h
j f (x)dx:g[y0 +3(Yi+ Yo+ Yt oot Vo )+ 2(Va+ Yo+ Yo+ o)+ Vs |
a

Let the limit of integral [0,6] be divided into six equal parts with interval h=1, using the

x values 0,1,2,3,4,5 and 6. Corresponding y values of the given integrand function

2

3+X
are,
X 0 1 2 3 4 5 6
y 0.333 1 0.25| 0.1429 | 0.1 | 0.0526 | 0.0357 | 0.0256
Thus,
6
1 3x1
I dx = [%+3m+n+n+ A Y1) 2(Vat Vot Yot )+%}
5 3+ X
For n=6,

to1 3x1
-([3+x2dX: ; [Yo+3(Yi+ Yot Yot ¥o)+2Y3+ Y |

6

j3 1X2 dx = 3"1[0 333+3(0.25+0.1429+0.0526+0.0357) + 2(0.1) +0.0256 |
+

0

_3 0.333+1.4436+ 0.2+ 0.0256 | = 3 2.0022
8 8

6
= | 1 dx=0.7508.
5 3+ X

1
Example Find an approximation value of | x?dx by Simpson’s 1/3 rule with n = 10.
0
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Here h = @J;o:o.l
n 10
j X Yj=10x)=x]
0 | 00 | 0.0
1 | 01 0.01
2 | 02 0.04
3 | 03 0.09
4 | 04 0.16
5 | 05 0.25
6 | 06 0.36
7 | 07 0.49
8 | 08 0.64
9 | 09 0.81
10 | 1.0 | 1.00
Sums 50=1.00 | s=1.65 | $=1.20
Hence,
ixz dx~ S=%1[1.00+ 4(1.65)+ 2(1.20)] = 0.3333.

Also, the exact value is given by

1 3Tt
szdx=lx—} :1;30=0.3333.

Example 11 A town wants to drain and fill a small-polluted swamp (See the adjacent
figure). The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to
fill the area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multiply
by 5. To estimate the area, we use Simpson’s rule with h=20 ft and the y’s equal to the
distances measured across the swamp, as shown in the adjacent figure.
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S= g(yo + 4y1 + 2Y2 + 4yz + 2ya + 4ys + Ye)

=2—3?(146+ 488+ 152 + 216+ 80 + 120+ 13) = 8100

The volume is about (8100)(5) = 40,500ft* or 1500yd®.

Ignored

Horizontal spacing = 20 ft

Example Compute the integral | = \/gre_le dx using e
Simpson’s 1/3 rule, taking h = 0.125. O
i xj fi=10) =\/%e‘xiz’2
0 0.000 | 0.7979
1 0.125 0.7917
2 0.250 0.7733
3 0.375 0.7437
4 0.500 0.7041
5 0.625 0.6563
6 0.750 0.6023
7 0.875 0.5441
8 1.000 | 0.4839
Sums s0=1.2818 | 51=2.7358 | s2=2.0797

Hence | = \E j:e—xz’zdx ~S= 0%5[1_281& 4(2.7358) + 2(2.0797)]
p

=0.6827

Derivation of Trapezoidal and Simpson’s 1/3 rules of integration from Lagrangian
Interpolation

Integrating the formula in Lagrangian interpolation, we obtain

Tf(x)dXzI:Ln(x)w<=zn‘4k(f2)j:|k(x)d><
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For n =1, we have only one interval [xo, x1] such thata =xo and b = x1 and then the
above integration formula gives trapezoidal rule.

For n =2, we have two subintervals [xo, x1] and [x1, x2] of equal width / such that a
=x0 and b = x2 and then the above integration formula becomes

b
X h
Jf(x)dx=Lo f(9d=5(f+41,+ 1),

and is the Simpson’s 1/3 rule of integration.

For n = 3 the above integration formula (4) becomes
b
j f(X)dx = j f(x)dx ~ 3h( f,+3f,+3f,+f,),

and is known as Simpson’s 3/8 rule of integration.
Simpson’s three eight (3/8) rule

When n=3, all the differences of order four or higher becomes zero.

Hence,
x3=x0+3h 2
I f(X)dx=h|3xy, + ¥ [Ay0]+— ¥ 3 A yo+l z—33+32 A%, +0
. 3 2 6| 4
9 127 9 181
=h{3yo+§[yl—yo]+§[3—ﬂ[yz—2yl+yo]+gh—27+9}[y3—3y2+3y1—yo]}

h
=27 L72% + 108, = Yo ]+ B4[Y, = 2% + Yo |+ O[ Ya =3, + 3y~ Yo |

h
= Q[Qyo +27y,+ 27y, + 9y3]

x3=x0+3h

3h
S f(ec="2[Yo +3y,+3%, + ]

X5=%g+6h 3h
Similarly, [ f(dx="[ys +3y, +3ys + o]

X3

Finally, under the assumption that # is a multiple of three,
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xn=>b+nh

FOQdk=0

E [ Yost 3yn—2 + 3yn—l +Yh ]

-3

Adding these integrals, we get,

Xn

3h
| FO)ex= [ (Yo + 3% +3%, + ¥a) + (Ya+3Yu +3Ys + Yo )+t (Voo + 3% +3%0a 4 Vi) |
X0

That is,

b

3h
I f(x)dx:_8 [(y0 +3Y, +3Y,+ V3) +(Va +3Y, +3Ys + ¥ )+ (Yoa +3Yon + 3V + yn)]
a

b
3h

_[ f (x)dx:g[yo +3Y, +3Y, + 2y, +3Yy, + 3y + 2Y, + 3y, +...+ 3y, + V]

a

b
3h
= J' f(x)dx:g[yo+3(yl+ Yot Vot oot You )+ 2( Yot Yot Yot o)+ V|
a

Exercises
Estimate the integral using

(a) trapezoidal rule  and (b) Simpson’s 1/3 rule.

21 P 2 3
1. L?ds 2. .[0 sintdt 3. _[O x dx
4, jfxdx 5.[ ¢+ 6. [ (St
1. 1 6
7. ﬂdx 8. idx 9. L dx
o X o 1+x o 1+ x?
td f 1
3
10. In2- [ & 11. j—dx 12. [*@x-Dox
0 X X .
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1
2 14. ﬂl_
13. !x\/l X dx f (2+qu) dq
X xv1—x? q 3cosq
(2+sinqg)?

0 0.0

—-1.57080 0.0
0.125 0.12402

-1.17810 0.99138
0.25 0.24206

—-0.78540 1.26906
0.375 0.34763

-0.39270 1.05961
0.5 0.43301

0 0.75
0.625 0.48789

0.39270 0.48821
0.75 0.49608

0.78540 0.28946
0.875 0.42361

1.17810 0.13429
1.0 0

1.57080 0

15. jf’z(xz—l)dx 16. [+t 17. [’ ds

2(S- 1)
18. j:dnp tat

19. The following table gives values of x and f(x). Find the area bounded by the curve
y= f(x), the x-axis and the ordinates x =7.47 and 7.52.

X 747 |748 |749 750 |751|7.52
F(¥ | 193 {195 [1.98 |2.01 |2.03|2.06

16
20. Find the approximate value of J.e < dx from the following table:
12

X 1.2 1.3 14 1.5 1.6
£(x) -x* 10237 1 0.185 | 0.141 | 0.106 | 0.077

1
21. Estimate the errors in the results obtained by evaluating the integral J.]fi by
+X
0

trapezoidal and Simpson’s rule.
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11
SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Solution of system of linear equations

A system of m linear equations in n unknowns x1, x2, . . . , xx is a set of equations of
the form
m1x1 taiox2 + .. .+t muxn = b1
ap1x1 t amoax2 + . . .+ @muxn = b
Am1x1+ amax2+ . . . * AmnXn = bn

where the coefficients a j ¥ and the b ; are given numbers. The system is said to be
homogeneous if all the b; are zero; otherwise, it is said to be non-homogeneous.

The system of linear equations is equivalent to the matrix equation (or the single vector
equation)

Ax=hb
where the coefficient matrix A=[a;] is the m x n matrix and x and b are the column

matrices (vectors) given by:

X
a, a, . a, 4 2L
A=| 8 8p .. 8y , X = 2 and b= 2
a, @, - an X.n b;n
A solution of the system is a set of numbers x1, x2, . . . , x» which satisfy all the m

equations, and a solution vector of (1) is a column matrix whose components constitute a
solution of system. The method of solving such a system using methods like Cramer’s
rule is impracticable for large systems. Hence, we use other methods like Gauss
elimination.

Gauss Elimination Method

In the Gauss elimination method, the solution to the system of equations is obtained
in two stages. In the first stage, the given system of equations is reduced to an equivalent
upper triangular form using elementary transformations. In the second stage, the upper
triangular system is solved using back substitution procedure by which we obtain the
solution in the order x,, X, ,, X ,, -+, X,, X.
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Example Solve the system

2 +%,+ 2% +X, =6 (1)
6 —0%, +6% +12%, =3 .2)
M +3% +3% ~3%, =-1 SE)
2% + 2%, —%;+X%, =10 ..(4)

To eliminate x1 from equations (2), (3) and (4), we subtract suitable multiples of equation
(1) and we get the following system of equations:

2)-3-(1) > O9x2+0x3+9%xs =18 ...(5)
3-2-1) » X2 — x3 —bxs =-13 ...(6)
4-1-(1) » x2— 3x3 +0xs = 4 ..(7)

To eliminate x> from equations (6) and (7), subtract suitable multiples of equation (5) and
get the following system of equations:

6) — (-1/9)(5) > —x3 —4xs =-11 ...(8)
(7) = (-1/9)(5) &> —3x3 +x4 =6 ...(9)
To eliminate x2 from equation (9), subtract 3x(8) and get the following equation:
13 x4 =39 ...(10)

From equation (10), x4 = 39/13 = 3; using this value of x4, (9) gives x3 = -1; using these
values of x4 and x3, (7) gives x2 = 1; using all these values (1) gives x1 = 2. Hence the
solution to the systemisx1 =2,x2 =1,x3 =-1, x4 =3.

Note: The above method can be simplified using the matrix notation. The given system of
equations can be written as

Ax=b
and the augmented matrix is

2 1 2 1 6

6 6 6 12 36
4 3 3 -3 -1
2 2 -1 110

which on successive row transformations give
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2 1 2 1 6

0 -9 0 9 18

0 0 -1 -4 -11|

0 0 0 13 39

Hence

2 1 2 1][x 6
0 9 0 9||x| | 18
0 0 -1 -4||x| |-11
0 0 0 13||x 39

Back substitution gives
x=2, %=1, x=-1, x,=3

In the example, we had a11 # 0. Otherwise we would not have been able to eliminate x1 by
using the equations in the given order. Hence if 411 # 0 in the system of equations we
have to reorder the equations (and perhaps even the unknowns in each equation) in a
suitable fashion; similarly, in the further steps. Such a situation can be seen in the
following Example.

Example Using Gauss elimination solve:
y + 3z =9
2Xx+2y—- z =8
-X+ 5z =8

Here the leading coefficient (i.e., coefficient of x) is 0. Hence to proceed further we have to
interchange rows 1 and 2, so that

2x +2y - z=38 ..(1)
y +3z =9 ...(2)
-x +5z = 8 ...(3)
Elimination of x from last two equations:
2x +2y - z = 8
y +3z =9
@+i > oy + 2z =12 (@)
2 2
Elimination of y from last equation:
2x +2y - z = 8
y +3z =9

Numerical Methods Page 142



School of Distance Education

@ - @ 2z =3 ©
Hence z=2 y=9-6=3, x=2
Hence
2
y|=|3]
z 2

Partial and Full Pivoting

In each step in the Gauss elimination method, the coefficient of the first unknown
in the first equation is called pivotal coefficient. By the above Example, the Gauss
elimination method fails if any one of the pivotal coefficients becomes zero. In such a
situation, we rewrite the equations in a different order to avoid zero pivotal coefficient.
Changing the order of equations is called pivoting.

In partial pivoting, if the pivotal coefficient g; happens to be zero or near to zero,

the ith column elements are searched for the numerically largest element. Let the jth row
(7>1) contains this element, then we interchange the ith equation with the jth equation and
proceed for elimination. This process is continued whenever pivotal coefficients become
zero during elimination.

In total pivoting, we look for an absolutely largest coefficient in the entire system
and start the elimination with the corresponding variable, using this coefficient as the
pivotal coefficient (for this we have to interchange rows and columns, if necessary);
similarly in the further steps. Total pivoting, in fact, is more complicated than the partial
pivoting. Partial pivoting is preferred for hand calculation.

Example Solve the system
0.0004x, +1.402x, =1.406 ..(1)
0.4003x, —1.502x, = 2.501 ...(2)
by Gauss elimination (a) without pivoting (b) with partial pivoting.

(a) without pivoting (choosing the first equation as the pivotal equation)

0.0004x, +1.402x, =1.406 ..(1a)
0.40031
1404
and so X = 1205 = 0.9993

and hence from (1a),
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1
X =0.0004

0.005
50004 (1406~ 1402 0.9993) =~ =12.5.

(b) (with partial pivoting )
Since |ay,| is small and is nearer to zero as compared with |a,|, we accept a,, as the

pivotal coefficient (i.e. second equation becomes the pivotal equation). To start with we
rearrange the given system as follows:

0.4003x, —1.502x, = 2.501 ...(3)
0.0004x, +1.402x, =1.406 ..(4)

Now by Gauss elimination the system becomes,

0.4003x, —1.502x, = 2.501 ...(3a)
( )—%(3) 1.404x, =1.404 ...(4a)
and so X, = % =1
and from (34) ) 4003 ———(2.501+1.502x 1) =10.

Example Solve the following system (i) without pivoting (ii) with pivoting
0.0002x + 0.3003y = 0.1002 (D
2.0000x + 3.0000y = 2.0000. . (2
(i) without pivoting
0.0002x + 0.3003y = 0.1002

0.3003x 2
0.0002

010022

( )——(1) (3.000— 0.0002

o3 ) y = 2.0000—
ie., 1498.5y = 499.

Now by back substitution, the solution to the system is given by y=0.3330 and x=0.5005;
(if) With pivoting:

Since |ay,| is small and is nearer to zero as compared with |a,|, we accept a, as the

pivotal coefficient (i.e. second equation becomes the pivotal equation). To start with we
rearrange the given system as follows:

2.0000x + 3.0000y = 2.0000 .. (3

0.0002x + 0.3003y = 0.1002 ... (4)
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-0002

@-220@ (0.3003_ 3.0000x 0.0002

2

2x0.0002
2

) y=0.1002—
which simplifies to

0.3000y = 0.1000.
Hence by bank substitution, the solution is

_1 _1
y=3 and x= >

Cholesky Method (Modification of the Gauss method)

Cholesky method, which is a modification of the Gauss method, is based on the result
that any positive definite square matrix A can be represented in the form A = LU, where L
and U are the unique lower and upper triangular matrices. The method is illustrated
through the following examples.

Example Using Cholesky’s method, solve the system:
x1 +2x + 3x3 = 14
2x1 +3x2 +4x3 = 20
3x1 + 4x2 + x3 =14

(LU decomposition of the coefficient matrix A)

123
Aly sy RORTEIR my=-2
- -3 =-3
.1 ROR+IR m,
1 2 3]
~lo0 -1 -2
0 -2 -8
1 2 3]
=0 -1 -2 R->R+(-2R, m,=-3
0 0 —4
1 2 3
Wetake U=|0 -1 -2| asthe upper triangular matrix.
0 0 4
Using the multipliers m,, =-2, m; =-3, m, =-2, we get the lower triangular matrix as
follows:
1 0 0 (100
L={-m, 1 0}=]2 10
e m 1l 1321
31 32

(Solution of the system)
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The given system of equations can be written as

(10 0|1 2 3|[x] [14
2 1 0[|0 -1 -2||x|=|20 (D)
32 1[0 0 -4||x]| |14

The above can be written as

(1.0 0][y,] [14
ofly,|=|20 .. Q)
1|y [24

where

1 2 3][x] %
0 -1 -2{(X%|=|V, ... (3
0 0 4||x A

Solving the system in (2) by forward substitution, we get

A 14
Y, |=| -8
Y3 -12

With these values of vy,, v,, v,;, Eq. (3) can now be solved by back substitution and we

obtain
X, 1
X |=|2
Xy 3
Example Solve the equations
2X+3y+2z=9
X+2y+3z=6
3X+y+2z=8
by LU decomposition.

(LU decomposition of the coefficient matrix A)

Proceeding as in the above example,

2 3 1 1 0 O
g1 5 |1
U—022andL—210

0O O 18 3

2 71
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(Solution of the system)
The given system of equations can be written as

1 0 0][2 3 17x] [9
U2 1 0|0 12 5/2||y|=|6 .. (iv)
32 -7 1]j0 0 18 z| |8

1 0 ofy] [9
or, as 1/2 1 O0}ly,|=|6], o (V)
32 -7 1]y, |8

2 3 1]x]| [wn
where 0 1/2 5/2||y|=|Y,| oo (Vi)
0 0 18] z| |Vs

Solving the system in (v) by forward substitution, we get

3
y1=91 y2:§’ y3=5'

With these values of vy, y,, y;, eq. (vi) can now be solved by the back substitution process
and we obtain

_3» _29 _2
180 Y18 ST
Gauss Jordan Method

The method is based on the idea of reducing the given system of equations Ax = b,
to a diagonal system of equations Ix = d, where I is the identity matrix, using elementary
row operations. We know that the solutions of both the systems are identical. This
reduced system gives the solution vector x. This reduction is equivalent to finding the
solution as x=A"Db.

In this case, a system of 3 equations in 3 unknowns
81 + 8% + A% =h
By + oo, + 85X =D
8o + BepXp + ¥ =
is written as

Q; dp 3| X by
Ay Ay || X|=|b|-———()
& Qp Ap | X b,

After some linear transformations, we obtain the 3 x 3 system as
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1 00 || x d,
010 |x|=|d ——= (**)
0 01| x d,

To obtain the system as given in (**), first we augment the matrices given is (*) as,

a; d, aghb

a, a, @&, b, | and after some elementary operations, it

3 3, dg by
is written as,

10 0d,
0 1 0d, |-——(***), this helps us to write the given
00 1d,
system as given in (**). Then it is easy to get the solution of the system as
X =0d;,% =d, and x; =dj;.

Elimination procedure: The first step is same as in Gauss elimination method, which is, we
make the elements below the first pivot in the augmented matrix as zeros, using the
elementary row transformations. From the second step onwards, we make the elements
below and above the pivots as zeros using the elementary row transformations. Lastly, we
divide each row by its pivot so that the final matrix is of the form (***). Partial pivoting
can also be used in the solution. We may also make the pivots as 1 before performing the
elimination.

Problem: Solve the following system of equations

X +X+X=1

4% +3X%, —X%X; =6

3% +5X%, +3% =4
using the Gauss-Jordan method without partial pivoting
Solution:

We have the matrix form as

11 17x] 1
4 3 -1 || % |=|6|. Then the augmented matrix is,
35 3 |x| |4

1111
4 3 -16
35 34

(/) To do the eliminations follow the operations,
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R2=R2 - 4R1, and R3= R3 - 3R1. This gives,

11 11
0 -1 52
02 01

Then, R1=R1 + R2 and R3 =R3+ 2R2 gives,

1 0 -4 3
0 -1 -5 2
0 0 -105

R1=R1 - (4/10) R3, R2=R2 - (5/10) R3 gives,

0
0 -1 0 -
-10 5
(
{ 1

Now, making the pivots as 1, R2= ((- R2) and R3= (R3/(- 10))), we get
100
010
001 %
1 0 0{x 1
Hence, |0 1 0 || %, |=| 3
00 1] x] -1

Therefore, the solution of the system is,

=1 x “lx=-1

2= %77y
Note: The Gauss-Jordan method looks very elegant as the solution is obtained directly.
However, it is computationally more expensive than Gauss elimination. For large n, the
total number of divisions and multiplications for Gauss-Jordan method is almost 1.5 times
the total number of divisions and multiplications required for Gauss elimination. Hence,
we do not normally use this method for the solution of the system of equations.

The most important application of this method is to find the inverse of a non-
singular matrix. To obtain inverse of a matrix, we start with the augmented matrix of A
with the identity matrix I of the same order.

When the Gauss-Jordan procedure is completed, we obtain, the matrix A
augmented with I, [Al I ]in the form[l | A’l] ,since AA* =1 .
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Example Using Gauss Jordan method solve the system of equations:
x +2y +z = 8

(1)
2x +3y +4z =20 .. (2)
4x + 3y +2z =16 ... (3)
[Elimination of x from Egs. (2) and (3), using (1)]
x +2y +z = 8 ... (1a)
-y +2z = 4 ... (2a)
-5y- 2z = -16 ... (3a)
[Elimination of y from (1a) and (3a), using (2a)]
X +5z =16 ... (1b)
-y t2z = 4 ... (2b)
- 12z = -36 ... (3b)
[Elimination of z from (1b) and (2b), using (3b)]
x=1 .. (1o
-y=-2 ... (20)
- 12z = -36 ... (3¢0)
Hence, x=1,y=2,z=3.

Assignments

1. Apply Gauss elimination method to solve the equations:
2X + 3y — z =5

4x + 4y -3z =3
2X+ 3y -z =1
2. Apply Gauss elimination method to solve the equations:
3X, + 6X, + X; =16
2%, + 4%, +3%, =13
X, + 3X, +2%X;, =9

3. Apply Gauss elimination method to solve the equations:
10x + 2y + z

=9
2Xx + 20y -2z =-44
-2X + 3y +10z = 22
Numerical Methods
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4. Apply Gauss elimination method to solve the equations:
X+ y+ z=10
2X+ y +2z =17
X + 2y +z =17
5. Solve the system, using Gauss elimination method:
SX, + X, + X3 + X, =4
X o+ TX, + X + X, =12
X + X, +6X;+ X, =-5
X, + X, +X%X + 4x,=-6
6. Apply Gauss elimination method to solve the equations:
X +4y -z =-5
X +y -6z =-12
X+y -z =4
7. Solve the following system, using Cholesky method
0x+ y+ z =12
2x +10y + z =13
2Xx + 2y =10z =14
8. Solve the following system, using Cholesky method
2X +3y—-z =5
4x + 4y -3z =3
-2X +3y -z =1
9. Solve the following system, using Cholesky method
2x + 3y+z=9
X + 2y+3z=6
X+ y+2z=8

10. Solve the following using Cholesky method:

I
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11. Find the inverse of the following matrix using Cholesky method:

1 11
1 -2 4,
1 2 2

12. Solve the following system using Gauss Jordan method:
2Xx-3y+z=-1
X+4y+5z=25
3X—4y+2z=2

13. Solve the following system using Gauss Jordan method:
2Xx-3y+4z=7
5x-2y+2z=7
6x—-3y+10z=23

MATRIX INVERSION USING GAUSS ELIMINATION

We know that X will be the inverse of an n-square non-singular matrix A if
AX =1, .. (1)

where | is the nxn identity matrix.

Every square non-singular matrix will have an inverse. Gauss elimination and Gauss-
Jordan methods are popular among many methods available for finding the inverse of a
non-singular matrix.

For the third order matrices, (1) may be written as

A, A, S| Xy X Xg 100
Ay By Ay || Xy Xy Xy = 01 0
8y 8y Ap [ X X Xy 001

Clearly the above equation is equivalent to the three equations

&, a, 3| X, 1
Ay Ay Ay || Xy |F 0
(8 8y an|[X;| |0

a, a, Q3| X, 0
Ay Ay Ay || Xy |= 1
(3 A, ap || X | [0
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&, a, 3| X3 0
Ay Ay Ay || Xp | = 0
8y 8y Qg | Xy 1

We can therefore solve each of these systems using Gaussian elimination method and the
result in each case will be the corresponding column of X =A™. We solve all the three
equations simultaneously as illustrated in the following examples.

Example Using Gaussian elimination, find the inverse of the matrix A=

R W N
AN P
O W

In this method, we place an identity matrix, whose order is same as that of A, adjacent to
A which we call augmented matrix. Then the inverse of A is computed in two stages. In the
first stage, A is converted into an upper triangular form, using Gaussian elimination
method.

We write the augmented system first and then apply low transformations:

2 11/1100] (211 100
I 10byR2_>R2_%

|
|
323010/ul03 33
| b 1
149001 [0z 21 1|YROR
21 111 00
U0 2i-2 1 0/byR>R-TR,
00 2,10 -7 1

The above is equivalent to the following three systems:

2 1 111
0+ $i-3 (1)
0 0 -2 10
2 1 110

|
03 311 .. (2
0 0 -2,-7
2 1 110

|
03 31 ... (3)
00 -2)1

Now the matrix equation of the system of equations corresponding to (1) is

21 1| x, 1
0 % % Xn | = _%
0 0 2| Xy 10
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which on back substitution gives x,, =-5, x,, =12, x, =-3.
Similarly using the other two systems other x values are determined and hence the inverse

is given by

Xg X Xs| |3 3 -3
A= Xn Xp X3 |= 12 _% %
X1 Xy X33 -5 % _%

All these operations are also performed on the adjacently placed identity matrix.

Example Use the Gaussian elimination method to find the inverse of the matrix

11 1
A=|4 3 -1|.
35 3

At first, we place an identity matrix of the same order adjacent to the given matrix. Thus,
the augmented matrix can be written as

11 11100
43 -110 10 . (1)
35 3,001

In order to increase the accuracy of the result, it is essential to employ partial pivoting.
We look for an absolutely largest coefficient in the first column and we use this coefficient
as the pivotal coefficient (for this we have to interchange rows if necessary)

In first column of matrix (1), 4 is the largest element, and hence is the pivotal element.
In order to bring 4 in the first row we interchange the first and second rows and obtain the
augmented matrix in the form

4 3 -110 10
11 11100 )
35 3,001

15 41030
i1 1100 1
| —
35 300 1 YR7ZR
1 2 -1lo to0
~Oi gil_i 0 byR2—>R2—R1
|
o i A TE I yROR-R
4 4| 4

We now search for an absolutely largest coefficient in the second column (and not in
the first row) and we use this coefficient as the pivotal coefficient. The pivot element is
the max (1/4, 11/4) and is 11/4. Therefore, we interchange second and third rows of the
above.
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13 40 20
|

0L Big-31
|

0% Fi1-4o0

Now, divide Rz by the pivot element a2 =11/4, and obtain

|
13 -0 10
01 2o ¢
0% 310

In order to make the entries below 1 in the second column we perform

Rs — Rs — (1/4)R:1 in the above matrix and obtain

3 _1! 1
13 -3o 4 o0
151 -3 4
01 11:0 n n
10 -2 _1
00 11 un 1

This is equivalent to the following three matrices

3 _1l | 3 _1|
13 4 I B S 1 B R e SR
15 51 4
01 Fio; o1 B2 |01 B4
10 10 10 1
00 41 00 Zi-fl (00 1%
Thus we have
71 2]
X % %] | 202 2
. 3 1
AT==Xg Xy X |= 5 0 >
X3 Xz Xgg 11 1 1
|10 5 10|

Matrix Inversion using Gauss-Jordan method

This method is similar to Gaussian elimination method for matrix inversion, starting with
the augmented matrix [Al] and reducing A to the identity matrix using elementary row

transformations. The method is illustrated in the following example.

Example Find the inverse of the following matrix A by Gauss-Jordan method.

11 1
A=|4 3 -1].
3 5 3

The augmented matrix is given by

Numerical Methods Page 155



School of Distance Education

11 11100
43 -110 10

35 3,001

1 1 1] 10 0] .

_)_
~0—1—5i—4103;RZRZ§1

%_
0 2 oj-3 0 1| YREPR-R
11111 0 .

%_
~l0 1 5] 4 1 0| YRR
0 20/-3 01
(10 -4! -3 10]

_)_
~l0 1 554—1obleRl§2
%_
00 -10/-11 2 1| YRRR

10 4! -3 1 0
|

~0 1 S 4 -1

0 1
b =
0 0 1;1V10 -1/5 -1/10 YR~ 10R3

100! 7/5 15 -2/5

| b 4
~lo10l-32 0 12 ;’Ri_mﬁ ';3
% —
00 1jwi0 -u5 10| YRR
Thus we have
71 2]
5 5 5
1 |3 1
at=|-2 0 2|
11 1
|10 5 10|

e Triangulation Method (LU Decomposition Method):
In linear algebra, LU decomposition (also called LU factorization) factorizes a
matrix as the product of a lower triangular matrix and an upper triangular matrix
Let A be a non-singular square matrix. LU decomposition is a decomposition of the
form
A=LU
where L is a lower triangular matrix and U is an upper triangular matrix. This means that

L has only zeros above the diagonal and U has only zeros below the diagonal. For
example, for a 3-by-3 matrix A, its LU decomposition looks like this:
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& G &3 1 0 Ofjuy Uy, Uy
& A Az|=[ly 1 0| 0 Uy, Uy
3 A | |ln lx 10 0 uy

Consider a system of linear equations,

QX A% X =0y
31X + 3% + 3% =h,
351X + 8% + X =D

This can be written in the form,

Ax=Db,
8, dp a3 ))(C'L tt:l
where A=|a, a, ay|, x=| 2 and b=| ?
a a -
by G g3 Xn b

To solve the system of equations by LU decomposition, first we decompose A as LU,
where,

1 00 Up Uy Us
L=|l,, 1 0| ad U= 0 u, U,
l, 1 1 0 0 wugm
This gives,
LUx =b.
Let Ux=y. This implies, Ly=b.
That is,

1 0 0w |k
l, 1 O|y,|=b
sy 1 1] Vs b,
Thus,

v =h
Ly Yy + Y, =D
sy Vs +lp Yo + Y5 =y
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This gives the y values by forward substitution, which means, substitute the value
of y, given by the first equation in the second and solvey,, then use these values of

y, and y, in the third and solve y,.
Then the system of equations

Uy Up Ug || % i
Ux=y; thatis| 0 U, Usg| % |=Y,
0 0 ug| X Y3

gives the required values of x,x, and x, as the solution of the original system of linear

equations by backward substitution.

&1 Gy a3
To decompose a matrix A=|3, a, ay]|,in the form
|81 Gz Qg3 |

& & a| [1 0 Offu, u, ug
8 8 ap|=|ly 1 0] 0 Uy Us|, weproceed as follows.
8 g |

3 ly 1 10 0 ug

1 0 O U, U, Ugs
Onmultiplying|la 1 0| ad | 0 Uy Uxs|, we get,
l; 1y 1 0 0 uy
Uy U, U3
gty Uy +Usy | yly3 +Upg

oty gy +lgplpy gl + ol +Usg
Equating it with the corresponding terms of A, we get,

Ui =8 Up=2ap Uz=a;
. 3
LUy =3y, = |y =—% 1 Iy =389 = lz=—"
Uy Uy
LUy +Upy =85y = Uy = 3 —y1lhy;
|y Uis +Upz =83 = Upz =83 — | yUy3;
snililarly,
|3yl + 13Uy = By, laglys +1gplps + Usg = 855 GivVes 1, and Ug
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Example: Solve the following system of equations by LU decomposition.
2x+3y+z=9
x+2y+3z=6
3x+y+2z=8.
Solution:
The above system of equations is written as,

2 3 1[x] [9
1 2 3||lyl=|6
31 2||z| |8

2 31
To decompose the matrix |1 2 3| in the form of LU, we equate the corresponding
312

terms of A and LU as already illustrated, and obtain

Uy =2 Up=3 Ug=1

| =a21=1- [ ZEZE
21 U11 2 ! 31 U11 2
1 1
U222322_|21U12=2_§X3:§;
1 5
U23=az3_|21U13=3_§X1=§;
3
| _832—|31u12:1_§><3__7 and
32 u22 1
2

3
Usg = Uzg = 8gs — (Igglhs +l5pllps ) = 2- (EX“’ (_7)X§j = 2‘(5‘7) =18

Hence,

2 31 1 0 0|2 3 1
12 3|=|2 1 0}j0 & 2
312 [2 -7 1)00 18

This implies,
1 0 02 3 1| x| |9
1 1 ofoi 5|y|=6
%—71001828

Consider
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2 3 1x] [w 1.0 0fy| |9
0 2 2|y|=|Y.| then|3 1 OJy,|=6],
0 0 18)/z] |y, 3 -7 1y |8
o | [9
Solving these, we get, |y, |=|3
Ys] |5
That is,
2 3 1]|x 9
03 3||Y|=|3
0 0 18|z 5

Now, solving the above expression we obtain the values of x, y and z as a solution

of the given system of equations as,

>
X 18
_| 2
18 |.
5
z 18

Assignments
1. Using Gauss-Jordan method, find the inverse of the following matrices:
1 1 3 112
() A=|1 3 -3| (i)B=[1 2 4
2 -4 -4 2 4 7

2. Using Gaussian elimination method, find the inverse of the following matrices:

01 2 2 01
@) A=l1 2 3 (i) B= [3 2 5
311 1 -10
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12
SOLUTION BY ITERATIONS

SOLUTION BY ITERATION: Jacobi’s iteration method and Gauss Seidel iteration method

The methods discussed in the previous section belong to the direct methods for
solving systems of linear equations; these are methods that yield solutions after an
amount of computations that can be specified in advance.

In this section, we discuss indirect or iterative methods in which we start from an
initial value and obtain better and better approximations from a computational cycle
repeated as often as may be necessary, for achieving a required accuracy, so that the
amount of arithmetic depends upon the accuracy required.

Jacobi’s iteration method and Gauss Seidel iteration method
Consider a linear system of nlinear equations in n unknowns X, %,, ..., X, of the form
A X T a% + 8%+ FaX,  =h

A1 X 8% HAXg +  F A%, =D,
3g1 X 83X TapXg+ - +ag X, =Dy (@

AuX 8% +agXg o +HaX, =D,
in which the diagonal elements a; do not vanish.

Now the system (1) can be written as

b oA, Ay, &
g 3 a11X2 a11)(3 ail)%
b a3, 3
% 8y 8y & ) % ) %
b B, o (2)
X3 A a33X1 a33X2 asaxn
b, s, ap &hn-1
=N My New ... —
" an An A o
Suppose we start with x?, x, ... x? as initial values to the variables x, X, ...,x,. Then
we can find better approximations to X, %, ...,x, using the following two iterative
methods:

(i) Jacobi’s iteration method

Jacobi’s iteration method, also called the method of simultaneous displacements, is as follows:
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Step 1: Determination of first approximation x®, x§V, ... ,x¥ using x?, x{?, ... ,x.
w_B 3 0 &0 . .0
e A Ay 2"
o_ B 8 0 8o 8.0
e, a, ay 2,
o_B 3 0 3 %n (0)
=3 g v T g5 e Tt T ... 3
& 3 a%xf 833)(2 a33)¢' (3)
(1):&_ﬁ © G20 _an,n—l 0)
N An A a, ™

2)

Step 2: Similarly, x?, x{?, ... ,x? are evaluated by just replacing x?in the right hand

sides equations in (3) by x.

Step n+1: In general, if X", x{7, ...,x{" are a system of nth approximations, then the next
approximation is given by the formula

nﬂ):i_i n_S3m . 8@n ;)

X a. %é %4 %4

ml)zg_% n)_% N _% 0

X 2 %é %% %4

ml)zg_% n)_@ N _% "

* %3%% %é %4 . (8)
n+1)=&_ﬁ n)_ﬁ n_ ... _anv"ﬂ n)

)¢I an 3mxl( amXé a, xr(kl

The system in (4) can also be briefly described as follows:

$”:§—zgmw (r=012.., i=12..,n)
i j:li

JES]

A sufficient condition for obtaining a solution by Jacobi’s iteration method is the diagonal
dominance,

ie., ‘qi‘>Zaﬁ, i=12,...,n

B
i.e.,, in each row of A the modulus of the diagonal element exceeds the sum of the off
diagonal elements and also the diagonal elements a, = 0. If any diagonal element is 0, the

equations can always be re-arranged to satisfy this condition.
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(ii) Gauss Seidel iteration method

A simple modification to Jacobi’s iteration method is given by Gauss-Seidel method.

Step 1 (Gauss-Seidel method): Determination of first approximation x®, x§, ... ,x¥ using

0 0 ()
X0, %O, X0

o_B 8 &0 . _& 0

g A 311)(2 311)(3 ailxn

(1_bz %10 3.0 % (0

Xz 2, a22X1 azzxs azzxn

o_B 8 0 8. 8.

e A o . (5)
o_ B o dew G

N e Am Ay o

Step n+1: In general, if X", x{”, ...,x{" are a system of nth approximations, then the next

approximation is given by the formula

) B G B 80,0

X a2 8t X

) _ bz a21 (D) a23 n) _% n)

=2 Fes B . By

ml)zg_ﬁ (n+1)_@ () Bn )

X I B 2% ... (6)
) _ hq B ) B2 () _annl (n+D)

* B4 Bn ' Ay B, ™

(6) can be briefly described as follows:
i-1g n a
=3 S Ay 330 (=012, i=12...1)
ari j=1 i j:i+lari
Remark We note the difference between Jacobi’s method and Gauss-Seidel method.
(Attention! In the following the bold face letters must be carefully noted):

Jacobi’s method: In the first equation of (3), we substitute the initial approximations
X0, X2, ..., X9 into the right-hand side and denote the result as x. In the second

equation, we substitute x{?, x{, ... ,x? and denote the result as x{’. In third, we
substitute x@, x©, ... ,x© and call the result as x{". The process is repeated in this
manner.
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Gauss-Seidel method: In the first equation of (3), we substitute the initial approximation

X9, ..., X% into the right-hand side and denote the result as x. In the second equation,
we substitute x{, X%, ... ,xX?9 and denote the result as x{. In third, we substitute
X, xP,x9 and call the result as x§?. The process is repeated in this manner and

illustrated below:

Example 11 Solve the following system of equations using (a) Jacobi’s iteration method
and (b) Gauss-Seidel iteration method.

10% — 2%, — X5 — X, =3
—2% +10%, — %3 — X, =15
=X — X, +10%; — 2%, =27
=X — Xy — 2X%5 +10%, =-9.
Solution
To solve these equations by the iterative methods, we re-write them as follows:
X, = 0.3+ 0.2X, + 0.1x, + 0.1,
X, =1.54+0.2% + 0.1%; + 0.1x,
X3 =2.7+0.1x +0.1x, + 0.2x,
X, =—0.9+0.1x + 0.1x, + 0.2%,

It can be verified that these equations satisfy the diagonal dominance condition. The
process and given in the following Tables.

Table 1. Jacobi’s Method

n Xi Xy X3 X,
1 0.3 1.56 2.886 -0.1368
2 0.8869 1.9523 2.9566 -0.0248
3 0.9836 1.9899  2.9924  -0.0042
4 0.9968 1.9982  2.9987 -0.0008
5 0.9994 1.9997  2.9998 -0.0001
6 0.9999 1.9999 3.0 0.0

7 1.0 2.0 3.0 0.0
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Table 2. Gauss-Seidel method

n Xy X, X3 X4

1 0.3 1.5 2.7 -0.9

2 0.78 1.74 2.7 -0.18

3 0.9 1.908 2.916 -0.108

4 0.9624 1.9608 2.9592 -0.036

5 0.9845 1.9848 2.9851 -0.0158
6 0.9939 1.9938 2.9938 -0.006
7 0.9975 1.9975 2.9976 -0.0025
8 0.9990 1.9990 2.9990 -0.0010
9 0.9996 1.9996 2.9996 -0.0004
10 0.9998 1.9998 2.9998 -0.0002
11 0.9999 1.9999 2.9999 -0.0001
12 1.0 2.0 3.0 0.0

From Tables 1 and 2, it is clear that twelve iterations are required by Jacobi’s method to
achieve the same accuracy as seven Gauss-Seidel iterations.

Example 12 Solve by Jacobi's iteration method, the system of equations
20X, +X, = TX, =17
3%, +20x, — X, =-18
2X, —3X, + 20X, =25

Solution The given system of equations can be written as

17 1, .7 A
X=0 % 0%

8 3 1
s (O
B 2.3
=0 i e
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We start from an approximation xl(o) = X;O) = X;O) =0 to x, %, X, respectively. Substituting

these values on the right sides of equations in (3), we get the first approximation values

o _17 __18__ @ _25
X 20_085 X, ==50= 0.90and X =30 =125

Putting these values on the right side of the equations in (2), we obtain the second
approximation values, X? ~102, <@ __oggesand X;Z) =1.03. Similarly, third approximation

(3

values are x”-100125, x’=-10015and x”=1004 and fourth approximation values are

X" 1000475, X =-09999875and X" =0.99965. It can be seen that the values approach the

exact solutionx =1, x,=-1, x,=1.

Example 13 Solve, using Gauss-Seidel iteration method, the system:

x1 - 0.25x2 - 0.25x3 = 50
-0.25x1 + X2 - 0.25x4 =50
-0.25x1 + x3 - 0.25x4 = 25

-0.25x2 -0.25x3 + x4 = 25
Solution

The given system of equations can be written as

X =50+ 0.25x_ + 0.25x A
1 2 3
X =50+ 0.25X +0.25x ..(2)
2 1 4
X =25+0.25x +0.25x
3 1 4
X =25+0.25x +0.25x
4 2 3 J

We start from an approximation xl(o) = x; = x ' ~100to x,, X,, X, respectively. Then we get

approximation values as follows:

xf’ —50+0.25 xf) + 0.25x;°) —100.00

x;l’ —50+ 0.25x1(1) + o.25x§°) -100.00 x;” —50+ 0.25xf’ + O.25xi°) — 75.00
W _ 254 0.25x;1) + 0.25x;1) -68.75

Now second approximation values are given by:

2 50+ o.zsxf) n 0.25x;1) -93.75

xf’ —50+ 0.25x1(2) + 0.25xf) -90.62 xf’ —50+ 0.25xl(2) + 0.25xf) - 65.62
xff) — 25+ 0.25xf) + 0.25xf) —64.06.
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Note that the exact solution to the system is
X, =X,=875 X;=X,=625

Example 14 Using Gauss Siedel iteration solve the following system of equations, in three
steps starting from1, 1, 1.

10x+y+2z=6

X+10y+z=6

X+Yy+10z=6
Solution x=0.6-0.1y-0.1z
y=0.6-0.1x-0.1z
z=0.6-0.1x-0.1y

Step1 Using x©) =y = z0) =1, we have

x =06 -01yO® - 01z0=06-01-01=04

<
=
[
=
1l

06 — 01 xM - 01 z0=06-0.1x04-0.1=0.46
z® =06 - 01 x®- 01 y® =0.6-0.1x04 —0.1x0.46 =0.514
Step 2 Using x() =04, yh= 0.46, z(1)=0.514, we have
x@ =06 - 01 y® - 01 zH=0.6-0.1x0.46-0.1x0.514 = 0.5026
y@ =06 - 01 x@ - 0.1 z®=0.6-0.1x0.5026 — 0.1x0.514 = 0.49834
z® =06 - 01 x@- 01 y@
= 0.6 — 0.1x0.5026— 0.1x0.49834 = 0.499906
Step 3 Using x@ =0.5026, y@= 0.49834, z® =0.499906, we have
x® =06 - 01 y®@ - 0.1 z@=0.6-0.1x0.49834- 0.1x0.499906= 0.5001754
y® =06 - 01 x® - 01 z@
= 0.6 — 0.1x0.5001754— 0.1x0.499906= 0.49999186
z® =06 - 01 x0- 01 yO
= 0.6 — 0.1x0.5001754— 0.1x0.5001754= 0.49996492

Wetake x»5, y»5, z» 5 asthe solution of the given system of equations.
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Exercises

1. Apply Gauss Seidel iteration method to solve:
10x+2y+2z=9

2X+20y—-2z=-44
-2X+3y+10z=22
2. Apply Gauss Seidel iteration method to solve:
12x+21y+4.2z=99
5.3x+6.1y+4.72=21.6
9.2x+8.3y+2z=15.2
3. Apply Jacobi’s iteration method to solve:
5x-y+2z=10
2x-y+z=10
X+y+5z=-1
4. Apply Jacobi’s iteration method to solve:
5x+2y+2z=12
X+4y+2z=15
X+2y+5z2=20
Answers

1. x=1.013 y=-1.996,z=3.001

x=2,y=3z=4 (Approximately)

2

3. x=-13.223 y=16.766, z=—-2.306
4. x=2556,y=1.722, z=-1.005

5

x=1.08, y=1.95, z=3.16
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13
EIGEN VALUES

Eigen Values

Definitions Suppose A be an indeterminate. Consider the n x n matrix

& ap . &
a a e a

A= 2 Z =1 Tnen (1)
8y @p - 8

Then the matrix A - Al , where I is the identity matrix of order n, is called the
characteristic matrix of A and is given by

a,-l A, . &,
a a,—-l ... a8y,

Al | = | | | : .. Q)
ay O

The determinant | A - AI |of the characteristic matrix of A given in (2) can be found out
to be

bo+bid +b2 A2 + . ..+ by AT+ byt L (3)

where b ; are scalars. Now (3) is a non-zero polynomial of degree n in the
indeterminate A. This polynomial is called the characteristic polynomial of A. That is
the characteristic polynomial of the matrix A is given by

lA- AT . ... (3)
The equation
|A- AL =0 .8
i.e.,, the equation
a, —I &, .. . &,
ay azz.—l .aZn _0 @)
ay a, - . . a,-I

is called the characteristic equation of the matrix A.
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The roots of the characteristic equation (4) are called the characteristic roots or latent
roots or eigen values of the matrix A. If | is an eigen value, then column vector X such
that AX =1 X is called an eigen vector associated with the eigen value | .

Example Find the eigen values and the corresponding eigen vectors of the matrix

8 -6 2
A=|-6 7 -4|

2 -4 3
Solution

The characteristic equation of A is lA- Al =o0.
81 -6 2
ie., -6 7-1 -4/=0
2 -4 3-|
On simplification we get
-A3 +18A2 — 451 =0,
which gives the eigen values A=0; A =3; A =15.

(Determination of eigen vector corresponding to the eigen value | =0)
%

Let X =| x, | be the eigen vector corresponding to | =0 is obtained by solving  AX =0X
X

i.e., by solving

8 6 2| x X
-6 7 4| X [=0|X,
2 -4 3|x Xq

i.e., by solving

8 -6 2|[x] [0
6 7 —4|%|=|0|
2 -4 3X3

o

The corresponding system of linear equations is

8, — 6x, + 2% = 0 (1)
6% + X% — 4x = 0 ~+(2)
2% - 4%, + 3% = 0 ~+(3)

Now (1) and (3) can be written as
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4%, — 3%, + X3 =0
and 2% — 4%, + 3%; = 0.
Now by the method of cross multiplication

Xy _ X5 _ X3
~-3.3-1-(-4) 1.2-4.3 4.(-4)-3.2

or XX X
-5 -10 -10
1 2 2
Hence ﬁ=§=§=k,
1 2 2

where k is arbitrary.
x =k, x,=2k, x,=2k. .. (4
The solution given in (4) also satisfies the equation (2).

k
.. eigen vector corresponding toA =01is givenby X =|2k|.
2k

1
A particular eigen value is (with k=1) is X =|2]|.
2

(Determination of eigen vector corresponding to the eigen value A =3)

The eigen vector X corresponding to A = 3 is obtained by solving AX =3X or by solving
(A-3DX =0

i.e.,, by solving

5 -6 2 X1 0
-6 4 -4 Xo | = 0]l
2 -4 0|lxs| |0

By elementary row transformations, the above matrix equation is equivalent to the
matrix equation

101X1 0
01 3|x|=|0}
0 0 Ofxg| |O

Choosing x, =k, arbitrary, we have x +x,=0, X, +3X%,=0.
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Hence X=|-1k

is an eigen vector corresponding to the eigen value A = 3.

-2
A particular eigen value is (with k=2) is X =| -1|.
2

(Determination of eigen vector corresponding to the eigen value A = 15)
The eigen vector X corresponding to A = 15 is obtained by solving AX =15X
i.e, bysolving (A-151)X = 0

i.e.,, by solving

-7 -6 2| % 0

-6 -8 -4 X2 =0/

2 -4 -12||x3] [0
2a |
Hence X =|-2a
a

is an eigen vector corresponding to the eigen value A = 15.

ExampleFind the eigen values and the eigen vector corresponding to the largest eigen
value of the matrix

6 -2 2
A=-2 3 -1,
2 -1 3

Solution
It can be seen that the eigen values are 2, 2 and 8.
Now we determine the eigen vector corresponding to the largest eigen value 8:

The eigen vector X corresponding to A = 8 is obtained by solving AX =8X i.e., by
solving [A-8I1]X =0

i.e., by solving
6-8 -2 2|x| (O
-2 3-8 -1} % |=|0|
2 -1 3-8|x]| |0
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i.e.,, by solving

The corresponding system of linear equations is

2% — 2%, + 2% = 0 (1)
—-2% - 5%, — X = 0 --(2)
2% - X, — BX = 0 --(3)

Now (1) and (3) can be written as
X =X+ % =0
and 2% — X, —5X%5 = 0.

Now by the method of cross multiplication

X _ % _ X3
251D 12-0( (DD
or X _ % _X
6 -3 3
or N_% X
2 -1 1
Hence ﬁ=ﬁ=§=k.
2 -1 1
X, =2K, X, =-k, X;=k. (Y

The solution given in (4) also satisfies the equation (2).

.. the eigen vector corresponding to A = 8 is

2k
X=|-k|
k
2
A particular eigen value is (with k=1) is X =|-1|.
1

Example Find the eigenvalues and eigenvectors of the matrix:

5 0 1
A=|0 -2 0
1 0 5
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The characteristic equation of the matrix is given by

5-1 0 1
0 -2-1 0 =0
1 0 5-1

which gives |, =-21,=4 and 1,=6.

Determination of eigenvectors corresponding to |, =-2. Let the eigenvector be

X =%
X3

Then we have:

X X
A X |==2[% |,

X3 X3
which gives the equations
TX +% =0
and X +7x =0

The solution is x =%, =0 with x, arbitrary. In particular, we take x, =1 and an eigenvector

is

X, =|1
0

Determination of eigenvectors corresponding tol , =4. If

X, =%
X3
is an eigenvector, the equations are
X +X%=0
and -6x,=0
from which we obtain

X =—X% and x, =0,
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We choose, in particular, x =1/v/2 and x,=-1J2 so that x?+x2+x°=1. The

].

eigenvector chosen in this way is said be normalized. We therefore have X, ={

Sh ol

Determination of eigenvectors corresponding to | ; =6. If

X
X=X,
X3
is the required eigenvector, then the equations are
X +X%=0
-8%, =0
X —%=0

which give x =%, and x, =0.
Choosing x =%, =1/+/2, the normalized eigenvector is given by

1/2
X,=| 0
1//2

Example Determine the largest eigen value and the corresponding eigenvector of the
matrix

>

Il
o R R
onNn o
w o

Let the initial eigenvector be
1
0|=x.
0

Then we have

1 6 1|17 1
AX@ =11 2 o]lo|=]1
0 0 3|lo

Numerical Methods Page 175



School of Distance Education

1
Let X® =| 1|. Then we have AX®©® =X® and we have an approximate eigen value is 1 and
0

an approximate eigenvector is X®. Hence we have

16 11| [7] |23
AXP =1 2 0]|1]|=|3|=39
0 0 3(|o| |0 |0
from which we see that
23
X® =1
0

and that an approximate eigen value is 3.

Repeating the above procedure, we successively obtain

21 22 2 2 2
411, 4{11|, 44|1|, 41|, 41|
0 0 0 0 0

It follows that the largest eigen value is 4 and the corresponding eigenvector is

2
1.
0

Eigenvalues of a Symmetric Tridiagonal Matrix

Since symmetric matrices can be reduced to symmetric tridiagonal matrices, the
determination of eigen values of a symmetric tridiagonal matrix is of particular interest.
Consider the tridiagonal matrix

3, & 0
A=|ap 8y ay|-
0 3 ag

To obtain the eigenvalues of A, we form the determinant equation

3y | 3 0
|A1_||: a, ayp-l ay [=0.
0 a3 ag; —|

Suppose that the above equation is written in the form
fo(1)=0 (D)
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Expanding the determinants in terms of the third row, we obtain

-l &y a; -l o
f.0)=(ay—1) |—a |
* % 3, ay | 23312 a3
=(ag 1 )f 5 (1) —ay(a; —1 )ay,
where f,(I )= %~ =
a12 azz_l

=(ag 1 )f ,(1 )—axf,(1), where f,(1)=(a,-1)
Hence (1) implies,
(a —1)f,(1) — a%4f.(1)=0.

We thus obtain the recursion formula

f,0)=1
fi(l)=a;-I
=(a, -1 )fo()
e 3,
£,0)=
“ & 3y, —|

=(ay—1)(ap-1)-a5
=f,(1 )(ay - )—afzfo(l )
fa(l)=F,( )ag—1)-azf,().

In general, if

a, -1 a, 0 0
f(l)=| %l 0 , (2<k<n),
0 a . K ay -l

then the recursion formula is
fo(l)=@y -1 )f )—af_lykf o), (2<k<n)

The equation f, (1 ) =0 is the characteristic equation and can be solved using the methods

discussed in Chapter 2. When the eigen values are known its eigen vectors can be
calculated.

Exercises

1. Find the eigen values and the corresponding eigen vectors of the following matrices:
-3 0 1 -2
b
@ e
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210 3 10 5
(©[0 2 1 d|-2 -3 -4
0 0 2 3 5 7
300 5 1 -1
(e)|5 4 0 1 3 -1
361 1 -1 3
5 6 -6 2 2 0
(9)|-1 4 2 () 2 1 1
3 6 -4 -7 2 -3
2 2 1 1 -1
i)y 1 3 1 (i) 1 1
1 2 2 -1 1
2 1 -1 2 -1 1
(k)] 0 3 -2 M -1 2 -1
2 4 -3 1 -1 2

. . . 1 2 . .
2. Find the eigen values and eigen vectors of [2 J Find the characteristic roots of

A=

N O -
o N O
R RN

3. Find also the corresponding characteristic vectors.

4. Find the eigen values and the eigen vector corresponding to the largest eigen value of

8 -6 2
the matrix A={-6 -1 -4/
2 -4 3
5. Obtain the eigen values and the corresponding eigen vector of matrix
6 -2 2
A=-2 3 -1|
2 -1 3

6. Use the iterative method to find the largest eigen value and the corresponding eigen
vector of the matrix

5 2 1 -2
2 6 3 4
A= .
1 3 19 2
-2 -4 2 1
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14
TAYLOR SERIES METHOD

METHODS FOR NUMERCIAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

There are differential equations that cannot be solved using the standard methods
even though they possess solutions. In such situations, we apply numerical methods for
obtaining approximate solutions, where the accuracy is sufficient. These methods yield
the solution in one of the following forms:

(i) Single-step method: A series for y in terms of powers of x, from which the value
of y at a particular value of x can be obtained by direct substitution.

(i) Multi-step method: In multi step methods, the solution at any point x is obtained
using the solution at a number of previous points.

Taylor’s, Picard’s, Euler’s and Modified Euler’s methods are coming under single-
step method of solving an ordinary differential equation.

The need for finding the solution of the initial value problems occur frequently in
Engineering and Physics. There are some first order differential equations that cannot be
solved using the standard methods. In such situations we apply numerical methods.
These methods yield the solution in one of the two forms:

(iii) A series for y in terms of powers of X, from which the value of y can be obtained
by direct substitution.

(iv) A set of tabulated values of x and .

The methods of Taylor and Picard belong to class (i), whereas those of Euler, Runge-
Kutta, etc., belong to the class (ii). In this chapter we consider Taylor series method.

Taylor Series
We recall the following (Ref. Fourth Semester Core Text):

The Taylor series generated by f at x=a is

2 £ (k) )
Zf ku(a)(x—a)"= =f(a)+(x—a)f'(a)+(X;|a) f"(@)+...
k=0 ' :

+% f(“’”(a)+% f™(a)+...

In most of the cases, the Taylor’s series converges to f(x) at every x and we often write

the Taylor’s series at x=aas
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(X a) n
F(0=f(@)+ (x-a)f'(@) + =5 "(a) +.. .1

Instead of f(x) and a, we prefer y(x) and x,, and in that case (1) becomes

V()= Y00) + (- 3)y' 0) + E 2y 4 e

Solution of First Order IVP by Taylor Series Method

Now consider the initial value problem

y=1(xy), ¥(X)=Y. --(3)
If y(x) is the exact solution of (3), then using (2) with y(x,)=V,, Y'(%)=Ys, Y'(X)=

and so on, we obtain the Taylor’s series for y(x) around x=Xx, as

o)y . (@)

Y = Yo+ (X=%)¥o +
If the values of y;, y;,... are known, then (4) gives a power series for y. From (3) we

have y'=f, which on differentiation with respect to x (using chain rule) gives

"_ r_i_ﬂ ﬂ /
y'=t _dx_6x+(ax)y +0)

Similarly, higher derivatives of y can be expressed in terms of f.
Example Using Taylor series, solve Y =x-Y?, y(0)=1. Also find y(0.1) correct to four decimal

places.

Here x,=0;y,=y(0)=1. Hence (4) takes the form

3

X! X3 " /!I
YOO=Yo+5i¥o t 51 Yot 3Iy0 ,yo“’+5,y§,5> - (6)
We have
y =x-y, Yo =Y (X=%, y=Yo) =% — Yo =0-1'=-1.

y'=1-2yy, Yo =Y (X=X, Y=Y,) =1-2Y,Y, =1-2(1)(-1) = 3.

ym — _2yy7 _ 2(yr)2’ ygr m(x Xo y yo) — _2y0y0 2( y(,) )2 _ —8.

y(4) — _Zyym _ 6yryﬂ,

(4) _
Yo

YO (X=X, Y=Yo) =—2Y, Yo — 6YsYs =34
y® = 2y @ _8yy" —6(y')?,

Y5 = Y9 (x=%,, Y= o) = ~2¥o¥5” ~8Ys o — 6(¥p)” = ~186.
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Substituting these values in (6), we obtain

y(x)=1_x+§x2—ﬂ 3+Ex4—§x5+ C ...(7)
2 3 12 20

To obtain y(0.1) correct to four decimal places, we consider the terms upto x* and putting

x=0.1, we obtain

y(0.1) = 0.9138.

Remark to the Example (Truncation and range of x) Suppose that we wish to find the
range of values of x for which the above series, truncated after the term containing x*,
can be used to compute the values of y correct to four decimal places. We need only to
write

31,5 < 0.00005,
20

so that x < 0.126.

Example Solve using Taylor series method% = x+ ynumerically starting with x=1, y=0.
X

Also find y at x=1.1.
Here x,=1 y,=y(@)=0. Hence (4) takes the form

Y9 = Yo+ (x=D)y; + (X;!l)z Yo+ (X;!l)s Yo+ (X;!l)A Yo + - +(7)
Here
y=x+y; Yo=Y X=Xy Y=Yo) =X, + ¥, =1+0=1 y"=%(><+y)=1+y' ;
Yo=Y (X=X, Y=Yo) =1+ Yy, =1+1=2
y'=y"; Yo=Y (X=Xo Y=Yo) =Y, =2
y@ =y” ;Y =Y (X=X, Y=Y,) = Yo =2

Substituting these values in (7), we obtain

VOO =(x-1)+ (x_1)2+ ZD, T

3 12
Now to find y(1.1), we put x=1.1 in the above series (considering terms upto 4t power of
x ) we get
3 4
y(1.1) =0.1+(0.1)? +% +% =0.11.

Exact solution of the above initial value problem is

y=—x—1+2e*1
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and hence the exact value of y at x=1.11is
y (1.1) = 0.11034.
Example Using Taylor series, solve
5xy'+y?—2=0, y(4)=1.
Also, find y(4.1).

Here x,=4; y,=y(4)=1. Hence (4) takes the form

y(X) =Y, + (X—4)y, + (X_2!4) yo + (x ;4) v+ (X4!4) +...0 ...(8)

Here v, vy, ... are evaluated as follows:
Consider the differential equation
5xy'+y*—-2=0 ...(9)
Differentiating (9) with respect to x, we get
5xy" +5y +2yy'=0. ...(10)
Differentiating successively with respect to x, we obtain
5 xydt + 10 y&+ 2 yy®+ 2 (y¢)2=0 ...(11)
5 xyemt + 15 yait+ 2 yy@+ 6 yCy®=0  ...(12)
5 xyoE + 20 yom+ 2 yy @i+ 8 yCyde+ 6 (y®)2 =0...(13)

Using x,=4; y,=1 (9) gives 5%y, +Y,"—-2=0 or 5-4.y;+1°-2=0 which gives y; =0.05
(10) gives

5%, Yo +5Y5 +2Y,¥; =0 or 5x4y;x5x0.05+2x1x0.05=0
and gives y; =-0.0175.

Similarly, yy= 0.01025, y”=—0.00845, y{”= 0.008998125,

Hence (8) gives
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x— 4’
|

|

o

o

H

~

ol
N—

+

—_~~

y(x) =1+(x—-4)(0.05)+ (0.01025)

w

5

x—4)
5!

+
—
X
|
SN
~—
S
N
o
o
2
a1
~—
+
—

(0.008998125)

Putting x = 4.1, we get

y(4.1) =1+ (0.1)(0.05) + (0'21!)2 (-0.0175) + (0'3?3 (0.01025)

0.1)* 0.1)°
+( 4!) (—0.00845)+( 5!) (0.008998125)

=1.0049
Solution of Second Order IVP by Taylor Series Method

Consider the second order initial value problem

Y =Ty ¥) Y0) =Y Y(X)=lp.  ...(14)
Setting y'=p, we get y"= p’, and the differential equation in (14) becomes
p'=f(x Y. p) ...(15)
with the initial conditions
y0%) = Yo ...(16)
and P(X%,) = P, =1, ...(17)

Now Taylor series is given by

Y(X) =Y, + (X= %)Yl + (X_Z)!(O) Y/ S (18)

where vy, , y;, ... are determined using (16) and (17) and successive differentiation. The

method is illustrated in the following example.
Example Using Taylor series method, prove that the solution of

d’y
dx’
with the initial conditions y(0)=d and y'(0) =0 is given by

+xy=0

B 1, 4, 28,
y(x)_d[l—gx teX g Xt } ....... (19)
Set y' = p.
Then, y'=p,
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and the given differential equation becomes

p'+xy=0.

Now we have to determine the coefficients of the Taylor series:

...(20)

(Xo)

Y = Yo + (X=%)Yo + Yo + .. (21)

Here x,=0, Y,=Yy(%)=Y(0)=d, y;=Y'(%)=y(0)=0.
From (20), p' =—xy,
so  y'=p'=-x, Yo ="%Y =0

Y'=p'=-y=x, Y= Yo %Yo =0

y@ =2y —xy", Yo ! ==2Y5 = %Yo =

Yo =-3y"—xy", ¥ =3 %Y =0

yO =—ay"—xy®@, ¥ =-ayr- Xy, =—4d;

YD = By@ _xy® D By _y y&

y(8) y(5) Xy(6) , y(()S) (5) Xoy(()G)

yO ==7y® ",y ==Typ) — %Y, =-7x4d =-28d.

Putting these values in (21), we obtain (19).

Example 9 Evaluate y(0.1), using Taylor series method, given

y' = x(y)?+y*=0, y(0)=1 y(0)=0

Solution
Set Y =p
Then, y'=p,

and the given differential equation becomes

p'—xp*>+y* =0. ...(22)

Now we have to determine the coefficients of the Taylor series:

YO) = Yo+ (X=%)¥o + %

Here x,=0, y,=y(%)=y(0)=1 p,=Y=
From (22), P =xp> -V,
SO ynzprZXpZ_yZ’

ym — prr — p2 + 2pr! _ 2yyr’

Yo + .. (23)
Y'(%)=Yy(0)=0.

Vo= %P’ =Y’ =0-1=—1

yo po +2X0popo 2yoy('):O1
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y"=p'= P 2xpp - 2yy, Yo'= Po’ + 2% PPy~ 2Yo¥s =0;
Putting these values in (23), we obtain
XZ
y(x)=1—§+... .. (24)

Putting x=0.1 in (24), neglecting higher powers of x, we obtain

2
OL _ 1-0.005=0.995.

Y(0.9) ~1- 5=

Exercises

In Exercises 1-12, solve the given initial value problem using Taylor series method. Also
find the value of y for the given x .

1 %—1: xy, y(0)=1. Also find y(0.1).

2. %=x2+y2—2, y=1 at x=0. Also find y(0.2).

3. %: y*+1, y(0)=0. Also find y(0.1) and y(0.2).

4. % = x—y?, y(0)=1. Obtain numerical values for x=0.2(0.2)0.6.
X

5. y'=x+Y? y(0)=0. Obtain numerical values for
x = 0.0(0.2)0.4.
6. y=x"+Yy?, y@)=0. Find y (1.3).

7. Solve y'=x+vy, y@@) =0.0Obtain numerical values for = x=1.0(0.1)1.2.

8. Solve &_ 21 , Y(4)=4. Also find y(4.1) and y(4.2).
dx X +vy
9. Solve %:1— 2xy, y(0)=0. Also find y(0.2) and y(0.4).

10. Solve %zxym, y(D)=1. Also find y(1.1) and y(1.2).

11. Solve % =x’-vy, y(0)=1. Also find y at x=0.1(0.1)0.4.
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12. Solve %—Zyz%", y(0)=0. Also find y(0.1) and y(0.2).

In Exercises 13 -15, solve the given second order initial value problem using Taylor series
method. Also find the value of y for the given x .

13.

14.

15.

2

Yy x ¥ y0)=1 y(0)=0. Also find y(0.2).

dx dx
2

% +xy=0, y(0)=1, y'(0)=05. Also find y(0.1) and y(0.2).
2

% =x*—xy, y(0)=1, y'(0)=0. Also find y(0.1) and y(0.2).
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15
PICARDS ITERATION METHOD

Consider the initial value problem
y=1(Y), ¥(%)=Y, - (1%)

Also, assume (1*) have a unique solution on some interval containing x,. By separating

variables, the differential equation in (1) becomes

dy = f(x, y)dx. (1)
Integrating (1**) from xo to x with respect to x, (at the same time y changes from vy, to
y) we get
y X
[dy=] f(x y)x
Yo %
X
or y()=Yo =] f(x y)ok
%
X
or y(x)=yo+)£f(>c y)ck .(2)

It can be verified, by substituting x=x, and y=y, in (2), that (2) satisfies the initial

condition in (1).
To find the approximations to the solution y(x) of (2) we proceed as follows:

We substitute the first approximation y=y, on the right side of (2), and obtain the better

approximation
X
y(l)(x) =Yt j f (X, yo)dX . (3)
%
In the next step we substitute the function y¥(x) on the right side of (2) and obtain
X
YOX) =y, + | F(x yP(x)dx, ...(4)
%
The nth step of this iteration gives an approximating function

YV (X) =y, + j(: f(x, y" 9 (x))dx ...(5)

In this way we obtain a sequence of approximations
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YO, y2 ) - YO,
Working Rule

Consider the initial value problem

y=1(XYy), Y(X%)="Y.

Then Picard’s iterative formula is
X
YV =yo+ | F(x y"?)dx (n=123..) ..(6)
%

with y© =vy,.

Example Find approximate solutions by Picard’s iteration method to the initial value
problem y'=1+y? with the initial condition y(0)=0. Hence find the approximate value
of y at x=0.1 and x=0.2.

Picard’s iteration’s n'h step is given by (6).
In this problem

f(x y)=1+y* %=0, ¥y =y, =y(x)=y(0)=0,

and hence
f(x, y")=1+ ( y )2 .

Substituting these values in (6),

X
y™ =0+ j[1+(y‘"‘l’)2}dx (n=123...)
0
X
ie., Yy = x+ j(y‘"‘l’)2 dx (n=123...)
0
X
y® = x+ j(y(o) )2 dx
0
Putting y© =0,
X
y® =x+ [0?dx=x.
0
X
y? = x+ j(y(l) )2 dx
0
Putting y¥ =x,

2 X2 1 3
Y@ =x+ [ XPdx=x+ =%
0 3
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@ _ o (@Y
y _x+£(y ) dx

Putting y® =x+ % X3,

We can continue the process. But we take the above as an approximate solution to the
given initial value problem. That is,

v exs L2 La
y_y(x)_x+3x3 +EX X .(7)

Substituting x = 0.1, and x = 0.2, in (7), we obtain
y(0.1) = 0.100334
and y(0.2) = 0.202709 .

The above are not exact values for y at the given x points, but the approximate values.

dy

Example Given P x+ y with the initial condition y(0)=1. Find approximately the value
of y for x=0.2 and x=1.

Here f(x, y)=x+Yy; % =0, Yy =y,=y(%)=Yy(0)=1 and hence using (6)

y"W =1+ )j((x+ y" )dx

0

2

X
" =1+ X? + [ y"Ydx
0

ie., yt

2 X
y? =1+X7+ [ y©@dx
0

Putting y” =1, we obtain

2 X 2

W_q4 % - x

y _1+2+£dx 1+x+2.
2 X

y? =142+ ] y®dx
2 o
2

Putting y® =1+ x+ X7 we obtain
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2 X 2
@ _1,. % x
y'@ =1+ 2+£(1+x+ 2jdx

3

X
=1+ X+ x2+E

2 X
y® :1+X7+ [ y@dx

0

Putting y® =1+x+x*+ § we obtain

® X2 X 5 X3
Yy =1+ —+ [| 1+ X+ X" +— |dX

=1+ X+ X+ 3+X4
B 3 24

We accept
3 4
y=1+X+x° * 35
as an approximate solution.
When x = 0.2, we have

(02° (0.2)°

_ 2 _
y(0.2)=1+0.2+ (0.2)" + 3 + 2 =1.2427.
When x = 1.0, we have
(0.2 —1+1+l+£+—1 =3.3751
ya= 3 24 T

Example Solve by Picard’s method
y'—xy=1, given y=0, when x=2.
Also find y(2.05) correct to four places of decimal.
Here y' =1+ xy.
Hence FO6Y) =1+x7; % =2 ¥ =y,=y(%)=¥(2 =0,
and hence
f(x, y") =1+ xy".

Substituting these values in (5), we obtain

X
y® =0+ [(1+x"?)dx (n=123,...)
2
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X
ie., Yy =x—2+[xy"Pdx (n=123...)
2

X
Y =x—2+ [ xyOdx
2
Putting y =0, we obtain
X
y¥ =x—2+ [ x-0dx
2
ie., y =x-2.
X
y? =x-2+ [ xyWdx
2
Putting y“ =x-2, we obtain

X
y® =x-2+ [ x(x—2)dx
2

3

Putting y? = —% +X— X+ % we obtain

X 2 X
B _y_ _ IRV
y& =x 2+£x£ 3+x x+3de

2 X X xt X
15 3 3 4 15
We consider
2 X X x X
15 3 3 4 15
as an approximate solution. Substituting x = 2.05, we get

y (2.05) ~ 0.0526.

Example Solve the % = ﬁ , ¥(0) =1 using Picard’s method. Find the value of y at x =

0.1 approximately.

Here f(x,y)=

§I§ i % =0, ¥ =y,=y(%)=¥(0)=1, and hence by (6),
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)

—X
o +xdx
X0 _y

D=1+
Y £ v 4+ x

X
|
0

ax

(0) =

Putting y™ =1, we obtain

X1-x
1) :1 -~
y - (J) 1+x o
By actual division,

I-x_ .. 2
1+X 1+ X

and hence the above can be written as
Yo —1+}( 142 |
Ty 1+Xx

=1-x+2In(1+ X).

We take y=1-x+2In(l+x) as an approximate solution and hence the value of y at x =
0.1 (withIn 1.1 = natural logarithm of 1.1 = 0.0953) is given by

y(0.1) ~1- 0.1+ 2In(1+0.1) = 0.9+ 2In1.1=1.0906.

Example Given the differential equation

dy__x
dx  y?* 41

with the initial condition y=0 when x=0, use Picard’s method to obtain y for x=0.25, 0.5
and 1.0 correct to three decimal places.

2

Here f(x,y)= y2X+1 ; % =0, Y9 =y, =y(%)=y(0)=0, and hence by (6),
X ¥
yO =X
0 (y(“’)) +1
X

1):X
¥ = o

2

(yO) +1

Putting y® =0, we obtain
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X 32
y? = [———dx
o(y®) +1
Putting y® =%x3, we obtain

X 2 X d(lx3)
YO =[S k=[S
o (1/9)x° +1 o (3X) +1

=tan‘1(lx3) 1s: 1

T — ——9 "o
30 )73 Te* T

so that y? and y® agree to the first term, viz., (1/3)x*. To find the range of values of x so

that the series with the term (1/3)x* alone will give the result correct to three decimal
places, we put

1 9 <
81X <0.0005

which yields

Hence

y(0.25) = %(0.25)3 —0.005

y(0.5) = %(0.5)3 ~0.042

When x=1.0 (x<0.7 is not true) so we have to consider the second term _8_11 x° also into
consideration and get

11
Y(L0) =357 =032L

Exercises

In Exercises 1-7, solve the initial value problem by Piacrd’s iteration method (Do three
steps).

1. y=vy, y(0)=1 2. y'=x+vy, y(0)=-1.
3. y=xy+2x-x, y(0)=0. 4. y=y-vy? y(O):%.

5.y =V, y(0)=1 6. y'=2y, y@)=0.
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7. y':3—)2/, y@) =1
In Exercises 8-16, solve the initial value problem by Piacrd’s iteration method (Do four
steps). Also find the value of y at the given points of x.
8. y'=2x-vy, y@)=3. Also find y(1.1).
9. y'=x-vy, y(0)=1. Also find y(0.2).
10. vy =Xy, y@)=2. Also find y(1.2).
11. y' =3x+V?% y(0)=1. Also find y(0.1).

12. y'=2x+3y, y(0)=1. Also find y(0.25).

13. 2% =x+Y, y(0)=2. Also find y(0.1).

dy , y_1 B .
14. Feaave v y@)=1. Also find y(1.1).

15. %—1: xy, y(0)=1. Also find y(0.1).

16. %:x(u x’y), y(0)=3. Also find y(0.1) and y(0.2).

17. Obtain the approximate solution of

dy _ 4 N
&_x+x y, y(0)=3

by Picard’s iteration method. Tabulate the values of vy, for x=0.1(0.1)0.5, 3D.
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16
EULER METHODS

Consider the initial value problem of first order

Y=f(xy), YOO)=Y% (1)

Starting with given x, and the value of h is chosen so small, we suppose x,, X, X,,... be

equally spaced x values (called mesh points) with interval h.
ie., X =X%+h X =x+h,...
Also denote Y, =VY(%), Yi=Y(X), Y,=Y(X), ...

By separating variables, the differential equation in (1) becomes
dy="f(x y)ck .(1A)

Integrating (1A) from x, to x with respect to x, (at the same time y changes from vy, to
y,) we get

Jay=] foxyox

Yo X0
X
or Yi—Yo= ] F(X y)dx
%
X
or M=%+£NKWW .2)

Assuming that f(x y)= f(XJ, yo) in x,<x<x, (2)gives
Y=Y+ T (6 Yo)O —%)

or Y=Y+ 0%, Yo)-

Similarly, for the range x <x<x,, we have

%,
w=m+£ﬂxwm ...3)

Assuming that fx Y)=f(X, ¥) in x <X<X,, (3)gives
Y =¥ +hfx, w).
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Proceeding in this way, we obtain the general formula

Yo =YotHECG,Y)  (n=0,1-) ..(4)
The above is called the Euler method or Euler-Cauchy method.
Working Rule (Euler method)

Given the initial value problem (1). Suppose Xx,, x, %,,... be equally spaced x values
with interval h. i.e.,, x=x,+h, x,=x+h,... Alsodenote y,=y(x,), ¥,=Y(X), ¥,=Y(X), ...

Then the iterative formula of Euler method is:

yn+l=yn+hf(xn!yn) (n:O’:L"‘ ) (5)

Example Use Euler's method with h = 0.1 to solve the initial value problem

d_ x? + y?*with y(0)=0 in the range 0<x<0.5.

dx
Here f(x, y)=x*+Yy* % =0, y,=0, h=0.1.
Hence
X =%+h=02 x,=x+h=02 x=x+h=03, X, =%+h=04, x=x,+h=05.
We determine y,, y,, Vs, V., ¥s using the Euler formula (5). Substituting the given value in
Yoa = Yo +1F (X, 35)
we obtain
Yar=Ya +010¢+Y7)  (n=0,1-)
Y, =Y, +0.1(x5 +y7)=0+0.1(0+0) =0.

Y, =¥, +0.10x +y;)=0+0.1[ (0.1)* +0° | = 0.001.
Ys = Y, +0.10¢ +y3) = 0.001+ 0.1 (0.2)* + (0.001)* | = 0.005.
Yo = Y5 +0.10¢ +y3) =0.005+0.1] (0.3)* + (0.005)° | = 0.014.

Ys = Y, + 0.10¢ +y;) =0.014+0.1] (0.4)* + (0.014)° | = 0.0300196.

Hence
y(0)=0 y(0.1) =0 y(0.2) = 0.001
y(0.3) = 0.005 y(0.4) =0.014 y(0.5) = 0.0300196.
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Example  Using Euler method solve the equation y =2xy+1 with y(0)=0,h=0.02 for
x=0.1.

Here f(x, y)=2xy+1 x%,=0, y,=0, h=0.02. Hence

X =%+h=0.02, x,=x+h=0.04, X =x,+h=0.06, X,=%+h=0.08, x =x,+h=0.1
We determine ¥, Y,: Y5 Ya» ¥5 using the Euler formula (5). Substituting the given value in

Yo = Yo +HF (X, Y,)

we obtain
Yaa =Y +002A2%Y, +1)  (n=0,1,--)
Y, = Yo +002A2x,y, +1) =0+002(0+1) =002
y, =Y, +0.02(2x Y, +1) =0.02+0.02(2x0.02x 002+1) =004,

approximate to 2 places of decimals

Y, =Y, +002(2x,Y, +1) =004+0.02(2x 0.04x 0.04+1) =006
Y, =¥, +0.02(2x.Y, +1) =0.06+0.02(2x 0.06x 0.06+1) =0.08
Y, =Y, +002(2x,y, +1) =0.08+0.02(2x 0.08x 0.08+1) =0.1

Hence
y(0)=0 y(0.02) = 0.02 y(0.04) = 0.04
y(0.06) = 0.06 y(0.08) = 0.08 y(0.1) =0.1.

That is the approximate value of y(0.1) is 0.1.

Example Given the initial value problem y =x+y, y(0)=0. Find the value of y

approximately for x=1 by Euler method in five steps. Compare the result with the exact
value.

Here f(x,y)=x+y, %x=0, y,=Y(%)y(0)=0. As we have to calculate the value of y in

five steps, we have to take h= % = % =0.2. Hence

X=%+h=02, x,=x+h=04, x,=%,+h=0.6, X,=%+h=08, x=x,+h=10.

We determine Y;; Yo, Y3 Yas Y5 using the Euler formula (5). Substituting the given value in
(5), we obtain

yn+1:yn+0'z)§\+yn) (n=0,1--~ )
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The steps are given in the following Table.

Also the exact solution to the linear differential equation y'=x+y with the initial

condition y(0) =0 can be found out to be
y=¢€"—x-1 ...(6)

The exact values of y can be evaluated from (6) by substituting the corresponding x

values, in particular,
¥y =Y(x)=€*—x -1=€"*-0.2-1=0.000, approximately.

The other exact values are also shown in the following table.

aIr):::eXI Absolute
n | X 0.2(X, +Y,) Exact value
value of values
of Error
Ya
0 | 0.0 0.000 0.000 0.000 0.000
1 |02 0.000 0.040 0.021 0.021
2 |1 04 0.040 0.088 0.092 0.052
3 | 06 0.128 0.146 0.222 0.094
4 |08 0.274 0.215 0.426 0.152
51 1.0 0.489 0.718 0.229

The approximate value of y(1.0) by Euler’s method is 0.489, while exact value is 0.718.

Exercises

In Exercises 1-11, solve the initial value problem using Euler’s method for value of y at

the given point of x with given (his given in brackets)

1. %:1— y, ¥(0)=0 at the point x=0.2 (h=0.1).

dy y-x B . B _
2. oI y(0)=1 at the point x=0.1 (h=0.02).

3. y=x, y(0)=15 at the point x=0.2 (h=0.1).

4. %:3x+%y, y(0)=1 at the point x=0.2 (h=0.05).

5.y =x+y+xy, y(0)=1 at the point x=0.1( h=0.02).
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6. %:u y?, ¥(0)=0 at the point x=0.4 (h=0.2).

7. b

R y(0)=1 at the point x=0.4 (h=0.2).

8. %=1+In(x+ y), y(0)=1 at the point x=0.2 (h=0.1).

9. y=x*+y, y(0)=1 at the point x=0.1 (h=0.05).
10. y'=2xy, y(0)=1 at the point x=0.5 (h=0.1).
11. y'=-y, y(0)=1 at the point x=0.04 (h=0.01).

In Exercises 12-15, apply Euler’s method. Do 10 steps. Also solve the problem exactly.
Compute the errors to see that the method is too inaccurate for practical purposes.

12. y'+0.1y=0, y(0)=2, h=0.1

13. y':%pw/l— y*, y(0)=0, h=0.1
14. y'+5x'y* =0, y(0)=1, h=0.2
15. y' =(y+x)?, y(0)=1 h=0.1

16. Solve using Euler’s method y'(x+y)=y-x with y(0)=2 for the range 0.00(0.02)0.06.

17. Solve using Euler’s method y'= y—z—);( with y=1 at x=0 for h=0.5 on the interval
[0,1].

18. Using Euler’s method find y(0.2) of the initial value problem y'=x+2y, y(0)=1
taking h=0.1.

19. Using Euler’s method find the value of y at the point x=2 in steps of 0.2 of the initial

value problem% =2+ \/@ , y()=1.

Modified Euler Method
Modified Euler method is given by the iteration formula

(n+1) _

VD = Yo + D106, Yo) + 06, YN, n=0,1,2,

where y,™ is the nth approximation to y,. The iteration formula can be started by

choosing v, from Euler’s formula

Y1(O) = Yo +hf (X, Yo)-
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Example Using modified Euler’s method, determine the value of y when x=0.1 given
that

y=x>+y, y(0)=1. (Take h=0.05)
Here f(x,y)=x>+V; %=0, y,=1.

yl(O) — yO + hf (XO’ yO) = 1+ 005(1) :105

VO = o + DT (%, Yo) + (%, Y.

_1+@[f(o 1)+ (0.05, 1.05)]

=1+0.0251+ (0.05)* + 1.05]

=1.0513

VD = Yo+ B O Vo) + 0%, )
~1+ OT[f(O 1) + £(0.05, 1.0513)]

=1+ 0.0251+ (0.05)? + 1.0513]
=1.0513

Hence we take y, =1.0513, which is correct to four decimal places.
Formula takes the form

(n+1)

Y, =Y1+5 [f(X11Y1)+f(X2’YZn))] n=0,12,-

where we first evaluate y,” using the Euler formula
Y, =y, +hf (x, yy)-

=1.0513+0.05 (0.05)* +1.0513 ] =1.1040
YZ(l) =¥ +g[ f (%, yo) + F(Xs, yz(O))]

- 1+%{[(o.05)2 +1.0513]+/ (0.1)? +1.1040]}

=1.1055
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Y2(2) =Y +g[ f(x, yp) + F(Xs, yz(l))]

_1+@{[(0 05) +1. 0513] [(0.1)2 +1.1055]}

=1.1055
Hence we take y, =1.1055.

Hence the value of y when x=0.1 is 1.1055 correct to four decimal places.

Example Using modified Euler’s method, determine the value of y when x=0.2 given
that

%=x+\/7; y(0)=1. (Take h=0.2)

Here f(x, y)=x+\/§; X =0, y,=1.

V¥ = yo + hf (%5, ¥) =1+ 0.2(0+1) =1.2
B = Yo+ D0 (%, Yo) + 10, Y,

_1+—[1+ (0.2+/1.2] =1.2295.

VD = Yo+ B O Vo) + 0%, )

_1+—[1+ (0.2++/1.2295] =1.2309.

WD = Yo + B O Vo) + (%, Y]

= 1+—[1+ (0.2++/1.2309] = 1.2309.

Hence we take y(0.2) =y, =1.2309..
Exercises

In Exercises 1-11, solve the initial value problem using modified Euler’s method for value
of y at the given point of x with given (h is given in brackets)

1. %zl— y, ¥(0)=0 at the point x=0.2 (h=0.2).
dy _y-x
2. X y(0)=1 at the point x=0.1 (h=0.02).
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3. y'=x, y(0)=15 atthe point x=0.2 (h=0.1).

4, %=3x+%y, y(0)=1 at the point x=0.2 (h=0.05).

5.y =x+y+xy, y(0)=1 at the point x=0.1( h=0.02).

6. %:H y?, y(0)=0 at the point x=0.4 (h=0.2).

7. %: xy, y(0)=1 at the point x=0.4 (h=0.2).

8. %:1+In(x+ y), y(0)=1 at the point x=0.2 (h=0.1).

9. y=x*+y, y(0)=1 at the point x=0.1 (h=0.05).
10. y'=2xy, y(0)=1 at the point x=0.5 (h=0.1).

11. y'=-y, y(0)=1 at the point x=0.04 (h=0.01).

Numerical Methods Page 202



School of Distance Education

17
RUNGE KUTTA METHODS

The Taylor series method has desirable features, particularly in its ability to keep the
errors small, but that it also has the strong disadvantage of requiring the evaluation of
higher derivatives of the function f(x,y). In the Taylor series method, each of these higher
order derivatives is evaluated at the point X at the beginning of the step, in order to

evaluate y(x)at the end of the step. We observed that the Euler method could be

improved by computing the function f(x,y) at a predicted point at the far end of the step in
x. The Runge-Kutta approach is to aim for the desirable features of the Taylor series
method, but with the replacement of the requirement for the evaluation of higher order
derivatives with the requirement to evaluate f(x,y) at some points within the step x to x,;
. Since it is not initially known at which points in the interval these evaluations should be
done, it is possible to choose these points in such a way that the result is consistent with
the Taylor series solution to some particular, which we shall call the order of the Runge-
Kutta method. The Runge-Kutta method of order N = 4 is most popular. It is a good
choice for common purposes because it is quite accurate, stable, and easy to program.
Most authorities proclaim that it is not necessary to go to a higher-order method because
the increased accuracy is offset by additional computational effort. If more accuracy is
required, then either a smaller step size or an adaptive method should be used.

We use the fact that Runge-Kutta method of 1" order agree with Taylor’s series solution
up to the terms of h'.

Second Order Runge-Kutta Method

Computationally, most efficient methods in terms of accuracy were developed by two
German mathematicians, Carl Runge and Wilhelm Kutta. These methods are well known
as Runge-Kutta methods (R-K methods). In this and the coming section we consider
second and fourth order R-K methods.

There are several second order Runge-Kutta formulas and we consider one among
them.

Working Method (Second Order Runge-Kutta Method)

Given the initial value problem (1). Suppose x,, X, X, ... be equally spaced x values

with interval h. i.e.,

X =%+h X=x+h ..
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Also denote Yo =Y(%): Yi=Y(X): Y, =Y(%), ...

For n=0,1 --- until termination do:

X2 =%, +h

k= (x.,¥7) ..(8)
L, =hf (1., +K) --(9)
Yor =Yy 5K +1,) -(10)

Remark Modified Euler method is a special case of second order Runge-Kutta method
given by (10).

Example Use second order Runge-Kutta method with h=0.1 to find y(0.2), given

dy

— =x*+y* with y(0)=0.
dx

Here f(x, y)=x*+y? % =0, y,=0, h=0.1. Hence
X=%+h=01 x,=x+h=0.2.

To determine y,, y, we use second order Runge-Kutta method and using (8) - (10),
k= hf (X, Yy) = 0.1(x7 + ;)
by =hF (%0, Y5 +k) =01, + (¥, +k)]
and Yo =% #5061,
k, =0.2(x2 + y2) = 0.1(0? + 0%) = 0.
lp = 0.2(x] + ( +k)?) =0.1] (0.1)° + (0+ 0)*) | = 0.001
and Y. =Y, +%(k0 +k,) = 0+%(O+ 0.001) = 0.0005.
k =0.2(x"+y7) = 0.1[(0.1)2 + (0.0005)2] =0.001, correct to three places of decimals.
l,=0.20 +(y, +k)?) =0.1[(0.2)* +(0.0015)°) | = 0.004

and Y, =Y, + %(k1 +1,)=0.0005+ %(0.001+ 0.004) = 0.003.
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Hence y(0.1) = 0.0005, y(0.2) = 0.003.

Example Given the initial value problem y' =x+vy, y(0)=0. Find the value of vy

approximately for x=1 by second order Runge-Kutta method in five steps. Compare the
result with the exact value.

Here f(x, y)=x+Y, X,=0, y,=0. As we have to calculate the value of y when x=1 in five

steps, we have to take h= % = % =0.2. Hence

X=%+h=02, x,=x+h=04, x,=%,+h=0.6, X,=%+h=08, x=x,+h=10.
We determine Y, Y., Yz Yar Y5 we use second order Runge-Kutta formula:
Ky = hf (X, ) = 0.2(X, + Y,)

In = hf (Xn+1’ yn + kl) = O'Z(Xn+l+ (yn + kn))

=0.2[x, +02+y, +0.2(x,+Y,)], as X, =X, +h=x, +a, and Vo =Ya +%(kn +1.)

=y, +%{O.2(xn +Y,)+02) X, 402+, +02(x,+,) |}

=y, +0.22(x, +y,)+0.02

The successive steps and calculations are plotted in the following table.

approximate Yiu1

n| %, | valueofy, X +Y, | 022(x +y,)+0.02

00.0 0.0000 0.0000 0.0200 0.0200
1,02 0.0200 0.2200 0.0684 0.0884
2104 0.0884 0.4884 0.1274 0.2158
3106 0.2158 0.8158 0.1995 0.4153
4108 0.4153 1.2153 0.2874 0.7027
5(1.0 0.7027

Hence y(1) =0.7027. In an earlier example we have noted that the exact value is 0.718.
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Exercises

In Exercises 1-10, solve the initial value problem using second order Runge-Kutta method
for value of y at the given point of x with given h.

1. %zl— y, ¥(0)=0 at the point x=0.2 (Take h=0.2).

2. ﬂzu, y(0)=1 at the point x=0.1 (Take h=0.02).
3. y=x, y(0)=15 at the point x=0.2 (Take h=0.2).

4. %z x—Y, y(0)=1 at the point x=0.2 (Take h=0.1).

5. y'=x+y+xy, y(0)=1 at the point x=0.1(Take h=0.02).

6. %:1““ y?, y(0)=0 at the point x=0.4 (Take h=0.2).

7. % =xy, y(0)=1 at the point x=0.4 (Take h=0.2).

8. %:h In(x+y), y(0)=1 at the point x=0.2 (Take h=0.2).
9. y=x*+y, y(0)=1 at the point x=0.1 (Take h=0.05).
10. y'=2xy, y(0)=1 at the point x=0.5 (Take h=0.1).

In Exercises 11-13, apply second order Runge-Kutta method. Do 10 steps.
11. y'=vy, y(0)=1, h=0.1
12. y=y-¥?, y(0)=05, h=0.1
13. y'=2(1+y?), y(0)=0, h=0.05
14. y'+2xy* =0, y(0)=1, h=0.2

15. Solve using second order Runge-Kutta method y'(x+y)=y-x with y(0)=2 for the
range 0.00(0.02)0.06.

16. Solve using second order Runge-Kutta method y’=y—2—; with y=1 at x=0 for

h=0.5 on the interval [0, 1].
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17. Using second order Runge-Kutta method find y(0.2) of the initial value problem
y'=x+2y, y(0)=1 taking h=0.1.

18. Using second order Runge-Kutta method find the value of y at the point x=2 in

steps of 0.2 of the initial value problem % =2+ \/E , y()=1.

Fourth Order Runge-Kutta method

The Runge-Kutta method' of fourth order (also known as classical Runge-Kutta
method) gives greater accuracy and is most widely used for finding the approximate
solution of first order ordinary differential equations. The method is well suited for
computers. The method is shown in the following algorithm.

Algorithm (The Runge-Kutta method)

Given the initial value problem (1). Suppose x,, X, X,,... be equally spaced x values with

interval h. i.e.,
X =%+h X =x+h,..
Also denote Yo =Y(%), Yi=Y(X), ¥, =Y(%) ...

For n=0,1,--- , until termination do:

X1 =%, + 1
A, =hf (X, ¥,) ...(11)
B,=hf(x,+3h, y,+3A) ...(12)
C,=hf(x,+%h, y,+3B,) ...(13)
D,=hf(x,+h,y,+C,) ...(14)
yn+1:yn+%(A1+ZBn+2Cn+Dn) ...(15)

Example Use Runge-Kutta method with h=0.1 to find y(0.2) given %:x%y2 with
X

y(0) =0.
Here f(x, y)=x*+y? % =0, y,=0, h=0.1. Hence
X=%+h=01 x,=x+h=0.2.
To determine vy,, y, we use improved Euler formula. Using Egs. (12) (15),

X, =X +h=x +0.1
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A, =hf (%,,¥,) =010 + y7)
B, =hf (x, +4h, y,+1A) =0.1] (x,+0.05) +(y, +#A,) |
C,=hf(x,+1h,y, +%Bn)=0.1[(xn +0.O5)2+(yn+%3n)2}
Dn = hf (Xn +h, yn+Cn):0'1|:X§+l+(yn+Cn)2i|
Vou=Y.+= (A]+ZB +2C,+D,)
X =%+01=0+0.1=0.1
A =0.10¢ +y5)=0.10° +0?) =0
B, = 01[(x0+005) H(Yo+3A) ]

1 (0.05)* + 0 | = 0.00025.

C, 01[(x0+005) +(y,+3B)) }
= 0.1/ (0.05)* +(0.000125)° | = 0.00025.
D, = o.1[x12 +(Y +co)2]
=0.1[(0.1)* +(0.00025)° | = 0.001.
1
Y. = Yo +6(A) +2B,+2C, + D)
=0+ %(0+ 2x0.00025+ 2x 0.00025 -+ 0.001) = 0.00033.

X, =%+01=0.1+0.1=0.2

A =0.1(x¢ +y;) = 0.1] (0.1)* + (0.00033)* | = 0.001
B, = 0.1[(x1 +0.057 +(y, +%A)2}

= 0.1/ (0.15)” + (0.00083)” | = 0.00225.
C,= 0.1[()(1 +0.057 +(y, +%Bl)1

=0.1[(0.15)° +(0.001455)° | = 0.00025.
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D, = 0.1[x§ +( Y, +C1)2J

=0.1/(0.2) +(0.0058)* | = 0.004.
1
Y, = y1+6(AL+ZBl+2C1+ Dl)

=0.00033+ %(0.014) =0.002663.
Example Use Runge-Kutta method with h=0.2 to find the value of y at x=02, x=04,
and x=0.6,given % =1+y?, y(0)=0.

Here f(x, y)=1+Yy? %, =0, y,=0, h=0.2. Hence
X=%+h=02, x,=x+h=04.

To determine vy, y, we use improved Euler formula:
X=X +h=x +0.2
A, =hf (x,,¥,) =02(1+y;)
B, =hf(x,+%h,y,+1A) =0.2[1+(yn +%A1)2}
C,=hf(x,+ih,y +1B) =O.2[1+(yn +%Bn)1

D,=hf(x,+h, y +C,) =O.2[1+(yn +Cn)2]

Yo = Ya +%(A] +2B,+2C, +D,)
X =%+02=0+02=02
A =0.2(L+y2) = 0.2(1+0?) = 0.2
B, = o.2[1+ (Yo +%Ab)1 =0.2[1+(0.° ]=0.202

C, = o.2[1+ (Vo+3 BO)Z} =0.2[1+(0.101)? | = 0.20204.

D, = O.2[1+(y0 + co)z]

=0.2[1+(0.20204)* | = 0.20816.
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1
Y1 =Yo +6(A)+280+2C0+ Do)

=0+ é(O.Z +2x0.202+ 2x0.20204 + 0.20816) = 0.2027.
i.e., y(0.2)=0.2027.
X, =%+01=02+0.2=04

A =02(1+y;) =0.2[1+(0.2027)* | = 0.2082
B, = 0.2[1+ (vi+3 AL)Z} =0.2[1+(0.3068)* ] = 0.2188.

C, = 0.2[1+ (y+1 Bl)z} =0.2[1+(0.3121) ]=0.2195. D, = o.2[1+ (v, + cl)z]

=0.2[1+(0.4222)* | = 0.2356.
1
Y, = y1+6(A1+ZBl+2C1+ Dl)

=0.00033+ %(0.2082 +2x0.2195+ 2x0.2195+ 0.2356)

=0.4228.
ie., y(0.4) = 0.4228, correct to four decimal places.

X =X%+01=04+02=0.6
A —0.2(1+ y2); B,=02[1+(y,+3A) |

C2=0.2[1+(y2+§82)2}; D2=o.2[1+(y2+cz)2]
Substituting the values, and using
1
Vs =Y, +€(A2 +2B,+2C,+D,)

we obtain y(0.6) =y, =0.6841, correct to four decimal places.

Example Given the initial value problem y =x+y, y(0)=0. Find the value of y

approximately for x=1 by Runge-Kutta method in five steps. Compare the result with the
exact value.

Here f(x, y)=x+Y, X,=0, y,=0. As we have to calculate the value of y when x=1 in five

steps, we have to take h= % = % =0.2. Hence

Numerical Methods Page 210



X=%+h=02, x,=x+h=04, x,=%,+h=0.6,

School of Distance Education

X,=%+h=0.8, x=x,+h=10.

We determine vy, v,, V,, V,, ¥ we use Runge-Kutta formula:

X1 =%, +h=x +02
A=H (X, ¥,) =02, +Y,)
B, =hf (x, +1h, y, +1A)=0.2[x, +0.1+y, + 0.1, + ¥,)]

=0.22(x, +y,)+0.02

C,=hf(x,+3h, y,+5B,)

=0.2[x, +0.1+y, +0.11(x, +y,) + 0.01]

=0.222(x, +y,) +0.022

D,=hf(x,+h,y,+C,)

=0.2[x, +0.2+y, +0.222(x, +y,) + 0.022]

=0.2444(x_ +y,)+0.0444

yn+l = yn +%(A1 + 2Bn + 2Cn + Dn)

e,  VY.,=Y,+02214(x, +vy,)+0.0214.

The successive steps and calculations are plotted in the following table.

approximate
n X, X, + Y, 0.2214(x, +y,) +0.0214
value of vy, 0.2214(x, + ¥,)

0/ 00 0.0000 0.0000 0.0000 0.021 400

1| 02 0.021 400 0.221 400 | 0.049 018 0.070 418

2| 04 0.091 818 0.491 818 | 0.108 889 0.130 289

3| 0.6 0.222 107 0.822107 | 0.182014 0.203 414

4] 08 0.425 521 1.225521 | 0.271 330 0.292 730

5/ 1.0 0.718 251
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Table:

the initial value problem y'=x+y, y(0)=0.

Approx1méte values to y Absolute value of Error
Exact obtained by
X, value RK R-K R-K R-K
Euler Second | Fourth Euler Second | Fourth
method method
Order Order Order Order
0.2 | 0.021403 0.000 0.0200 | 0.021400 0.021 0.0014 | 0.000003
0.4 | 0.091825 0.040 0.0884 | 0.091818 0.052 0.0034 | 0.000007
0.6 | 0.222119 0.128 0.2158 | 0.222107 0.094 0.0063 | 0.000011
0.8 | 0.425541 0.274 0.4153 | 0.425521 0.152 0.0102 | 0.000020
1.0 | 0.718282 0.489 0.7027 | 0.718251 0.229 0.0156 | 0.000031
Exercises

In Exercises 1-10, solve the initial value problem using fourth order Runge-Kutta method

for value of y at the given point of x (with h.given in brackets)

1 W

T dx

dy
2.5

dy
3. &

=Y, Y(0)=1 atthe point x=1 (h=0.5)

=1-vy, y(0) =0 at the point x=0.2 (h=0.1).

=y—X, y(0)=2 at the point x=0.2 (h=0.1).

4. yy'=x, y(0)=15 at the point x=0.2 (h=0.1).

dy
5. 5

=x-Y, y(1)=0.4 at the point x=1.6 (e h=0.6).

6. Y=x+y+xy, y(0)=1 at the point x=0.1( h=0.02).

dy
7. &

dy
8. o

= Y=X y(0)=1 at the point x=0.1 (h=0.02).

=xy, Y1) =2 atthe point x=1.6 (h=0.2).
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9. %:1+In(x+ y), y(0)=1 at the point x=0.2 (h=0.2).

10. y'=x*+y, y(0)=1 at the point x=0.1 (h=0.05).

11. y'=2xy, y(0)=1 at the point x=0.5 (h=0.2).
12. y’=3x+%, y(0)=1 at the point x=0.2 (h=0.05).

13. Solve using Runge-Kutta method y'(x+y)=y-x with y(@0)=2 for the range
0.00(0.02)0.06.

14. Using Runge-Kutta method find y(0.2) of the initial value problem y'=x*+2y, y(0)=0,
taking h=0.2.

15. Using Runge-Kutta method find the value of y at the point x=2 in steps of 0.2 of the

initial value problem % =2+ \/@ , y(@) =1.

16. Using Runge-Kutta method find y(1.3), given y' =x’y and y(1) =2. Take h=0.3.

17. Solve using Runge-Kutta method y'= y—2—; with y=1 at x=0 for h=05 on the
interval [0, 1].
18. Solve y'=2x"Jy—Inx+x?, y(1)=0 for 1< x<18
(a) by Euler method with h=0.1.
(b) by improved Euler method with h=0.2.
(c) by Runge-Kutta method with h=0.4.

)
(d) Compare the above results with the exact value. Determine the errors. Comment.
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18
PREDICTOR CORRECTOR METHODS

Introduction

Euler method and fourth order Runge-Kutta methods are called single-step methods,
where we have seen that the computation of y, , requires the knowledge of y, only. But

modified Euler method is a multi-step method since for the computation of vy, the
knowledge of y, is not enough. It is a predictor-corrector method, in which a predictor
formula is used to predict the value y,,of y at x,,, and then a corrector formula is used to

improve the valueof y_,.
For example, consider the initial value problem

dy _ _
v f(%Yy), Y(%)=Yo

Using simple Euler’s and modified Euler’s method, we can write down a simple
predictor-corrector pair (P-C) as

P: yn+1(0) :yn+hc()§v yn)
h
C: Yo =¥t T 06 Yo+ F 00 YD) |

Here, vy,.," is the first corrected value of vy,,,.. The corrector formula may be used

iteratively as defined below:

h -
Yoa” =Yoo 00 )+ T 06 W) | (r=12..0)
The iteration terminate when two successive iterates agree to the desired accuracy. We
have considered modified Euler method in the previous chapter.

In this chapter we consider two methods: Adams-Moulton and Milne’s Methods.
They require function values at x,, X, 4, X, ,, ... for the computation of the function value at

Xn+1'
Adams-Moulton Method

Consider the initial value problem

y' = f(X, y), y(XO) = yO' (1)
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Starting with given X and given the step size h, we have
X =X, +h, x,=%,-h, x,=x,-2h, and X4 =% —3h. We denote

fo = f(xm yo)’ 1E1 = f(xl’ y1)1 1:—1 = f(X—l’ y—l)v f-z = f(X-zv y_z), and f-3 = f(X_3, y_3)-

In Adams-Moulton Method, we predict by
ylp=yo+%(55f0—59f_1+37f_2—9f_3) (1)
and correct by
C h p
A =y°+§(9fl +19f,-5f , + ), ..(2)
where f°=f(x, y/).
The general forms for formulae (1) and (2) are given by
Yoy, +%(55fn 59f 437 ,-9f ) ..(1)
with correction
c h
yn+1: yn +§(9fn31+19fn _an—1+ fn-z)i (2)

where fnﬁl =f (X, y;l)

The formulae given above are example of explicit predictor —corrector formulae as they are
expressed in ordinate form.

Example Given %zh y?; y(0)=0. Compute y(0.8) using Adams-Moulton Method.
X
Here x =0.8, h=0.2. Hence X =% —-h=0.8-0.2=0.6,

X,=%-h=04, x,=%-2h=0.2, and x,=x,-3h=0.

The starter values are y(0.6), y(0.4)and y(0.2). Using fourth-order Runge-Kutta method

(Ref. Example 7 in the previous chapter), the values are found to be:

y(0.6) =0.6841, y(0.4)=0.4228, y(0.2)=0.2027.
Hence vy, =y(x,)=y(0.6)=0.6841, vy, =y(x,)=y(0.4)=0.4228,
y,=02027 and y,=y(x,)=y(0)=0.

Also,  f,=1f(x,Y,)=1+Y; =1+(0.6841)" ;
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f,=f(x, y,)=1+Y’ =1+(0.4228)%;

and so on. We tabulate them below:

X y f(x)=1+y?

X ;=0.0 y ,=0.000 f . =1.0000
X,=0.2 y, =0.2027 f,=1.0411
x,=04 y ,=0.4228 f,=1.1787

X, =06 Yy, =0.6841 f, =1.4681

Substituting these values in (1), we obtain the predicted value of y, at x =0.8as

y© =0.6841+ %{55[“ (0.6841)°] — 591+ (0.4228)°]

+37[1+(0.4228)°] - 9

=1.0233, on simplification.

Corrected value of y, at x, =0.8 is obtained using (2) as below:
ye = 0.6841+%{9[1+ (0.0233)2] + 19[1+ (0.6841)?]
~5§1+(0.4228)°] +[1+(0.2027)°]}

=1.0296, on simplification.

Exercises

1. Using Adams-Moulton predictor-corrector method, find the value of y at x=4.4 from

the differential equation

given that

X 4.0 41 42 4.3
y 1.0000 1.0049 1.0097 1.0143

2. Using Adams-Moulton predictor-corrector method, find the value of y at x=0.8, and

x=1.0 of the initial value problem

dy . .2 _
&_y X, Y(o)—l
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(Take h=0.2))

3. Using Adams-Moulton predictor-corrector method, find the value of y at x=1.4 of the

initial value problem
Xy +xy=1 y@)=10
with starter values y(1.1)=0.996, y(1.2)=0.986, y(1.3)=0.972.
4. Find the solution of the initial value problem
y'=y*sint, y(0)=1
using Adams-Moulton predictor-corrector method, in the interval (0.2, 0.5) given that

y(0.05) =1.00125, y(0.1) =1.00502, y(0.15) =1.01136.

Milne’s Method

Consider the initial value problem

y'= f(X, y), y(X0)= yO' (1)
Starting with given x, ~and given the step size h, we have
X =% +h, X, =%—-h, x,=x%—2h, and X 5 =% —3h. We denote

fo = f(xm yo)' f1 = f(xl' yl)v f71 = f(x—ll y—l)' f72 = f(sz, yfz)' and ffs = f(XﬁS, y,3).

In Milne’s Method, we predict by

4h
Y = y_3+?(2f_2 - f,+2f,) (1)
and correct by
C h ]
Y1 =y71+§(f71+4f0+f1 ); (2)

where " =f(x, ¥/).

The general forms for formulae (1) and (2) are given by

4h

Yo = Yoa+ ?(2 foz— o +2f) ---(3)
and correct by
h P
yr(1:+1:yn—1+:_3(fn—1+4fn + fn+1)l (4)
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where 7 =f(X.., ¥'.).

The formulae given above is also explicit predictor —corrector formulae as they are
expressed in ordinate form.

Example Given %—H y?; y(0)=0. Compute y(0.8) and y(1.0) using Milne’s Method.

=
Solution
Determination of y(0.8):
Here take x =0.8, h=0.2. Hence
X =%-h=08-02=06, x,=04, x,=02, x,=0.

The starter values are y(0.6), y(0.4) and y(0.2). Using fourth-order Runge-Kutta method,

the valued are found to be:

y(0.6)=0.6841, y(0.4)=0.4228, y(0.2)=0.2027.

Hence

y,=0.6841, y,=04228 y,=0.2027 and
Y. = Y(X;)=y(0)=0.
Also, f,="f(x, Y,) =1+ y; =1+(0.6841) ;
f, =1+y? =1+(0.4228)*;

and so on. We tabulate them below:

X y f(x)=1+y?

X ;=0.0 y_; =0.000 f ,=1.0000
X,=02 y, =0.2027 f,=1.0411
x,=04 y,=0.4228 f,=1.1787

X =06 y, = 0.6841 f,=1.4681

Substituting these values in (1), we obtain the predicted value of y, at x, =0.8as

y, =0+ %[2(1.0411) —1.1787 + 2(1.4681)] =1.0239

Hence f,=1+(yF) =1+ (1.0239)* = 2.0480
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and hence the corrected value of y, at x, =0.8 is obtained using (2) as below:

y- =0.4228+ O—'3’2[1.1787 +4(1.4681) + 2.0480] =1.0294.

Hence y(0.8) =1.0294, correct to four places of decimal.
Determination of y(1.0):
Here take x =1.0, h=0.2. Hence
X =%-h=10-02=08, x,=06, x,=04, x,=02
The starter values are y(0.8), y(0.6),and y(0.4). We have the values
y(0.8) =1.0294, y(0.6)=0.6841, y(0.4) = 0.4228.
Hence
Y, =10294, y,=06841 y,=04228 and y,=0.

Also, f,=1+y;=1+(10294)* ; f 6 =1+y* =1+(0.6841)*; and so on.

X y f(x)=1+Yy?

X ;=02 y , =0.2027 f,=1.0411
x,=0.4 y, =0.4228 f,=1.1787
x,=0.6 y,=0.6841 f,=1.4681

%, =0.8 Y, = 1.0294 f, = 2.0597

Substituting these values in (1), we obtain the predicted value of y, at x, =1.0as
yP =1.5384

Hence f=1+(yf )2 —3.3667

Corrected value of y, at x, =0.8 is obtained using (2) as below:

y¢ =1.5557.

Example Find, using Milne’s predictor-corrector method, y(2.0) if y(x) is the solution of

dy _x+y
dx 2
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assuming y(0)=2. y(0.5)=2.636, y(1.0)=3.595 and y(1.5)= 4.968.
Here take x =2.0, h=0.5. Hence

X =%—-h=20-05=15 x,=1 x,=05 x,=0.
Also, by the assumption,

y,=4.968, y,=3595 y,=2636 and y,=2

As f(x, y)=%, we have

fo= f (%, Vo) = Xo-;y0 :1.5+;1.968:3'2340' ’_

fo=f(Xy yy)=2 ; Y, 10 +:'595 = 2.2075. ;

f,= (X, y,)="2 ; Yo 05+ 22'636 ~1.5680. ;

Now, using predictor formula we compute
4h
Y =Y, +?(2f72 - f,+2f))

=2+ @[2(1.5680) —2.2975+ 2(3.2340) | = 6.8710.

Using the predicted value, we shall compute the corrected value of y, from the corrector
formula

h
yf 23/-1"‘5“-1""”0+ flp)’ 2)

where 7= f(x, y/).
Now using the available predicted value y; ,

p
17 = 1 (x, ) =50 - 2258 g 4365

Thus the corrected value is given by
yy =3.595+ O—'?)5[2.2975+ 4(3.234) + 4.4355 | = 6.8731667.
Hence an approximate value of y at x=2 is taken as y(2) =y, =6.8731667.
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Example Tabulate the solution of

dy
— = : 0)=1
Yoy 0

in the interval 0 < x < 0.4, with h = 0.1, using Milne’s predictor-corrector method.

We take x =0.4. We cannot immediately use Milne’s predictor-corrector method as it
need the value of y at the previous four points X, =%—-h=04-0.1=0.3, x,=0.2,
X,=01 x,=0 Clearly, y,=y(x;)=y(0)=1 For the calculation of the rest three y values
we use Runge-Kutta method of fourth order and then switch over to Milne’s P-C method.

By Runge-Kutta method of fourth order it can be seen that (work is left as an exercise)
Yo = Y(%)=Yy(0.3)=1.3997, y, =y(x,)=y(02)=12428 y,=y(x,)=y(0.1)=11103.
From the given differential equation f(x, y)=x+y, and we have
fo=1(%,¥)=% + Yo =0.3+1.3997 =1.6997.
fo=f(x,y,.)=x,+y, =02+1.2428=1.4428.
f,="f(x,Y,)=%,+Yy,=01+11103=1.2103.

Now, using predictor formula we compute

4h
Vi =Y., +?(2f72 - f,+2f))

4(0.5)
3

=1+ [ 2(1.2103) -1.4428+ 2(1.6997) | =1.58363

Before using the corrector formula
C= h f,+af,+f° 2
yl _y—1+3( —1+ 0+ l)’ ( )

we compute
f°=f(x,y)=x+Yy, =0.4+15836=1.9836.

Hence

yS =1.2428+ O—;[l.4428+ 4(1.6997)+1.9836 | =1.5836.
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The required solution is tabulated below:

X 0 0.1 0.2 0.3 0.4
y 1.0000 1.1103 1.2428 1.3997 1.5836

Example Find, using Milne’s predictor-corrector method, y(2.0) if y(x) is the solution of

% - % assuming y(0)=2. y(0.5)=2.636, y(L0)=3.595 and y(1.5) = 4.968.
X

Here take x =2.0, h=05. Hence

% =%—-h=20-05=15 x,=1 x,=05, x,=0.
Also, by the assumption,

Y, =498 y,=398H y,=266 and y,=2

X+Yy

As f(x, y)=T, we have
£ = f (%, V) = X+ Yo _ 1.5+4.968 _3.2340. ;
2 2
Lm0,y = X, ; Y _ 1.0+ 3.595 22975, ;
fL= (X, y,)= X,+Y,_ 05+2636 —1.5680. ;

2 2
Now, using predictor formula we compute

4h
Vi =Y., +?(2f72 - f,+2f))

_,, 4(05)

[ 2(1.5680) - 2.2975 + 2(3.2340) | = 6.8710.

Using the predicted value, we shall compute the corrected value of y, from the corrector
formula

h
yf =Y, +§(f-1 +4f, + flp)’

where 7= f(x, y/).

Now using the available predicted value v,
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p
£P = f(x, y¥) = Xl“;yl - 2+e;'871=4.4355.

Thus the corrected value is given by
Y =3.595+ O—'?)5[2.2975+ 4(3.234) + 4.4355 | = 6.8731667.

Hence an approximate value of y at x=2 is taken as y(2) =y, =6.8731667.
Exercises
1. Find y (0.8) using Milne’s P-C method, if y(x) is the solution of the differential equation

dy 2
—=-xy°; yl0)=2
R y(0)

assuming y(0.2) = 1.92308, 1(0.4) = 1.72414, y(0.6) = 1.47059.

2. Find the solution of

%= y(x+y), y(0)=1

using Milne’s P-C method, at x=0.4 given that

y(0.1)=1.11689, y(0.2)=1.27739 and y(0.3)=1.50412.

kkkkkkkk*%x

Numerical Methods Page 223



