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SEMESTER  III 
 

COMPLIMENTARY  COURSE  III 
 

STATISTICAL  INFERENCE 

 
Module 1. Sampling Distributions: Random sample from a population 

distribution, Sampling distribution of a statistic, Standard error,  
Sampling from a normal population, Sampling distributions of 

the sample mean and variance. Chi-square, Student‟s t and F  
distributions - derivations, simple properties and inter 

relationships. 25 hours 
 
Module 2. Theory of Estimation: Point estimation, Desirable properties 

of a good estimator, unbiasedness, consistency, sufficiency, 

statement of Fisher Neyman factorization criterion, 

efficiency. Methods of estimation, method of moments, 

Method of maximum likelihood-Properties estimators 

obtained by these methods 
25 hours 

 
Module 3. Interval Estimation: Interval estimates of mean, difference of 

means, variance, proportions and difference of proportions, 

Large and small sample cases. 
10 hours 

 
Module 4. Testing of Hypotheses: Concept of testing hypotheses, simple and 

composite hypotheses, null and alternative hypotheses, type I 

and type II errors, critical region, level of significance and 

power of a test. Neymann-Pearson approach-Large sample tests 

concerning mean, equality of means, proportions, equality of 

proportions. Small sample tests based on t distribution for mean, 

equality ot means and paired mean for paired data. Tests based 

on F distribution for ratio of variances. Test based on chi square-

distribution for variance, goodness of fit and for independence 

of attributes. 30 hours 
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4 Statistical inference Statistical inference 5 
 

MODULE I 

 

SAMPLING DISTRIBUTIONS 
 
 

Here we are interested with the study of population characteristics 

based on a sample taken from the population. The process of making 

inferences about the population based on samples taken from it is called 

statistical inference or inferential statistics. We have already discussed 

the sampling theory which deals with the methods of selecting samples 

from the given population. The sample selected should be such that it is 

capable of exhibiting the characteristics of the population. Here we focus 

our attention on characteristics calculated from simple random samples.  
If X1, X2,... Xn are independent and identically distributed r.v.s., we 

say that they constitute a random sample from the population given by  
their common distribution. According to this definition a random sample 

x1, x2,... xn of size „n‟ is a collection of random variables (X1, X2, ...Xn) 

such that the variables Xi are all independent but identically distributed 

as the population random variable X. That means observations of a 
random variable from the repetitions of a random experiment can be 
treated as i.i.d. random variables. We can justify this interpretation by 
means of suitable examples. 

 
Parameter and Statistics  

Any measure calculated on the basis of population values is called a  
‘parameter’. For example, population mean  population standard deviation 

, population variance 
2
, population correlation coefficient etc. For 

example, is the parameter of a Poisson distribution, and are the  
parameters of normal distribution. Statistical inferences are usually based on 

„Statistics‟, that is, on random variables X1, X2, X3...Xn constituting a 
random sample. In other words, any measure computed on the basis of 
sample values is called a statistic. For example, sample mean x , sample 

standard deviation s, sample variance s
2
, sample correlation coefficient r 

etc. 
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6 Statistical inference  
Sampling Distributions 
 

In the case of random sampling the nature of the sampling distribution 
of a statistic can be deduced theoretically, provided the nature of the 

population is given, from considerations of probability theory. Let x1, 

x2,...xn be a random sample taken from the population under 
investigation. We can consider the random observations as independent 

random variables X1, X2,....Xn following the same distribution of the 

population. Let t = g(X1, X2 .... Xn ) being a function of these r.v.s, is 

also a r.v. That is t is a r.v. The probability distribution of t = g(X1, X2 ... 

Xn) is called sampling distribution of t. In other words, by a sampling 
distribution we mean the distribution of a statistic. If t is a statistic, its 
sampling distribution is usually denoted as f(t). The sampling distribution 
of one sample differs from the sampling distribution of another even if 
both are defined on the same sample. The determination of the sampling 
distribution of a statistic depends on the selection procedure of the 
sample, the size of the sample, and the distribution of the population. 
 
Standard error 
 

The standard deviation of the sampling distribution of a statistics is 

called standard error of the statistic. If t is a statistic with sampling 

distribution f(t)l the standard error (SE) of t is given by 
 

SE of t =  V (t ) where V(t) = E(t
2

) {E(t)}
2
 

 
Uses of Standard Error 
 

Standard Error plays a very important role in large sample theory and 

forms the basis of testing of hypothesis  
1. Since SE is inversely proportional to the sample size n it is very 

helpful in the determination of the proper size of a sample to be taken 

to estimate the parameters.  
 
2. It is used for testing a given hypothesis.  
 
3. SE gives an idea about the reliability of a sample. The reciprocal of 

SE is a measure of reliability of the sample.  
 
4. SE can be used to determine the confidence limits of population 

parameters.  
 

Here we discuss sampling distributions under two headings.  
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A. Sampling distribution of small samples drawn from normal 

population.   
B. Sampling distribution of large samples drawn from any large 

population.   
Conventionally by a small sample we mean a sample of size less than 

30 where as a sample of size greater than or equal to 30 is treated as a 

large sample.  
 
A. Sampling distribution of small samples  

The probability distribution of statistics computed from small 

samples drawn from a normal population are discussed here. Being a 

small sample we get exact probability distribution of these statistics or 

exact sampling distributions. 
 
Sampling distribution of sample mean  

Let x1, x2,....xn be a random samples of size n drawn from N(). 

Let x be the sample mean. To find the probability distribution of x we 

shall use the mgf technique. We can consider the random observations as  
independent and normally distributed r.v.s each having the same normal 

law N(). 
 

 

M
xi 

 t 1 
t 2  2                              

 

(t)  = e 2 
  

,i = 1, 2, 3 .... n 
               

 

                   
 

    M
  xi (t ) 

 

=
M 

xi 
 

(t / n ) = 
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 M x i (t / n )          
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                      i 1                
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         =    
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   

                         

           

e n 
  

n 
  

               2              
 

                                    
 

         

 x N  ,     

                  

                               

           

n 
                 

                                    
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8  Statistical inference 
 

Note:  
 

1.When 
 

is the mean of sample of size n drawn from a population 
 

x 
 

which is not normal, the sampling distribution of x can be approximated  
  

, 
   

 

as normal N  
   

 using central limit theorem, provided n is sufficiently  

  

 

 

n 
 

     
 

large.       
  

2.In the case of normal population, the distribution of  x is normal 
 
N (  ,  / n ) for any sample size n. 

3.The above results show that E( 
 

) = , and V( 
 

) = 
 2 

 

x x n  

     
  

SE of 
 

= 
               

 

                     

x 
                    

  n              
 

                  
 

The pdf of the random variable 
   

 is given by 
 

 

x  
 

                  
n ( 

 
 )

2
   

                 
 x   

           

n 
    

   
f(  

) =  
  

 e  2 
2 , x   

   x    

            

            2      
  

Chi square Distribution  
Karl Pearson in about 1900 described the well known probability 

d i   s t   r    i   b u t   i   o n “ C h i s q u a r    e d i   s t   r    i   b u t   i   o n ” o r d i   s t   r    i   b u t   i   o n o f 2
. (Square of greek  

letter chi) 
2
 is a random variable used as a test statistic. Let a random 

sample X1, X2,....Xn be taken from a normal population with mean  and 

variance 
2
. 

ie.X N (
2
). We define 

2
  statistic as the sum of the squares of 

 

i        
 

standard normal variates.  
 

 
n  X 

 
 

2 
 

 i  
 

ie., 
2
   =        

  

 
 

 i 1    
  

Definition  
A continuous r.v. 

2
 assuming values from 0 to  , is said to follow a 

chi square distribution with n degrees of freedom if its pdf is giving by 
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 1  

n          
 

   2      
n 

    
 

        


2
 / 2 

 

2 1 
 

2 
 

 

2 
) = 

 2   e (  ) 
2
 ,0    

           

f(   n            
 

                
 

     2             
 

 
= 0   , otherwise   

Here n is the parameter of the distribution and we write this as 
2
 

2 
(n) df. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The shape of 
2
 curve depends on the value of n. For small n, the curve is 

positively skewed. As n, the degrees of freedom increases, the curve 

approaches to symmetry rapidly. For large n the 
2
 is approximately 

normally distributed. The distribution is unimodal and continuous. 
 
Degrees of freedom  

The phrase „degrees of freedom‟ can be explained in the following 

intutive way. 
 

Let us take a sample of size n = 3 whose average is 5. Therefore the 

sum of the observations must be equal to 15. That means X1 + X2 + X3 = 

15  
We have complete freedom in assigning values to any two of the three 

observations. After assigning values to any two, we have no freedom in 

finding the other value, because the latter is already determined. If we 
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10 Statistical inference assign values to X1 = 3, X2 = 8, then X3 = 4. 
 

Given the mean, we have only n  1 degrees of freedom to compute the 

mean of a set of n observations. Here we have complete freedom in assigning 

values to any n  1 observations. ie., they are independent observations. The 

complete freedom is called the degrees of freedom. Usually it is denoted by  

. Accordingly the sample variance has n  1 degrees of freedom. But the sum 

of squared deviations from the population 
 
 n 

  )
2
 
 

 

mean ie., ( x i has n degrees of freedom. Thus by degrees of 
 

 i 1    
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n  Xi 
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(n) df, by additive property  
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Also we know that 

  

 N (  ,  / 
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freedom we mean the number of independent observations in a 

distribution or a set. 
 

Moments of  
2
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E(

2
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2
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2
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2
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2
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2 

 

Moment generating function 
 

2 
t 

2
 = -n  M (t)= 

 

 

E (e  ) 

   

  1-2t 
 

 

Sampling Distribution of  

Sample Variance s
2
  

Let x1, x2,... xn be a random sample drawn from a normal population 

N(). Let x be the sample mean and s
2
 be its variance. We can consider  

the random observations as independent and normally distributed r.v.s. 

with mean  and variance 
2
.  

ie., Xi N().i = 1, 2, .... n 
 

 
Xi  

 N(0,1)  

  

  
 

Now consider the expression 
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Here we have seen that the LHS follows 


2
 (n). So by additive 

property of 
2
 distribution we have.  
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12                         Statistical inference 
 

Therefore the pdf of 
2
 distribution with (n  1) df is given by 

 

       
1 
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Definition   

A continuous random variable t assuming values from   to +  

with the pdf given by  

        
 

 
2  - 

n 1   
 

   
1     t 2   

 

f (t )       1     , t   

          

   

1 
, 
n   n      

 

n 
    

 
 

2 2 
        

 

             
  

is said to follow a student‟s t distribution with n degrees of freedom. 

The t distribution depends only on „n‟ which is the parameter of the 
 

f(s
2
) =    f(u) 

  

du 
               

                
 

  ds
2
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     
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2              

                    
 

distribution. 
 

For n = 1, the above pdf reduces to f(t) = 
 
as the Cauchy pdf. 
 

m n 

Note: (m, n) =   (m  n) 
 
Definition of ‘t’ statistic 

 
1  

(1  t2 )
, which is known

 

 
    

n 
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2
 

     

1 
    

 

 
 

 
 

e 2  2 
 

2 
   

2 
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  (s ) 
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     
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2 
            

 

                  
  

This is the sampling distribution of s
2
. It was discovered by a German 

mathematician. Helmert in 1876. We can determine the mean and 

variance of s
2
 similar to the case of 

2
 distribution. 

 

Thus E(s
2
) 
  

= 
  n - 1 

 
2 

 

    
n  

 

         
 

V(s
2
) = 2. 

n - 1 

 

4    
 

n
2
     

 

        

SD of s
2 = 

 2 
4
(n 1)   

 

  

n2      
 

         
  

 
If the random variables Z  N (0, 1) and Y 

2
(n) and if Z and Y 

are independent then the statistic defined by 
 

t = 

 Z  

follows the Student‟s „t‟ distribution with n df. 
 

 

 

 

 

Y / n 
 

  
t = 

 x -    
 

t
 (n - 1)

df
 

 

      

 

 

  s/  n - 1  

        
  

Later we can see that the above r.v. will play an important role in 

building schemes for inference on . 
 

SE of t = 

 s   
 

 

    

n - 1  
  

ii. Distribution of t for comparison of two samples means:  
 

We now introduce one more t statistic of great importance in 

applications.  
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14 Statistical inference  
Let x1 and x2 be the means of the samples of size n1 and n2 

respectively drawn from the normal populations with means 1 and 

2 and with the same unknown variance 
2
. Let s1

2
 and s2

2
 be the 

variances of the samples. 
 
   

( 
   

 
  

)  (    ) 
    

 

   x 1 x 2     
 

        1 2    

 t (n 1 n 2  2)df  

                   

 

 

   

n 1s1
2
 n 2 s 2

2
 

         

t = 
  1 

 
  1   

 

 

   

n 2  2 

      

   

n 1 

 

n 1 

    
 

      
n

2   
 

Characteristics of t distribution      
 

1.  The  curve  representing  t distribution is  symmetrical  about 
 

t = 0                      
  

2. The t curve is unimodal  
 
3. The mode of t curve is 0 ie, at t = 0, it has the maximum probability  
 
4. The mean of the t distribution is 0 ie., E(t) = 0  
 
5. All odd central moments are 0.  
 
6. The even central moments are given by  

   (2 r 1)(2r 3)....3.1 v2r 
 

2 r 2r 
  

, denotes df 
 

 (v 2)(v  4)...(v  2r ) 
 

 

Putting r = 1,  2  v 
v
 2 , for  > 2 

 

Hence variance  
2

  v 
v
 2 , it is slightly greater than 1. Therefore, it 

 
has a greater dispersion than normal distribution. The exact shape of the t 

distribution depends on the sample size or the degrees of freedom . If  
is small, the curve is more spread out in the tails and flatter around the 

centre. As  increases, t distribution approaches the normal distribution. 
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7. For  each  different 
 
 
 
 
 
number of degrees of freedom, there is a distribution of t. Accordingly t 

distribution is not a single distribution, but a family of distributions.  
8. The mgf does not exist for t distribution.  
 
9. The probabilities of the t distribution have been tabulated. (See 

tables) The table provides  
 

 t 0  

P{|t| > t0}  =  f (t ) dt   f (t ) dt 

  t 0  
 

= 2 


 f (t )dt, because of symmetry. 

t 0 
 

Values of t0 have been tabulated by Fisher for different probabilities 

say 0.10, 0.05. 0.02 and 0.01. This table is prepared for t curves for  = 
1, 2, 3,... 60. 
 
Snedecor’s F Distribution 
 

Another important distribution is F distribution named in honour of 

Sir. Ronald. A. Fisher. The F distribution, which we shall later find to be 

of considerable practical interest, is the distribution of the ratio of two 

independent chi square random variables divided by their respective 

degrees of freedom. 
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16 Statistical inference  
If U and V are independently distributed with Chi square distributions 

with n1 and n2 degrees of freedom. 

U / n1  

then, F = V / n2 is a random variable following an F distribution with 
(n1, n2) degrees of freedom. 
 
Definition 
 

A continuous random variable F, assuming values from 0 to  and 
having the pdf given by  

 n 1    n2     n    
 

 

n 1
2
 n2

2
 

   1 1   
 

   

 
 F 2   

,0  F  
 

f (F) = n 1   n2     n 1 n2 
 

 

   

,    

 
(n 1 F n2 ) 

2   

   

2 
  

 

  2       
  

is said to follow an F distribution with (n1, n2) degrees of freedom. 

The credit for its invention goes to G.W. Snedecor. He chose the letter F 
to designate the random variable in honour of R.A. Fisher.  

The F distributions has two parameters, n1 and n2 corresponding to the 

degrees of freedom of two 
2
 random variables in the ratio; the degrees of 

freedom for the numerator random variable is listed first and the ordering 

makes a difference, if n1  n2. The reciprocal of the F random variable  
 
ie., 1 

 V / n2 
   

 

  again is the ratio of two independent 
2
  r.v.s. each  

F 
 

   U / n1    
 

divided by its degrees of freedom, so it again has the F distribution, now 

with n2 and n1 degrees of freedom.  
In view of its importance, the F distribution has been tabulated 

extensively. See table at the end of this book. This contain values of  
F

( ; n 1 , n 2 ) for  = 0.05 and 0.01, and for various values of n1  and n2, 
 

where 
F

( ; n 1 , n 2 ) is such that the area to its right under the curve of 

the F distribution with(n1, n2) degrees of freedom is equal to . That is 

F
( ; n 1 , n 2 ) is such that 

P
 

(
 

F
 


 

F
( ; n 1 , n 2 ) =  
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 F(3, 9) 
 

 F(9, 1, 2) 
 

f(F) 
F(1, 3)  

 
 

O F 
  

Applications of F distribution arise in problems in which we are 

interested in comparing the variances 1
2

 and 2
2

 of two normal 

populations. Let us have two independent r.v.s. X1 and X2 such that X1  

N (  
2

 ) and X 
2 
 N (  

2
 ). The random samples of sizes n 

1 
and n 

 

1 1 2 2 2 
 

are taken from the above population. The sample variances s1
2

 and s2
2

 are  

  n s 
2
  n 

2 
s 

2
  

 

computed. Then we can observe that the statistic 

  1 1   2 

has an 

 

n 1 1 n2 1 
 

F distribution with (n1  1, n2   1) degrees of freedom. 

 
Characteristics of F distribution 

n
2 

1.  The mean of F distribution is n2  2  
n2 

ie., E (F) = n2  2 , No mean exist for n2  2. 
 
2.  The variance of the F distribution is 
 

2n 2
2
 (n 1 n2 2) 

V(F) =
 n 1 (n 2 2) 2 (n 2  4) 

, No variance exist if n
2 


 
4.

 
 
3. The distribution of F is independent of the population variance 

2
.  

 
4. The shape of the curve depends on n1 and n2 only. Generally it is non 

symmetric and skewed to the right. However when one or both   
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18 Statistical inference parameters increase, the F distribution tends to 

become more and more symmetrical. 

 

5.  If F  F(n1, n2) df, then 
1 
 F (n 2, n 1 ) df 

 

F  

  
  

It is called reciprocal property of F distribution  
6. Th two important uses of F distribution are (a) to test the equality of 

two normal population variances and (b) to test the equality of three 

or more population means.  
 
7. Since the applications of F distribution are based on the ratio of sample 

variances, the F distribution is also known as variance - ratio distribution.  
 
Inter relationship between t, 

2
  and F distributions;  

1. The square of t variate with n df is F(1, n)  
Let x1, x2.... xn be a random sample drawn from N(, ). We can 

consider the random observations as i.i.d. r.v.s. 
 

   1    2     1    2     

Then x  x i , s  ( x i 
  

n    n  x )  
 

                       

             
  

         
 

           x   
 N(0,1) 

 
 

We know that Z =  / 

    

 

  

n 

  

        
 

              ns
2
  

 
2
(n 1) 

 
 

       Y = 
 2 

   
 

                        
 

Define                         
 

 
t = 

   X       
 

   N(0,1)  
 

           

 

          

    

y 
      


2
(n 1) 

  

                  
 

        

n 1 
            

             n 1  
 

 t
2
    = 

 Squareof N 0,1 

= 

  
2
 (1)/ 1 

 F (1, n 1) 

 

  
2
 (n 1)/ (n 1) 

2
 (n 1)/ (n 1)  

 

ie., the square of a variate with n 1 df is F(1, n 1). 
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So the square of at variate with n df is F(1, n) 

 
2. F is the ratio of two  2          

 

          
 

       n s 2 n 
2 s

 2 
 

Let F(n  1,  n   1) =   1 1    2  

2 
n 1 1 n2 1 

 

1     
 

      
 

   n s
2
 
/ (n 1 1) 

    
 

    1 1     
 

    2           
 

= 
    1           

 

  
n

 2 
s

 2
2

 / (n 1)     
 

    2    2       
 

             
 

     2           
 

= 
  

2
(n 1 1)/ (n 1 1)  

 

  


2

(n 2 1)/ (n 2 1) 
 

   
 

Hence the result.                
 

 

SOLVED PROBLEMS 
 
Example l  

Let X be N (100, 10
2)

 distributed. Find the sample size n so as to have  
101.645) = 0.05 
 

Solution 
 

Given X  N (100, 10
2
). Take a random sample of size n from the 

 

population. Let 
  

be its mean, then 
  

  N(100, 10 ) 
 

  x  

x  

   

                        n 
 

We have to find n such that              
 

            

p( 
 

 101.645) 
 

= 0.05 
 

            x  
 

 
 

 
100 

  
101.645  100  

    
 

 x 
 

    
 

ie P  
                  

 = 0.05  

                   

10/ n 
  

10/ 
 

n 
  

             
 

          

 
   

1.645 

     

 
     

 

 
ie, 

      
P Z    

n  
= 0.05 

 

            
 

            

10 
       

                         
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P  Z  0.1645 

   

  

 
 

  
 

ie, n = 0.05 
 

 

  P  0  Z  0.1645 
    

 
  

 

ie,   n = 0.45 
 

From normal table, 0.1645  

 

= 1.645 
 

 

n  
 

  

 

= 10, ie, n = 100 
         

 

n          
 

 
Example 2  

If X1, X2, X3 and X4 are independent observations from a univariate 

normal population with mean zero and unit variance, state giving reasons 
the sampling distribution of the following.  

    

X3   3X4
2
 

 

   2 
 

(i)  u = 

    

(ii)  v  = 

 

X 1
2
  X2

2
  X 1

2
  X 2

2
  X3

2
 

  
Solution  

Given Xi  N (0, 1),     i = 1, 2, 3, 4 
 

  Xi
2
  

2
      i = 1, 2, 3, 4 

 

  X i
2
  X2

2
   

2
 (2) and  X i

2
  X 2

2
  X3

2
  

2
 (3) 

 

       X
3 

           
 

(i)  u = 
    2            

 

                  

   

X 1
2
  X2

2
 
           

 

                
 

      X3   
 

 N(0,1)  
 t(2) df  

         

  

     

 

 

 

= 
   

X 1
2
  X2

2
 

    


2
(2) 

 

             
 

   2      2    
 

(ii) v = 
    3X4

2
            

 

X 1
2
  X 2

2
  X3

2
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 X4
2
   

2
(1) 

 

= X 1
2
  X 2

2
  X3

2
  

2
 (3)/ 3  

 

 3      
 

= 


2
(1)/ 1 

= F(1, 3) 

 


2
(3)/ 3  

  
Example 3  

If X1, and X2, are independent 
2
  r.v.s. each with one degree of  

freedom. Find  such that P(X1 + X2 > ) = 
1 

 

2  

                
 

Solution     


2(1) 

     
 

Given X1      
 

 X2 
2(1)     

 

Y = X1 + X2  
2

 (2), by additive property 
 

We have to find  such that    
 

       
P(X1 + X2 ) = 

1  
 

       
2  

 

                
 

ie, 

          

P(Y > ) = 

1  
 

          2  
 

               1  
 

ie,          f (y ) dy = 2  
 

  
1  

2          
 

  2          
 

   
2 
    y  2     

 

      2  2 1   1  
 

ie,  
 

    

 

e 
  

y 
 

dy = 
   

 2     2  
 

    2            
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      1     y    1            
 

                       
 

      2   e   2 dy = 2            
 

 
ey / 2              

  
      

 

         

2  0 e 2  
     

 

         =    1,   =  1 
 

 

 1/ 2                       

 

                          
 

  
- 

      
= 

   
1, 

     
- 

 
= 

 1 
 

 
2e 2 

           
e 2 

  
2  

                      
 

 
 

       
= 

   
2, 

  
ie 

    
= loge2 

 

 

e
2
 
            

2 
  

 

                        
 

        =    2 loge2             
 

          EXERCISES           
 

Multiple Choice Question               
 

l Simple random sample can be drawn with the help of  
 

 a. random number tables b. Chit method      
 

 c. roulette wheel      d. all the above      
 

l Formula for standard error of sample mean 
  

based on sample of 
 

x  
 

 
si   zenh avi ng  v ar    i   a nce  s

2
, when population consisting of N items is 

 

   

s / 
      

s / 
 

 d. s / 
 

 

 

 

 
 

     

 

   

 

  

 

   

    

n 1 
   

n 
  

 a. s/n b.     c. N 1   
  

l Which of following statement is true  
 

a. more the SE, better it is  
 

b. less the SE, better it is  
 

c. SE in always zero  
 

d. SE is always unity   
l Student‟s „t‟ distribution was discovered by 

a. G.W. Snedecor b. R.A. Fisher  

c. W.Z. Gosset c. Karl Pearson 
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l Student‟s t distribution curve is symmetrical about mean, it means 

that  
 

a. odd order moments are zero   
b. even order moments are zero   
c. both (a) and (b)d. none of (a) and (b)   

l If X  N (0, 1) and Y 
2
  (n), the distribution of the variate  

x / y / n follows 
 

a. Cauchy‟s distribution   
b. Fisher‟s t distribution   
c. Student‟s t distribution   
d. none of the above   

l The degrees of freedom for student‟s „t‟ based on a random 

sample of size n is   
 a. n  1   b. n c. n  2   d. (n  1)/2 

 

l The relation between the mean and variance of 
2
 with n df is 

 

 a. mean = 2 variance b. 2 mean = variance 
 

 c. mean = variance d. none of the above 
 

l Chi square distribution curve is 
 

 a. negatively skewed b. symmetrical 
 

 c. positively skewed d. None of the above 
 

l Mgf of chi square distribution with n df is 
 

 a. (1  2t)
n/2

 b. (1  2it)
n/2

 
 

 c. (1  2t)
n/2

 d. (1  2it)
n/2

 
 

l F distribution was invented by 
 

 a. R.A. Fisher  b. G.W. Snedecor 
 

 c. W.Z. Gosset  d. J. Neymann 
 

l The range of F - variate is  
 

 a.  to +  b. 0 to 1  
 

 c. 0 to  d.  to 0  
 

l The relation between student‟s t and F distribution is 
 

 a. F1, 1 = tn
2
 b. Fn,1 = t1

2
 

 

 2 
d. none of the above 

 

 c. t = F1,n 
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Student‟s t curve is symmetric about 

 Statistical inference 
 

l    
 

 a. t = 0b. t =   c. t = 1d. t = n    
 

Fill in the blanks        
 

l If the number of units in a population are limited, it is known as 
 

 .................. population.    
 

l Any population constant is called a ..................    
 

l Another name of population is ..................    
 

l The index of precision of an estimator is indicated by its .................. 
 

     
2
 / n 1   

    1    

l In the above case, the distribution of 

 

is 

 

2
2
 / n2 

 

l The mean of the  
2 
distribution is 

  

of its variance 
 

   
 

    
  

l If the df is for Chi square distribution is large, the chi-square 

distribution tends to ..................  
 
l t distribution with 1 df reduces to .................. 
 
l The ratio of two sample variances is distributed as .................. 
 
l The relation between Fisher‟s Z and Snedecor‟s F is .................. 
 
l The square of any standard normal variate follows ..................  

distribution. 
 
Very Short Answer Questions  
l What is a random sample? l 

Define the term „statistic‟. 
l Define the term „parameter‟. l What 

is sampling distribution? l Define 

standard error. 

l What is the relationship between SE and sample size.  
l Define 

2
 distribution with n df. l 

Define student‟s t distribution.  
l Define F distribution.  
l Give an example of a t statistic. 
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l Give an example of an F statistic. l 

Define sampling error.  
l Give four examples of statistics. l Give 

four examples of parameters 
l What is the relationship between t and F.  
l What are the importance of standard error? l 

What are the mean and variance of s
2
 

 
Short Essay Questions 
 
l Explain the terms (i) parameter (ii) statistic (iii) sampling distribution. l 

What is a sampling distribution? Why does one consider it?  
l Explain the meaning of sampling distribution of a statistic T and 

the standard error of T. Illustrate with the sample proportion.  
 
l Explain the terms (i) statistic (ii) standard error and (iii) sampling 

distributions giving suitable examples.   
l Define sampling distribution and give an example. 
 
l Derive the sampling distribution of mean of samples from a 

normal population.   
Long Essay Questions  
l State the distribution of the sample varience from a normal 

population   
l Define 

2
 and obtain its mean and mode.  

l Define 
2
 statistic. Write its density and establish the additive 

property.   
l Give the important properties of 

2
 distribution and examine its 

relationship with the normal distribution.   
l Define a 

2
 variate and give its sampling distribution. Show that 

its variance is twice its mean.   
l Define the F statistic, Relate F to the t statistic and Fn,m to Fm,n 
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MODULE II 
 

THEORY OF ESTIMATION 

 
The Theory of estimation was expounded by Prof: R.A. Fisher in his 

research research papers round about 1930. Suppose we are given a random 

sample from a population, the distribution of which has a known 

mathematical form but involves a certain number of unknown parameters. 

The technique of coming to conclusion regarding the values of the unknown  
parameters based on the information provided by a sample is known as 

the problem of „Estimation‟. This estimation can be made in two ways.  
i. Point Estimation ii.   Interval Estimation 

 

Point Estimation 
 

If from the observations in a sample, a single value is calculated as an 

estimate of the unknown parameter, the procedure is referred to as point 

estimation and we refer to the value of the statistic as a point estimate. For 

example, if we use a value of x to estimate the mean  of a population we  
are using a point estimate of . Correspondingly, we, refer to the statistic 

x as point estimator. That is, the term „estimator‟ represents a rule or 
method of estimating the population parameter and the estimate 
represents the value produced by the estimator.  

An estimator is a random variable being a function of random 

observations which are themselves random variables. An estimate can be 

counted only as one of the possible values of the random variable. So 

estimators are statistics and to study properties of estimators, it is 

desirable to look at their distributions. 
 
Properties of Estimators 
 

There are four criteria commonly used for finding a good estimator. 

They are:  
1. Unbiasedness  

 
2. Consistency  

 
3. Efficiency  

 
4. Sufficiency  
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1.  Unbiasedness  
 

An unbiased estimator is a statistic that has an expected value equal 

to the unknown true value of the population parameter being estimated. 

An estimator not having this property is said to be biased.  
Let X be random variable having the pdf f(x , ), where  may be 

unknown. Let X1, X2....Xn be a random sample taken from the 
population represented by X. Let 

tn = t(X1, X2....Xn) be an estimator of the parameter . 

If E(tn) =  for every n, then estimator tn is called unbiased estimator. 
 
2.  Consistency 
 

One of the basic properties of a good estimator is that it provides 

increasingly more precise information about the parameter  with the 

increase of the sample size n. Accordingly we introduce the following 

definition. 
 
Definition  

The estimator t n = t(X 1, X ....X ) of parameter  is called consistent if 
 

  2 n  

tn converges to  in probability. That is, for  > 0 
 

lim P | t n  |     1 or lim P | t n  |     0 
 

n      n  
  

The estimators satisfying the above condition are called weakly 

consistent estimators.  
The following theories gives a sufficient set of conditions for the 

consistency of an estimator.  
Theorem  

An  estimator  t ,  is  such  that E(t ) =  and V(t )0 as n 
n n n n 

, the estimator tn is said to be consistent for .  
 
3. Efficiency 
 

Let t1 and t2 be two unbiased estimators of a parameter . To choose 
between different unbiased estimators, one would reasonably consider their 

variances, ie., If V(t1) is less than V(t2) then t1 is said to be more efficient 

than t2. That is as variance of an estimator decreases its efficiency 
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increases. 
V

 
(t

 
1

 
)
V (t 2 ) is called the relative efficiency of t2 with respect 

to t1 and we can use this to compare the efficiencies of estimators. 
 
4. Sufficiency 
 

An estimator t is said to be sufficient if it provides all information 

contained in the sample in respect of estimating the parameter . In other 

words, an estimator t is called sufficient for , if the conditional 

distribution of any other statistic for given t is independent of .  
Factorisation Theorem  

Let x1, x2....xn be a random sample of size n from a population with 
density functions f(x; ) where denotes the parameter, which may be 

unknown. Then a statistic t = t(x1, x2....xn) is sufficient if and only if the 

joint probability density function of x1, x2....xn (known as likelyhood of 
the sample) is capable of being expressed in the form 

L(x1, x2....xn; ) = L1 (t,  ). L2(x1, x2....xn)  
where the function L2(x1, x2....xn) is non negative and does not involve 

the parameter and the function L1 (t, ) is non negative and depending 
on the parameter . 
 
Method of Moments 
 

This is the oldest method of estimation introduced by Karl Pearson. 

According to it to estimate k parameters of a population, we equate in 

general, the first k moments of the sample to the first k moments of the 

population. Solving these k equations we get the k estimators.  
Let X be a random variable with the probability density function f(x,  

). Let r be the r-th moment about O. r = E(X
r
). In general, r will  

be a known function of  and we write r = r (). Let x1, x2....xn be a 

random sample of size n drawn from the population with density function 
 

f(x, ). Then r-th sample moment will be m  = 
1 n 

. Form the 
 

n 
 xi

r 
 

   r i 1   
 

equation m  =   () and solve for . Let ˆ be the solution of . Then   

r r      
 

is the estimator of  obtained by the method of moments. 
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Properties  
i. Moment estimators are asymptotically unbiased.  
 
ii. They are consistent estimators.  
 
iii. Under fairly general conditions, the distribution of moment 

estimators are asymptotically normal.  
 
Method of Maximum Likelyhood  

The method of moments is one procedure for generating estimators of 

unknown parameters, it provides an attractive rationale and is generally 

quite easy to employ. In 1921 Sir. R. A. Fisher proposed a different 

rationale for estimating parameters and pointed out a number of reasons 

that it might be preferable. The procedure proposed by Fisher is called 

method of Maximum likelyhood and is generally acknowledged to be 

superior to the method of moments. In order to define maximum 

likelyhood estimators, we shall first define the likelyhood function. 
 
Likelyhood function  

The likelyhood function of n random variables X 
1, 

X ....X 
n 

is defined 
 

 2  
 

to be the joint probability density function of the n random variables, say 
f(x x ....x ; ) which is considerd to be a function of . In particular 

 

1, 2n           

suppose that X is a random variable and X 1, X ....X n is a random sample 
 

      2    

of  X  having   the  density 
 

f(x,). Also x x ....x are the observed sample values. Then the likelyhood 
 

 1, 2n          

function is defined as         
 

L  x 1 , x 2 ......x n ;   = f  x 1 , x 2 ......x n ;     
 

   = f  x 1 ;   f  x 2 ;  ..... f x n ;   
 

 
n 

=  f ( x i ,  )  
i 1  

The likelyhood function can also be denoted as L(X; ) or L(). The 

likelyhood function  L  x 1 , x 2 ...... x n ;   give the likelyhood that the 

random variables assume a particular value x 1 , x 2 ...... xn . 
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The principle of maximum likelyhood consists in finding an estimator of 

the parameter which maximises L for variations in the parameter. Thus the 

problem of finding a maximum likelyhood estimator is the problem of 

finding the value of  that maximises L(). Thus if there exists a function t = 

t( x 1 , x 2 ......x n ) of the sample values which maximises L for variations in 

, then t is called Maximum likelyhood Estimator of (MLE).  
Thus t is a solution if any of   

 

L 
 0  and 


2
L 
 0  

 
2
 

 

  
 

Also L and log L have maximum at the same value of  we can take 

log L instead of L which is usually more convenient in computations. 
 

Thus MLE is the solution of the equations 
 log L 

 0 , provided  

  

   
 


2
 log L  0 
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SOLVED PROBLEMS 
 
Example l  

Let x , x , x ...., x  be a random sample drawn from a given population 
 

1    2    3   n              

with mean  and variance 
2
. Show that the sample mean 

 

is an unbiased 
 

x 
 

estimator of population mean .            
 

Solution              
 

   

=  1 
n            

 

We know that  
x

i            
 

x            
 

   n i 1            
 

Taking expected value, we get            
 

     n    1  
n
     

 

    1 
 

          

    E  x    E  x    

E( x )  = i =
  n i  

n        
 

     i 1      i 1     
 


2
 

 
The maximum likelyhood estimator can also be used for the simultaneous 

estimation of several parameters of a given population. In that case we must 

find the values of the parameters that maximise the likelyhood function. 
 
Properties of Maximum likelyhood estimators. 
 

Under certain very general conditions (called regularity conditions) 

the maximum likelyhood estimators possess several nice properties. 
 
1. Maximum likelyhood estimators are consistent 

 
1  = n 

 
 

1  = n 

 

Now E (xi) =  (given) 
 

1 

E( x )  =   n 

 

E ( x 1  x 2 ......  xn ) 

 

{E ( x 1 )  E ( x 2 )  ....  E ( x n )} 
 
 

 

{   ....  }  
n

 


   
n 

 
2. The  distribution of maximum likelyhood estimators tends to normality  

 for large samples. 

3. Maximum likelyhood estimators are most efficient. 

4. Maximum likelyhood estimators are sufficient if sufficient estimators 
 exists 

5. Maximum likelyhood estimators are not necessarily unbiased. 

6. Maximum likelyhood estimators have invariance property, (ie. if t is 
 the m.l.e. of  , then g(t) is also the MLE of g (), g being a single 
 valued function of  with a unique inverse). 

 
Therefore sample mean is an unbiased estimator of population mean. 

 
Example 2  

Let x1, x2, x3...., xn  is a random sample from a normal distribution 
 

N(, 1) show that  
 

t =  
1

 
n   

 

xi
2
 is an unbiased estimator of  

2
 + 1 

 

n i 1   
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Solution   

We are given that   

E(xi) =  

V(xi) = 1 for every i = 1, 2, 3,...n 
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Example 4   

x1, x2,...., xn is a random sample from a population following Poisson 

distribution with parameter . Suggest any three unbiased estimators of   
Solution 

 

Now V(xi)  = 
 
 E ( x i

2
 ) = 

 

 
or E(t)  = 

  

E ( x i
2
 )  [ E ( x i )]

2
     

 

 
2

 + 1          
 

 1 n 
x 

2  
 

1 n 
E (x 

2 
)  E  

n  i 
 

n  i 
 

      
 

  i 1      i 1    
 

Since xi is a random observation from a Poisson population with parameter , 

E(xi) =  i = 1, 2, ... n 

 t 
1 

= x , t 
2 

= x 1  x 2 
, t 

n 
 x 1  x 2 ....  xn 

 

   

  1  
2   

n  

         
 

are unbiased estimators of . It may be noted that . 
 

E(t1) = E(xi) =      
 

   1      1  
 

       1 n  1          
 

   

  

=
   n (  

2
 1)  

   

n (  
2
 1) 

    
 

   n     
 

        i 1              
 

   =  
2
 + 1                

 

Example 3                          
 

If T is an unbiased estimator of , show that T
2
 and 

 

 are the biased 
 

T 
 

estimator of  
2
 and 

  

 

 
respectively. 

              

              
 

Solution                          
 

Given E(T) =               
 

Now var(T) = E[T  E (T)]
2
  0 as var > 0 

 

or  E{T
2
   2T  +  

2
 } = E(T)

2
  2  E (T) +  

2
  0 

 

E{T
2
 2  

2
 +  

2 
                    

 

or E(T)
2   

2
 , ie., T

2
 is biased      

 

Alsovar ( 
 

) = E [ 
 

 E ( 
      

)]
2
  0 

    
 

T T    T     
 

       

= E (T)  {E ( 
   

)}
2
  0 

    
 

        T     
 

 

or E(T) =   {E ( 
   

)}
2
 
     

 

   T      
 

E ( 
 

)   

 

. 
             

 

T               
 

Hence the result. ie., 
   

is not an unbiased estimator of 
 

 

 

. 
 

  T   
 

 

E(t2) = 2 [ E ( x 1 )  E ( x 2 )]  2 [   ]   
 

      

E(tn) = 1 E ( x 1  x 2 .... x n )  
 

  n     
 

 = 1 [ E ( x 1 )  E ( x 2 )  ....]  
 

  n     
 

 = 1 [    ....  ]  
n

  
 

  n  n  
 

 t1,  t2 and tn are unbiased estimators of .  
Example 5  

Show that sample variance is a consistent estimator of the population 

variance in the case of normal population N().  
Solution  

Let x1, x2,...., xn be a random sample from N(
2
). Let x be the mean 

and s
2
 is its variance. From the sampling distribution of s

2
, we have  

E(s
2
)  = 

n 1 
 2 

 1  
 2  

n 
=  

1
 
 

n 
 

 

     
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But V(s
2
) =  2. 

n 1 
 

4 
 0 as n  

 

 

n2 
 

 

        
 

Thus the sufficient conditions are satisfied.  
 

Ther    ef   or    e s

2  
is consistent for 2   

 

 
Example 6 
 

Give an example of estimators which are  
(a) Unbiased and efficient,  

 
(b) Unbiased and inefficient,  

 
(c) Biased and inefficient.  

 

(a) The   sample mean 
 

and   modified   sample   variance 
 

x 
 

  n 2    
 

S
2
 = 

 

s 
 

are two such examples. 
 

n 1  
 

     1 
 

(b) The sample median, and the sample statistic 2 [Q1 +Q3] where Q1 and 

Q3 are the lower and upper sample quartiles, are two such examples. 
Both statistics are unbiased estimators of the population mean, since the 
mean of their sampling distribution is the population mean.   

(c) The sample standard deviation s, the modified standard deviation s , 

the mean deviation and the semi-in-terquartile range are four such 
examples.  

 
Example 7 
 

For the rectangular distribution oven an interval ();  < . Find 

the maximum likelihood estimates of  and . 
 
Solution 
 

For the rectangular distribution over (), the p.d.f. of X is given by 
 

f(x) =   
1
 

,
 


 
x

 


 


 
 

Take a random sample x1, x2,... xn from () 
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1 

 
1 

 
1  1 

n 
 

Then L(x1, x2,....xn ; ) = . ... 
 

 

   

=   
 

  

   
 

 

      
L is maximum when () is maximum i.e. when  is minimum and 

 is maximum. If the sample observations are arranged in ascending 

order, we have 

  x 1  x 2  x 3 .... xn   
 

Here the minimum value of  consistent with the sample is xn and 

maximum value of  is x1. Thus the M.L.E.‟s of  and  are 

ˆ  x 1 , 
ˆ
  xn  

EXERCISES 
 
Multiple Choice Questions  
l An estimator is a function of  
 

a. population observations  
 

b. sample observations  
 

c. Mean and variance of population  
 

d. None of the above   
l Estimate and estimator are  

a. synonyms b. different  
c. related to population d. none of the above  

l The type of estimates are  
 

a. point estimate  
 

b. interval estimate  
 

c. estimates of confidence region  
 

d. all the above  
 

l The estimator 
 

of population mean is 
 

x 
 

 a. an unbiased estimator b. a consistant estimator 
 

 c. both (a) and (b) d. neither (a) nor (b) 
  

l Factorasation theorem for sufficiency is known as 

a. Rao - Blackwell theorem  
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36 Statistical inference  
b. Cramer Rao theorem  

 
c. Chapman Robins theorem  

 
d. Fisher - Neymman theorem  

 
l If t is a consistent estimator for  , then  
 

a. t is also a consistent estimator for  
2

  
 

b. t
2
 is also consistent estimator for   

c. t
2
 is also consistent estimator for  

2
 

d. none of the above  
l The credit of inventing the method of moments for estimating 

parameters goes to   
a. R.A. Fisher b. J. Neymann  
c. Laplace d. Karl Pearson  

l Generally the estimators obtained by the method of moments as 

compared to MLE are   
 a. Less efficient b. more efficient 

 c. equally efficient d. none of these 

Fill in the blanks  

l An estimator is itself a ..................  
l A sample constant representing a population parameter is known as  
 

..................   
l A value of an estimator is called an .................. 

l A single value of an estimator for a population parameter    is 
 called its .................. estimate  
l The difference between the expected value of an estimator and the 

value of the corresponding parameter is known as ..................   
l The joint probability density function of sample variates is called  
 

..................  
 
l A value of a parameter  which maximises the likelyhood function 
 is known as .................. estimate of  

l An unbiased estimator is not necessarily .................. 
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l Consistent estimators are not necessarily ..................  
l As estimator with smaller variance than that of another estimator is  
 

..................   
l The credit of factorisation theorem for sufficiency goes to  
 

..................  
 
Very Short Answer Questions  
l Distinguish between an estimate and estimator. l 

What is a point estimate? 

l Define unbiasedness of an estimator l 

Define consistency of an estimator. l Define 

efficiency of an estimator. 

l Define sufficiency of an estimator.  
l State the desirable properties of a good estimator.  
l Give one example of an unbiased estimator which is not consistent. l 

Give an example of a consistent estimator which is not unbiased. l Give the 

names of various methods of estimation of a parameter. l What is a 

maximum likelyhood estimator?  
l Discuss method of moments estimation. l 

What are the properties of MLE?  
l Show that sample mean is more efficient than sample median as 

an estimator of population mean.   
l State the necessary and sufficient condition for consistency of an 

estimator.  
 
Short Essay Questions  
l Distinguish between Point estimation and Interval estimation. 
 
l Define the following terms and give an example for each: (a) 

Unbiased statistic; (b) Consistent statistic; and (c) Sufficient statistic,   
l Describe the desirable properties of a good estimator. 
 
l Explain the properties of a good estimator. Give an example to 

show that a consistent estimate need not be unbiased.  
 
l Define consistency of an estimator. State a set of sufficient conditions 
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38 Statistical inference for the consistency of an estimate and establish it. 
 
l In a N(, 1), show that the sample mean is a sufficient estimator of   

  
l Describe any one method used in estimation of population parameter. 

 
l Explain method of moments and method of maximum likelihood. 

 
l Explain the method of moments for estimation and comment on 

such estimates.  
 
l Explain the maximum likelihood method of estimation. State 

some important properties of maximum likelihood estimate.  

 
l State the properties of a maximum likelihood estimator. Find the 

maximum likelihood estimator for  based on n observations for 

the frequency function  
 
 

f(x,  ) = (1 +  )  x 
 

;  > 0, 0 < x <   

  
 

 = 0 elsewhere.  
 

l Given a random sample of size n from 
 

 f(x ;  ) = e


 
x
 , x > 0 ;  > 0. 

 

find the maximum likelihood estimator of  . Obtain the variance 

of the estimator. 
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MODULE III 
 

INTERVAL ESTIMATION 

 
Thus far we have dealt only with point estimation. A point estimator is 

used to produce a single number, hopefully close to the unknown parameter. 

The estimators thus obtained do not, in general, coincide with true value  
of the parameters. We are therefore interested in finding, for any population 

parameter, an interval called „confidence interval‟ within which the population 

parameter may be expected to lie with a certain degree of confidence, say  
 . In other words, given a random sample of n independent values x 1 , 

x 2 ....xn of a random variable X having the probability density f(x ;  
), being the parameter, we wish to find t 1 and t 2 the function of x 1 , 

x 2 ....x n such that p (t 1  t2 )  1  .  
This leads to our saying we are 100(1  )% confident that our single  

interval contains the true parameter value. The interval (t 1 , t 2 ) is 

called confidence interval or fiducial interval and 1  is called 

„confidence coefficient‟ of the interval (t 1 , t 2 ). The limits t1 and t2 are 

called „confidence limits‟.  
For instance if we take  = 0.05, the 95% confidence possesses the 

meaning that if 100 intervals are constructed based on 100 different 

samples (of the same size) from the population, 95 of them will include 

the true value of the parameter. By accepting 95% confidence interval for 

the parameter the frequency of wrong estimates is approximately equal to 

5%. The notion of confidence interval was introduced and developed by 

Prof: J. Neyman in a series of papers. 
 

Now we discuss the construction of confidence interval of various 

parameters of a population or distribution under different conditions. 
 
Confidence interval for the mean of a Normal population N(  
Case (i) when  is known.  

To estimate , let us draw a random sample x 1 , x 2 ....xn of size n 

from the normal population. 
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Let x be the mean of a random sample of size n drawn from the 

normal population N(. 
 
                                  

  

  

 
               

 

Then 

 

N (  ,  / 

   

);  Z  = 
   x   

 N(0,1) 

 
 

   

n 
                

x 
   

 / 
        

     n  
 

                                               
 

From the area property of standard normal distribution, we get 
 

                          P | Z | z 
 / 2 

  
 

=  
1  

 

                                                
 

ie.                   P  z  / 2    Z  z / 2 =  1  
 

             
 

        
  

   
 

           
   

     
 

                     x                 
 

ie. 
          

P z  / 2  
               

 z / 2     =  1   

          

 / 

        

 

 

               

n 
 

                                              
 

                                               
 

ie. 
   

 
P z  / 2 

     

 x    z / 2 
      

 
 = 

 
1   

       

 

     

 

 

    

n 
  

n 
 

                                                  
 

                                              
 

ie. P  x 
 
z

  / 2        

 x   z / 2 
       

 = 
 
1   

 

              

n 
  

n 
 

 

                                              
 

         
 

z
  / 2 

    
   x 

  
 z / 

            
 

ie. 
   

P  x 
 

         

2 
       

 = 
 
1   

   

  

             

 

 

   

n 
     

n 
 

 

                                              
 

                                              
 

ie.    

P  x  z  / 2       

   x   

 z / 2 
       

 = 
 
1   

   

 

               

    

n 
    

n 
  

 

                                              
 

                                                  
 

Here  the  interval   

x  z  / 2       ,  x  z / 2    

 is  called  

  

 

    

 

   

 

 

  

n 
  

n 
 

                                                  
  

100(1  )% confidence interval for the mean  of a normal population.  

Here z / 2 is obtained from the table showing the „area under a standard 

normal curve‟ in such a way that the area under the normal curve to its  
right is equal to  / 2 . 
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Note:                                      
 

1. If   0.05, z  / 2    1.96 , so the 95% confidence interval for  
 

 is                                      
 

                              
 

  x 1.96          
  , x  1.96          

                  

           n                  n  
 

2. If   0.02, z  / 2    2.326 , so the 98% confidence interval for  
 

 is                                      
 

       
 2.326 

     
, 

    
 2.326 

    
 

    x              
 x            

                         

               n                     n  
 

3. If   0.01, z  / 2    2.58 , so the 99% confidence interval for  
 

 is                                      
 

       
 2.58 

        
, 
   
 2.58 

     
 

    x           
  x             

                         

            n                   n    
 

4. If   0.10, z  / 2    1.645, so the 90% confidence interval for  
 

 is                                      
 

                                
 

  x 1.645            , x 1.645          

                    

             n                    n  
 

 
Case (ii) when   is unknown, n is large (n30)  

When the sample is drawn from a normal population or not, by 

central limit theorem, 
 
   

  

 

 
  

 

 

Z = 

x  
N (0,1) as n  

      

 

 

  

s / n 
 

    
 

Here we know that P | Z | z 
 / 2 

= 
1  

  
 

    
 

Proceeding as above, we get          
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      s          s     
 

P  x 


 
z

  / 2    

   x  z / 2 
    

 
 =  1   

  

 

   

 

 

n 
 

n 
 

                   
 

Thus the 100(1  )% confidence interval for   is     
 

          s      s     
 

   


x

 


 
z
  / 2      

, x  z / 2 
     

   

       

 

    

 

  

     

n 
 

n 
   

                 
 

 
Case (iii) when   is unknown, n is small (n<30)  

Let X 2 , X 2 , ......Xn be a random sample drawn from N(  ,  ) where 
 
 is unknown. Let x be the sample mean and s

2
 be its sample variance. 

Here we know that the statistic. 
 

t
 


 s / 

x 
n

1


t
(n1)

df
 

 
Hence 100(1  )% confidence interval for   is constructed as  

follows.                                           
 

 Let       P | t | t 
 / 2 

= 
1  

             
 

                            
 

=>        P  t  / 2  t  t / 2             =  1  
 

        
 

           
 

     
  

           
 

                 x                 
 

=>        

P t  / 2              

 

t
 / 2 

 
           

=  1   

                  

 

           

        

s / 
  

n 1 
          

 

                                 
 

           s                   s        
 

=>   

P t  / 2         

 x    t / 2 
      

     

=  1   

  

   

     

 

    

 

     

  

n 1 
 

n 1 
    

 

                                
 

             s                     s      
 

=> P  x 
  

 
t
  / 2 

        

 
 x  

t
 / 2 

         

 =  1   

  

  

                

  

n 1 
 

n 
 

1 
 

                               
 

 
P 
   

 

t
  / 2 

  s      
   x  t / 2 

   s        
 

=>  x 
                 

  =  1   

 

 

      

 

          

  

n 1 
  

n 1 
 

 

                           
 

  
Statistical inference            43 

 

   
 

t
  / 2 

 s  
 

 
 

t
 / 2 

 s   
 

=> P  x 
   

x 
    

 =  1   

  

  

    

n 1 n 1 
 

           
 

Thus the 100(1  )% confidence interval for  is   
 

 



x
 

t
  / 2 n

s
 1 

,
 
x
 

t
 / 2 n

s
1


 

 

where  t / 2 is obtained by referring the Student‟s t table for  
(n1) d.f. and probability  . 
 
Interval Estimate of the Difference of two population means 

Case (i) When σ 1,σ2 known 
 

Let x1 be the mean of a sample of size n1 taken from a population 

with mean 1 and SD  1 .  
Then x 1 N (  1 ,  1 n1 ) 

 

Let x 2 be the mean of a sample of size n 2 taken from a population 

with mean 2 and SD  2 .  

Then 

 

2  N (  2 ,  

     

) 

                 
 

  

  

n 2 
                  

x 2                  
 

Then by additive property,                       
 

               
 
                  

 
 

                       2    2   
 

                       1   2     

  

x 1  x 2  N 1  2, 
      

 
     

      

n 1 n 2 
  

 

                           
 

     
( 
  

 
    

)  (     
 

) 
         

 

     x 1 x 2 2          
 

  

Z = 
         1       

 N(0,1) 
 

  

 

                   

      2    


2
      

 

                             
 

              1   
 

2                 
 

             

n 1 
 

n 2 
              

 

                             
 

By the area property of ND, we know that               
 

                  P | Z |  Z 
 / 2 

  =  1 
 

                              
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                  P Z 

 / 2 
  Z  Z 

 / 2 
  1               

 

   
 

  
 

  
 

 

  

( 
  

   

)  (      ) 
 

   

          x 1  x 2 2                                  
 

P Z  / 2    1   
 
Z
 / 2    

    

 1 
  

            

 
  

2 
      

 2 
                          

i.e.      
 

   1   2     

  

n 

  

n 2 

  
 

 1  
 

On simplification as in the case of one sample, the  100(1  )% 
 

confidence interval for        
2 
  is                                          

 

1  
 

 
     

 
 

 
 

2 
 

2 
 

2 
 

2 
 

     1  2  
  1  2    

      

( x 1  x 2 )  Z  / 2            

 , ( x 1    x 2 )  Z  / 2               

  ,   

                                   

        

n 
 

1 
    n

 2 
              

n 1 
    

n 2 
    

      
 

  
 

where the value of Z / 2      can be determined from the Normal table.  
 

When  = 0.05,  Z / 2    = 1.96. So, 100(1  )% = 95% confidence 
 

interval for   
2 
is 

 

1  
 

 
     

 
 

 

 
 2 

 
2 

 2  2 
 

 

     
 1   2    1  2    

 

        

( x 1  x 2 )  1.96                

 , ( x 1   x 2 )  1.96      

     ,     

                              

              

n 1 
     

n 2 
                   

n 1 
  

n 2 
      

     
 

  
 

When  = 0.01,  Z  / 2     = 2.58. So, the 99% eq for  1   2   is       

     

 
     

 
 

 

 
 

2 
 

2 
 

2 
 

2  
 

     1   2  1  2    
 

       

( x 1  x 2 )  2.58               

 , ( x 1   x 2 )  2.58               ,     

                                  

               

n 1 
     

n 2 
                

n 1 
   

n 2 
       

                                                   
 

  
 

Case (ii) When σ ,σ unknown, n, large                            
 

1

2 12 
 

In this case we replace      1   and  2 respectively by their estimates 
 

s1 and s 2 . 
 

So 95% CI for    
2 
is 

 

1  
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 
                         

 
 

     
s 2   

s 2        
s 2  

s 2   
 

       1   2        1  2     

                  

( x 1  x 2 )  1.96     

 , ( x 1  x 2 )  1.96    ,   

          

    

n 1 
 

n 2 
   

n 1 
 

n 2 
   

                
 

                           
  

Similarly we can find 98% and 99% confidence intervals replacing 1.96 

respectively by 2.326 and 2.58.  
Case (iii) When       unknown, n, small   

 

   σ σ =σ         
 

   12      12    
 

Here t = ( 
  

 
   

)  (     
 

) /   
2
 / n 

 

  
2
 / n 

 

 
 

x 
1 

x 
2 2 1 2 

 

       1         
 

students „t‟ distribution with  = n 1 n 2 2d.f.    
 

Where  
2
 = n 1 s 1

2
 n 2 s 1

2
   n 1 n 2 2     

 

Refer the „t‟ curve for  = n 1 n 2 2d.f. and probability level P = 
 

                     
 

The table value of t is t / 2            
 

Then we have P | t | t 
 / 2 

=          
 

                 
 

ie. P | t | t 
 / 2  

= 
1  

           
 

              
 

ie. P  t  / 2   t t / 2  = 1  .       
  

Substituting t and simplifying we get the 100(1  )% confidence 
 

interval for   
 

as ( 
    

 
    

)  t 
 

 
 2 / n 

1  


2
 / n 

2  
,  

 

2 
x 

1 
x 

2  / 2 
 

1                  
 

               

 

 

     

( 

  

1 


 

  

2 

)
 


 

t
  / 2 

 

 
 

2
 / n 1   

2
 / n 2 

 

 

     x x  
 

where  t/2 is obtained by referring the t table for n 1 n 2 2 df and 
 

probability .                           
 



 
School of Distance Education School of Distance Education 



46 Statistical inference  
Confidence interval for the variance of a Normal population 
 
N (μ,σ 
 

Let s
2
 be the variance of a sample of size n(n<30) drawn from N(  ,  ). 

We know that the statistic  

 
2
  

ns2
  

2
 (n 1) d . f . 

 
2 


 

Now by referring the  
2

 table we can find a 1
2
 / 2 and 

2
 / 2 such  

that  

  P 
2
         2  

2
    

 
= 

1  
 

      1  / 2                / 2   
 

where  
2
 and  

2
 

2 
  are obtained by referring the table for n1 

 

 1  / 2        /                        
 

d.f. and probabilities 1   / 2   and  / 2   respectively. 
 

               ns 2              
 

           

 
     

 2 
       

ie. P 
2        2       = 1   

   1  / 2            / 2   

                                  
 

      1          2         1       
 

 

P 
        

 
       

 
         

 

ie. 
                          

  
= 1  

 

 2 
       

ns
2
 

  

 2 
    

                 

2 
  

 

    1  / 2                 /     
 

      
ns 2          

2 
     

ns 2     
 

  

P 
         

 
 

 
        

 

ie. 
 

 
                      

 = 1  
 

 
 2              

 2     
 

                        

 / 2 
    

 

     1  / 2                   
 

    
ns 2 

       
2 

      
ns 2 

     
 

  

P 
     

 
 

 
         

 

ie. 
 

 
                  

 = 1  
 

 
 2         

 2      
 

                                
 

      / 2             1  / 2     
 

Thus the 100(1  )% confidence interval for  
2
 is 

 

          ns 
2
         ns

2
      

 

                   ,              
 

         

 2 
     

 2 
        

                    

2 
    

 

            / 2      1  /     
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where   
2
 

2 
and 

2
 

2 
are obtained by referring the 

2
 table for 

 

1  /   /    
 

n1 d.f. and probabilities 1   / 2 and  / 2 respectively. 
 
Confidence interval for the proportion of success of a 

binomial population  
   x   
Let P     be the proportion of success of a sample of size n drawn 
  n   

 
from a binomial population with parameters n and p where p is unknown 

and n is assumed to be known. Then we know that 
 

Z  
p   p  

 N(0,1) for large n 
         

 

             

     

 

          

   

pq 
          

                             
 

    n                          
 

From normal tables we get,            
 

         P |  Z |    z  
 

       = 
1  

 

                  / 2         
 

ie.        P  z  / 2     Z  z / 2       = 1  
 

                              
 

              
p  p            

 

                         
 

ie. 
      

P z  / 2       z
 / 2       

= 
  

                  

         

pq 
     

1  
 

                         
 

                 

n 
           

 

                            
 

As in the previous cases, on simplification we get     
 

  
 

                      
 

  
 

       pq                
 

   
 z 

   

p  p  z 
    pq     

ie. P  p   / 2 n  / 2   n  = 1   

               

                           
 

So, the 100(1  )% confidence interval for p is     
 

    
 

                   
 

    
 

           pq              
 

     
 z 

    

, p  z 
  pq       

ie.    p  / 2   n   / 2 n      
 

                     

                            
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But, since p is unknown, we can replace p and q by their unbiased 

estimators p and q. Thus the 100(1  )% confidence interval for p is 
 

 
         

 
 

         
 

 p  z  / 2 
p q  

, p  z / 2 
p q  

   

n 
 

n 
 

 

          
  

where z / 2 can be determined from the normal tables for a given  . 
 
 
Note 

When  = 0.05, z / 2 = 1.96, so the 95% C.I. for p is 
 

 
            

 
   

              
 

p 1.96 p q  , p1.96  p q 
    

 

n 
  

n 
   

              
 

when  = 0.02, z / 2 = 2.326, so the 98% C.I. for p is 
 

 
         

  
      

 
 

               
 

p  2.326   p q  , p 2.326   p q    
  

n 
   

n 
     

                
 

when  = 0.01, z / 2 = 2.58, so the 99% C.I. for p is 
 

 
             

  
  

 

               
 

p  2.58  p q  , p 2.58  p q        

 

n 
   

n 
      

                 
 

 
Interval Estimate of the difference of proportions of 

two binomial populations:  
From the study of sampling distribution it is known that the difference 

of proportions obtained from two samples 
 
     

 
                

 
   

 

            p 1 q1 
   p 2 q 2 

     
 

ie. p  p 2  N  p  p 2 ,   
    

     
 

          

1   
1        

n 1 

   

n 2 

   when n 1 , n 2 are large  

                       
 

              

 
         

 
 

 

 
z p   p    p 

 

 p  
  
p 1 q1  p 2 q 2 

 

N(0,1) 
 

 2       

     

 1 2     1       

n
 1 

  

n
 2 

    

                      
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From normal tables we have 

P(|z|  + 1.96) = 0.95 
ie. P(1.96  z +1.96) = 0.95 

From this result we can write the 95% confidence interval for p 1  p2 
 

as  


 p1 p2 1.96 



p
n

1 
q

1
1  

p
n

2 
q

2 2 , 
 

p1 p2 1.96 



p
n

1 
q

1
1  

p
n

2 
q

2 
2 


 

 

Since  p1,  q1  and  p2,  q2  are  unknown,  they  are  estimated  as 
  

, q 1 
     

and q 2 
 

 

p 1  p 1  q 1 , p 2  p 2  q2 . 
 

The 95% confidence interval for ( p 1  p2 ) is 
 

 
             

 

  

    p  q   p  q   
 

         

2 2     

p   p 1.96 1 1     
  

, 
 

n 
  

n 
   

 1 2   

1 
   

2 
   

 

                
  

             

 
 

    p  q  p  q   
 

p   p 1.96 1 1   2  2 
   

n 
 

n 
   

1 2   

1 
  

2 
   

 

             
  

Note:  To  construct  98%  and  99%  confidence  intervals  for 
p p , we have to replace 1.96 by 2.326 and 2.58 respectively. 

1 2 
 

SOLVED PROBLEMS 
 
Example 1 
 

Obtain the 95% confidence interval for the mean (when  known) of 

a normal population N(  ,  ). 
 
Solution  

Let  x 1 , x 2 , x 2 ..., xn be a random sample of size n drawn from 
 

N(  ,  ). Let 
 

be its mean and  
2
 is its variance. Then we know that 

 

x 
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x  N (  ,  / n ) 
 
                              

   

  

 
 

          

               

 Z = 

 x 
 N(0,1) 

 
 

                

 / 
          

                 

n 
  

                          
 

From normal tables, we will get                                
 

      P | Z |  1.96                       =  0.95 
 

ie.      P 1.96  Z 1.96                = 0.95 
 

   
    

                              
 
              

 

            x                             
 

ie.   

   P 1.96     1.96              = 0.95    

 / 

  

 

             

                 

              n                        
 

                                
 

ie. P 1.96 .        

 x    1.96          

 = 0.95                 

 

 

  

n 
   

n 
 

                                    
 

                                             
 

ie. P  x 1.96        

  x 1.96        

 = 0.95         

 

 

   

 

 

 

  

n 
   

                                          n    
 

                                            
 

ie. P  x 1.96          

   x 1.96         

 = 0.95                  

 

 

   

n 
          

                                     n    
 

     
1.96 

      
 

     
1.96 

        
 

ie. P   x          

x  
        

 = 0.95                     

    

n 
           

                                     n    
 

                  
1.96 

                  
 

 

Thus the 95% CI for  is   x        

                

                       

    

n 
               

                                          
 

 
Example 2 
 

Obtain the 95% confidence interval for the variance of a normal 

population N(  ,  ) 
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Solution                              
 

To obtain the CI for  
2

 let us use the result       
 

 2  ns
2
 2                       

 

 
 

 
    

 


(n 1) 
df

 
                     

   2                      
 

                               

From 
2
  table, we can find a   2   and 

2
  such that  

 

                  0.975      0.025    
 

          2    

 

2    2      

= 0.95 

  
 

       P0.975   0.025     
 

            ns 2               
 

          

 
  


2 

           

ie       P 
2   2      = 0.95   

 

       0.975      0.025       

                              
 

         ns 2    
2   

ns 2         
 

       

P 
   

  
           

 

ie.      

              

  = 0.95    

      


2
        2       

 

                            
 

        

0.975 
                    

                  0.025        
 

         ns 2    
2   

ns 2         
 

       

P 
   

  
           

 

ie.      

              

  = 0.95    

      

2        2       
 

                            
 

        

0.025 
                    

                  0.975        
 

                  
ns 2 

 
, 
 
ns 2 

    
 

Thus the 95% CI for  2 is 
         2 

and 
 

  

 2   


2     

           where 
0.975 

 

                   0.025   0.975     
 

0
2

.025 are obtained by referring the 
2

 table for n 1 df and 

probabilities 0.975 and 0.025 respectively. 
 
Example 3  

Obtain the 99% CI for the difference of means of two normal  
populations N(  ,  ) and N(  

2 
,  

2 
) when (i)  ,  

2 
known (ii) 

 

   1 1     1  
 

 ,  
2 

unknown.           
 

1             
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Solution  

Case (i) when  ,  
2 

  known.                                           
 

1  
 

Let  X1 and 
X

2   be two independently normally distributed random 
 

variables with means  and      and variances  2 and 
2
 respectively. 

 

1 2 1 2 
 

Let 
 

1 and 
   

2 be the sample means of n1 
 

and n2 observations. 
   

 

x x     
 

since   X 
1 
   N 

 
 ,  

2
 
 

, X 
2 
   N  

 
 ,  

2
  
 

                   
 

  1 1   2 2  
 

   
2
   

2
  

 

then  x 1   N   ,   1    , x 2    N    2 ,   

2                     

                               

  1 
n

 1 

   

n
2 

  

    
 

      2 
2
  

 

therefore   x 1  x 2    N  2 ,  

 1    2                       
 

                                 

   1  

n 1 

 

n2 

  

   
 

 
 

  
 

  
   

 
 
 

 

 x 
1 

 x 
2 

 

2 
 

 

   1   

 N 0,1 
 

 

Z = 
              2     

2
                                 

 

    

 1  

 
2  

 

 

n 1 
 

n2 
 

 

   
 

From normal tables we can write                                       
 

P ( 2.58  Z  2.58)  0.99                                          
 

Substituting Z and simplifying, we get                               
 

 
 

   
 

   2  2 
 

     1  2   

P x 
1 

 x 
2 

  2.58                                
 

                               

  
n

 1 n
2 1 2 

 

 
 

   
 

 
 

  2  2  
 

       
 

                                      

x 1  x2  2.58    1    2 
   0.99  

                                               
 

n 1 n
2  

 

 
 

 

 
  

 
 

   2  2 
 

     1  2   

Thus the 99% CI for  
   

 
   

is 
    

x 1  x2  2.58 
     

 
  

 
  

            n
 1 

   
 

1 2  n
2  

 

  
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Example 4 
 

Obtain the 99% confidence interval for the difference of means of 

two normal populations N( 1 , 1 ) and N( 2 , 2 ) when 1 and 2 

unknown, by drawing small samples. 
 
Solution  

 Since  
2
 and  

2
 are unknown, they are estimated from samples, as 

 

  1   2   
 


2
 =  

2
 = 

 
*2 , where 

 

1 2        
 

  n s 
2
 n 

2 s 
2
 

 

 

 
*2

 = 
  1 1  2   

  
n 1 n2  2 

 

   
 

 Then the statistic    
 

 
  

   
  
x 

   
 

 
 

 
 

                         
 

  x 
1 2                            

 

t  = 

                    1   2       

t (n 1  n 2 2)df 

        
 

 

                                     

  

         

 n s 2 n  s2      1     1          
 

  

  

1 1      2 2    

                                     
 

     
 

    n 
1 

n 
2 

   2     n    n 
2 

 

 
                        

 

                     1                              
 

Thus we have                                                     
 

  
 

                   
 

     
 

   
  

  
 

            
 

                   x 1  x 2 2             
 

   1    

p t  / 2   

                                   
 
t
 / 2   1   

  

  

                                

 

  

  

n 
   

s 2 n 
  

s 2 
  

 1 
         

                 
1  

2       1           
 

                      1        2                      
 

                  

n 1 n 2  2 
                 

 

                     
n

 1    
n

2           
 

  
 

where t /  2 is obtained by referring the t table for n 1 n 2  2 df 
 

and probability   0.01.                                  
 

 
 
   

 

 2 2 
 

 
 

 
 

                                          
 

n
 1 

s
1 n 2 s 2 1  1  

 

                                            

This gives 
  

P x 1   x 2  

 t / 2            

    

   

   

      

n 1 n 2  2 
     

 

                                     
n

 1  
n

2   
 

 
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 
                                    

 
 

 

                  
n s 2 n  s 2  1      

1   
 

                 
  

          
 

  

x       

 t      

2 2        

     x         1 1               

 1   

2 1 2  / 2                  

1             

n 1 n 2  2 
          

                   
n

 1   
n

2    
 

                                         
 

Thus the 99% CI for     is                           
 

          1 2                            
 

  
 

                                 
 

  
 

                   2    2              
 

                  n 1 s1 n 2 s 2  1  
  1     

 

                      

  

x 1  x 2  
 
t
 / 2           

    

     

    

    

n 1 n 2  2 
         

 

                  
n

 1    
n

2    
 

                                       
 

 
Example 5 
 

If the mean age at death of 64 men engaged in an occupation is 52.4 

years with standard deviation of 10.2 years. What are the 98% 

confidence limits for the mean age of all men in that occupation? 
 
Solution 
 

Here n = 64, x  52.4, s  10.2 
 

   
 2.326 

s  
 

98% CI for the population mean is  x    

    

 

 

   

  n  
  

 10.2   
 

ie. 52.4  2.326  
    

 = 
4

9.435,5 .365


 

 

     

64 
 

 

    
  

Example 6 
 

A random sample of size 15 from a normal population gives x  3.2 

and s
2

  4.24 . Determine the 90% confidence limits for  
2

 . 

Solution 
 

    2  ns 2  
 

  ns  

, 
   

The 90% CI for  
2 is        

  
 

2  

 
2  

 

  
0.05 

    
 

     0.95  
 

n = 15, s
2
 = 4.24 
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From table, 
2
  =  23.68    

 

 14,0.05     
 

 
2
  =  6.571    

 

 14,0.95     
 

Thus 98% CI for  
2
 15  4.24 

, 
15  4.24  

 

is  
23.68 6.571 

 
 

     
  

= (2.685, 9.678) 
 
Example 7  

A medical study showed 57 of 300 persons failed to recover from a 

particular disease. Find 95% confidence interval for the mortality rate of 

the disease. 
 
Solution 
 

n = 300, x = 57 
 

 
  x     57     

 

 p n  300 0.19 
    

    
 

q   1  p  1  0.19  0.81 
 

The 95% CI for the mortality rate is 
 

 
             

 
 

             
 

     p q     p q   
p 1.96       

 , p 1.96    
  

n 
  

n 
 

            
 

               
  

 
     

 

0.19  0.81  0.19  0.81   

 
, 0.19  1.96   

0.19  1.96 
300 300 

 
 

ie.    
 

     
 

ie. {0.146, 0.234}  
Example 8  

A random sample of 16 values from a normal population showed a 

mean of 41.5 inches and the sum of squares of deviations from this mean 

equal to 135 square inches. Obtain the 95% and 99% confidence interval 

for the population mean. 
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Solution 
 

i. Here n = 16, x  41.5, x  x 
2

  ns 
2

  135  
 

    t
 / 2 

 s   
 

The 95% CI for  is  x    

  

  

 

 

n 1 
 

     
 

ie. from table, t15,0.05 =  2.131 
 

So the required confidence interval is 
 3  

 

41.5  2.131 
4 
 

 

   
 

ie. {39.902, 43.098}  

ii. For 99% CI, t15,0.01 = 2.947  
 

 99% CI is 

41.5  2.947  

3
 

 = {39.29, 43.71} 

 4  
 
Example 9  

A certain psychological test was given to two groups of Army prisoners  
(a) first offenders and (b) recidivists. The sample statistics were as follows.  

Population Sample size Sample mean Sample S.D. 

a) first offenders 580 34.45 8.83 

b) recidivists 786 28.02 8.81  
Construct 95% confidence limits of the difference of the means  

( 1  2 ) of the two populations. 
 
Solution  

The 95% confidence interval for ( 1  2 ) is 

 
 

                       

 
 

       2  2           2  2 
 

        

1  2 
         

1  2 
  

x 
1 

 x 
2 
1.96    ( x 

1 
 x 

2 
)  1.96    

 

    n 1 n2 
,      n 1 

n
2  

 

                         
 

Since  and  are unknown, we shall replace them respectively by s 
1  1 2 

 

and s2. 
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               s 2   s2    
 

                

1 
 

 
2 

  

    

The lower limit = ( x 1  x2 )  1.96 
       

  n
 1 

n
2 

   
 

                   
 

   
= (34.45  28.02)  1.96 

 (8.83)
2
 

 

(8.81)
2
  

 

    580 786  
 

   = 6.43  .95 = 5.48.          
 

                     
 

              s 
2
  s

2
    

 

             

1 
 

2 
 

     

The upper limit = ( x 1  x2 )  1.96 
     

 n
 1 

n
2 

   
 

                  
 

   
= (34.45  28.02)  1.96 

 (8.83)
2
 

 

(8.81)
2
  

 

    580 786  
 

   = 6.43  .95 = 7.38.          
 

The 95% confidence interval for (   
2 
) is (5.48, 7.38) 

 

            1            
 

         EXERCISES          
 

Multiple Choice Questions              
 

l The notion of confidence interval was introduced and developed by 
 

 a. R.A. Fisher     b. J. Neymann    
 

 c . Karl Pearson     d. Gauss          
  

l The 95% confidence interval for mean of a normal population  
 

N(  ,  ) is  
 
  

 
  

 1.96 
 s    

 

  

 1.96 
   

 

a. x 
  

b. x 
 

                

   
n  

n  

                 
 

    

 2.58 
 s    

 
 

 2.58 
   

 

c . x 
  

d. x 
 

         

 

         

     
n    

n  

                   
 

l The 100(1  )%   confidence interval for   of N(  ,  ) when 
 

  unknown, using a sample of size less than 30 is 
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     t
 / 2 

 s       t
 / 2 

  s 
 

a. 
 

x 
 

    

b. 
 

x 
 

       

    

   

      

 n 1  n  

                   
 

   
t 

  s     
t 

s      
 

c . 
  

x 
   

d. x 
      

                   

  
n 1    

n      
 

                  
  

l A random sample of 16 housewives has an average body weight of 

52kg and a standard deviation of 3.6kg. 99% confidence limits for 

body weight in general are  
 

a. (54.66, 49.345) b. (52.66, 51.34) 

c . 55.28, 48.72) d. none of the above 
 
l Formula for the confidence interval for the ratio of variances of 

the two normal population involves  
 

a. 
2

 distribution b. F distribution 
c . t distribution d. none of the above 

 
Fill in the blanks 
 
l The notion of confidence interval was introduced and developed by 

 
l The confidence interval is also called     interval 

l An interval estimate is determined in terms of       

l An interval estimate with   interval is best 

l Confidence interval is specified by the   limits 

l Confidence interval is always specified with a certain   

l To determine the confidence interval for the variance of a normal 
 distribution  distribution is used      

 
Very Short Answer Questions 
 
l What is an interval estimate? 
 
l Explain interval estimation 
 
l State the 95% confidence interval for the mean of a normal 

distribution N(  ,  ) when  is known  
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l Give the 95% CI for the variance of a normal population 
 
l Give the formula for obtaining confidence limits for the difference 

between the mean of two normal populations  
 
l Why interval estimate is preferred to point estimate for estimating 

an unknown parameter.  
 
l What do you mean by confidence level? 
 
Short Essay Questions 
 
l Distinguish between point estimation and interval estimation. Explain 

how you will construct 100(1  )% confidence interval for normal 

population mean when population S.D. is (i) known and (ii) unknown.  
 
l Explain how you would find interval estimates for the mean and 

variance of a normal population.  
 
l What do you mean by interval estimation? Obtain 99% confidence 

limits for  of the normal distribution N(, 
2
), with the help of a 

random sample of size n.  
 
l Explain the idea of interval estimation. Obtain a 100( 1  )% 

confidence interval for the mean of a normal distribution whose 

variance is also unknown.  
 
l Obtain 95% confidence interval for the mean of a normal population 

with unknown variance on the basis of a small sample of size n taken 

from the population. What happens when n is large?  
 
Long Essay Questions 
 
l A random sample of 20 bullets produced by a machine shows an 

average diameter of 3.5 mm and a s.d. of  
0.2 mm. Assuming that the diameter measurement follows N(  , 

 ) obtain a 95% interval estimate for the mean and a 99% interval 

estimate for the true variance. 
 
l The mean and s.d. of a sample of size 60 are found to be 145 and 

40. Construct 95% confidence interval for the population mean.  
 
l Two independent random samples each of size 10 from two 
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 independent normal distributions N(  ,  
2

 ) and N(  ,  
2
 ) yield 

 

             1 1 2 2  
 

     = 4.8, s
2
 = 8.6,   = 5.6 and s

2
 = 7.9. Find 95% confidence  

  x 
1 

x 
2 

 

    1      2       
 

 interval for     .         
 

      1   2          
 

l Two random samples of sizes 10 and 12 from normal populations 
 

 

having the 
  

same variance gave 
 

 

1 = 20, 
 

   x 
 

 

s 2 = 25 and  

  

= 24, s
2
 = 36. Find 90% confidence limits for   x 

2 
 

 1        2       
 

 (     ).               
 

   1 2               
 

l . In a sample of 532 individuals selected at random from a population, 
 

 89 have been found to have Rh-ve blood. Find an interval estimate 
 

 of the proportion of individuals in the population with Rh-ve blood 
 

 with 95% confidence.         
  

l Of 250 insects treated with a certain insecticides, 180 were killed. 

Set approximate 95% confidence interval to the value of p, the 

proportion of insects likely to be killed by this insecticides in 

future use.  
 
l Suppose a sample of 500 people were interviewed and 200 of 

them stated they were in favour of a certain candidate as president. 

Obtain the 98% confidence limits for the population proportion in 

favour of the said candidate.   
l 150 heads and 250 tails resulted from 400 tosses of a coin. Find 

90% confidence interval for the prob: of a head.   
l A random sample of 500 apples was taken from a large 

consignment and of these 65 were bad. Estimate the proportion of 

bad apples by a 90% confidence interval.   
l A sample poll of 100 voters in a given district indicated that 55% 

of them were in favour of a particular candidate. Find 95% and 

99% confidence limits for the proportion.  
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MODULE 4 
 

TESTING OF HYPOTHESIS 
 

Most tests of statistical hypothesis concern the parameters of 
distributions, but sometimes they also concern the type, or nature of the 
distributions, themselves. If a statistical hypothesis completely specifies 
the distribution, it is referred to as a simple hypothesis if not, it is referred 
to as a composite hypothesis.  

The statistical hypothesis that X follows normal with mean 15 is a 
composite hypothesis since it does not specify the standard deviation of 
the normal population. The statement that X follows a poison distribution 

with parameter  = 2 is a simple hypothesis since it specifies the 
population completely.  

A statistical hypothesis which refers only to the numerical values of 
unknown parameters of a random variable is called a parametric 

hypothesis. Eg. In a normal population if we test that whether  = 10 or 
not is a parametric hypothesis. A hypothesis which refers to the form of 
an unknown distribution is called a non parametric hypothesis. eg. The 
form of the density function in a population is normal.  
Definition of terms  

The following are definitions of some terms which are frequently 
used in this module. 
 
Test of Hypothesis  

Rules or procedures which enable us to decide whether to accept or 
reject the hypothesis or to determine whether observed samples differ 
significantly from expected results are called tests of hypothesis or tests 
of significance.  

In our subsequent discussions we are concerned with hypothesis 
about only one parameter.  
Null Hypothesis  

The hypothesis to be tested is usually referred to as the „Null hypothesis‟ 

and is denoted by the symbol H0. Thus a hypothesis which is set up with the 

possibility of its being rejected at some defined probability value is called a 
null hypothesis. For instance, if we want to show that students of College A 
have a higher average IQ than the students of College B, then we might 

formulate the hypothesis that there is no difference viz, H0 : A = B 
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Alternative Hypothesis  

In the testing process H0 is either „rejected‟ or „not rejected‟. If H0 is not 

rejected, it means that the data on which the test is based do not provide 

sufficient evidence to cause rejection. But if H0 is rejected it means  
that the data on hand are not compatible with some other hypothesis. This 

other hypothesis is known as „alternative hypothesis‟, denoted by H1. The 

rejection or „non rejection‟ of H0 is meaningful when it is being tested 
against a rival hypothesis H1 . 
 
Type I and Type II errors 
 

Research requires testing of hypothesis. In this process two types of 

wrong inferences can be drawn. These are called type I and type II errors.  
Rejecting a null hypothesis H0 when it is actually true is called type I 

error or error of the first kind.  
Accepting a null hypothesis H0 when it is false is called type II error 

or error of the second kind.  
These can be schematically shown as below. 

 

Action 
H0 true H0 false 

 

  
 

Reject H0 Type I error No error 
 

Accept H0 No error Type II error 
 

 

Any test of H0 will tell us either to accept H0 or reject H0, based on 

the observed sample values. Thus is not possible to commit both errors 
simultaneously.  

We will define  
 =  P(Type I error) 

= P(rejecting H0 given H0 is true)   

= P(rejecting H0 | H0)   
 =  P(Type II error) 

= P(accepting H0 given H1 is true)   

= P(Accepting H0 | H1)  
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Every test of H0 has values for the pair () associated with it. It would 

seem ideal if we could find the test that simultaneously minimises both and 

but this is not possible. Since each of and is a probability we know 

that  0 and  0 ; that is 0 is the minimum value for each. No matter 

whatH0 and H1 state and what observed values occur in the sample, we 

could use the test: Accept H0. With this test we would never commit a type I 

error, since we would not reject H0 no matter what the sample values were. 

Thus for this test  = 0 implies  = 1. The converse of this test, which would 

always reject H0 given  = 0,  = 1. Neither of this test is desirable, because 

they maximise one of the two probabilities of error while minimising the 

other. Now our objective is to choose the decision rule that will lead to 

probabilities of these errors being as small as possible. 
 
Test statistic 
 

The testing of a statistical hypothesis is the application of an explicit set 

of rules for deciding whether to accept the null hypothesis or to reject it in 

favour of the alternative hypothesis, consistent with the results obtained from 

the random sample taken from the population. As the sample itself is set of 

observations, usually an appropriate function of the sample observation  
is chosen and the decision either to accept a reject the hypothesis is taken 

based on the value of this function. This function is called „test statistic‟ or 

„test criterion‟, in order to distinguish it from an ordinary descriptive statistic 
 

or estimator such as  x 
 

We can note that a test statistic is a random variable, being a measurable 

function of random observations which are themselves random variables.  
The test procedure, therefore, partitions the possible values of the test 

statistic into two subsets: an „acceptance region for H0 and a rejection 

region for H0. 
 
Critical Region 
 

The basis of testing the hypothesis is the partition of the sample space 

into two exclusive regions, namely, the region of acceptance and region of 

rejection. If the sample point falls in the region of rejection, H0 is rejected. 
The region of rejection is called „critical region‟. Thus critical region is 
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64 Statistical inference the set of those values of the test statistic which leads 

to the rejection of the null hypothesis. Critical region is denoted by . 

Acceptance regions is the set of those values of the test statistic for which we 

are accepting the null hypothesis. Every test is identified with a critical 

region w and we are facing embarrassing richness of potential tests. Here we 

want to find best critical region (BCR) w, guided only by the principle of 

minimising the probabilities of errors of type I and II. 
 

 

Level of significance 

The validity of H0 against that of H1 can be tested at a certain „level of 

significance. The level of significance is defined as the probability of rejecting 

the null hypothesis H0 when it is true or probability of type I error. Actually  
this is the probability of the test statistic falling in the critical region when the 

null hypothesis is true. So significance level is also called „size of the critical 

region‟, „size of the test‟ or producer’s risk. It is denoted by .   
is usually expressed as a percentage such as 1%, 2%, 5% and 10%. 

ie.,  = P(Rejecting H0 |H0) = P(x  w | H0)  
For instance, if the hypothesis is accepted at 5% level, the statistician 

in the long run, will be making wrong decisions in 5 out of 100 cases. If 

the hypothesis is rejected at the same level, he runs the risk of rejecting a 

true hypothesis about 5% of the time.  
The best test for a Simple Hypothesis  

Often the test statistic is to be determined by controlling  and . The 

ideal thing is to minimise  and  simultaneously but in practice when  is 
minimised,  becomes large and vice versa. Hence the attempt is to minimise  
 for a fixed  and if there exists such a test statistic, it is called the „best 

test‟. 

Power of a test 

The probability of rejecting the null hypothesis H0 when it is actually 

not true is called power of a test and it is given by 1 - . Power of a test is 
also called power of the critical region. 

ie., Power   =  P(Rejecting H0 | H1 is true) 

= 1  P (accepting H0 | H1)  

= 1  P (accepting H0 | H0 is not true)   
= 1  P (Type II error) = 1   
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The larger the value of 1  for fixed  the better is the test in 

general. We define sensitiveness of a test as its ability to ascertain the 

correctness of the alternative hypothesis when it is true for fixed Thus, 

power is a measure of the sensitiveness of the test. Therefore if other 

things are identical the comparison of two tests is the comparison of their 

respective powers. 
 
Critical value  

The value of test statistic which separates the critical region and 

acceptance region is called „critical value‟. The critical value is usually 

referred to as Z or t depending on the sampling distribution of the test 
statistic and level of significance used.  

We now summarise the steps involved in testing a statistical 

hypothesis. Step 1. State the null hypothesis H0 and the alternative 

hypothesis H1. Step 2. Choose the level of significance   
Step 3.   Determine the test statistic  
Step 4. Determine the probability distribution of the test statistic 

Step 5. Determine the Best Critical Region  
Step 6.   Calculate the value of the test statistic.  
Step 7.Decision: If the calculated value of the test statistic falls in the 

critical region, reject the null hypothesis H0, 
otherwise accept it. ie., if the calculated value 

exceeds the table value, reject H0, otherwise 

accept H0. 
 
Neymann Pearson Theory of testing Hypothesis  

The conceptual structure of the theory is as follows. To test the simple 

=  versus the simple H1 :   1 , based on a random sample of  
size n, the solution is given by the celebrated Neymann-Pearson Lemma. 

This specifies the explicit form of the test (ie., critical region) which has 

pre assigned probability of error of type I and a minimal probability of 

error of type II. This is same as maximising power subject to the 

condition that the type I error is a constant. This process is equivalent to 

choosing a critical region of size  which has at least the same power as 

any other critical region of the same size. Such a critical region is called 

the best critical region, abbreviated as BCR. The test based on BCR is 

called Most Powerful Test. 
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SOLVED PROBLEMS 

 
Example l 
 

Let X follows B(10, p). Consider the following test for testing H0 : p = 

1/2 against H1 : p = 1/4: “Reject H0 if X2”. Find the significance level and 
power of the test. 
 
Solution 
 

Given X  B(10, p)  
Significance level = P(Rejecting 

H0/H0) = P(X  2 p = 1/2) 

= P(X = 0) + P(X = 1) + P(X = 2) when p = 1/2  
 

    

 1 
 0 

 1 
10    

 1 
1  

1 
 9    

1 
 2  

1 
 8 

 

=   10 C 0    10 C     10C 2       
 

       1          

    2   2     2   2      2    2   
 

 1 
10       

56 
                

 

  

[1  10  45] 
                 

 

=       =                     

2 
 

1024 
               

 

                        
 

Power of the test = P(Accepting H0/H0) 
= P(Rejecting H0/H1)   
= P(X  2 p = 1/4) 

 
= P(X = 0) + P(X = 1) + P(X = 2) when p = 1/4  

 
   

 1 
 

 
0 
 

10    

 1 
1   

 
9   

 1  
2 
 3  

8 
 

= 10 C    3   10 C  3  10C    
 

                         

0      2    
     1     

    4   4       4  4      4  4   
 

   8  9    3   1              
 

= (3/ 4)     

 10    

 45                 

   

16 16 
            

 

    16                   
 

= 
  8 84  

= 5.25  (3/4)
8
 

              
 

(3/ 4)  
16 

               
 

                           
  

Example 2 
 

If X  1 is the critical region for testing H0  :    = 2 against 
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H1 :  = 1 on the basis of a single observation from  
 

f(x,  ) = e 


 
x
 , x  0 , obtain the probabilities of type I and type II 

errors. 
 
Solution 
 

Given   f(x,  )   = e 


 
x
 , x  0  

 

P(Type I error) = P(Rejecting H0|H0) 
 

 

= P(X  
 

 = 2) 
 

  
 

    
 

 =  f ( x )dx when  = 2 
 

  1    
 

= 2.e 
2x

 dx  =   2



e

2

2
x
   

 
1 1  

 

=  (0  e2) = e2 



  

P(Type I error)    = P(Accepting H0|H1)  
 

= P(X  1 
 

 = 1) 
   

 

    
 

 1        
 

= e 


 
x
 dx when  1 

 

 0        
 

 
1 
   

 
 
x 

1 
 

 

e 

 
x
 dx e  

 

=      

   

   =   
1 

 
 

 0      
 

        0 
 

= e
1

 1 =  1  e
1

 
  

Example 3 
 

Given a binomial distribution 
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  n
 C x 

p
 x q 

n  x 
, x  0,1,2,3,4 

 
 

f(x, p) = 
   

‟ 
 

 0, otherwise 
  

It is desired to test H0 : p = 1/3 against H1 : p = 1/2 by agreeing to 

accept H0 if x  2 in four trials and to reject otherwise. What are the 
probabilities of committing.  

(a) type I error, (b) type II error 
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Example 4 

The hypothesis H0  :    = 2 is accepted against H1  :    = 5 if  
X  3 when X has an exponential distribution with mean  . Find type I 

and type II error probabilities of the test. 
Solution  

Given X has exponential distribution with mean  , that is X follows 

an exponential distribution with parameter  . 

Solution 
 
(a)   =  P(type I error)  

= P(reject H0 /H0 is true)   
= P(X > 2/p = 1/3)   

= 
4
 4Cx 1  

x
 2 

4x
   

x 3   3 3    

= 
  1  

3 
 2  4  3   1 

4
 

 4
 
C

 3       4C4    

   3    3      3  
 

= 4  
2  

 
 1  

 
 1 

 
1   

 

3 
4
 3 

4
 
 

3
2
 9 

  
 

          
 

(b)  =  P(type II error)  

= P(accept H0 /when H1 is true) or   
= P(X  2/p = 1/2)   

= 
2
 4Cx 1  

x
 1 

4x
   

x 0   2 2   

 
     4      1  3      2    2 

 

=   4 C  1     4 C  1   1    4C 2  1    1   
 

  0     1            

   2       2  2      2    2   
 

1   4 
 4 

 1  
4
    1 4   11          

 

=       6   = 

2
4
 

         
 

2       2     2             
 

 
ie., f(x) 
 

P(Type I error) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
P(Type II error) 

= 
1

 e 

 
x
 
/
 

 , x  0,   0  

 
= P(Rejecting H0 | H0)  
 
= P(X > 3| = 2)  
 
      

 

=  f ( x ) dx when  = 2 
 

 3     
 

  
1 ex /  

  
 

=  when  = 2 
 

 3     
 

      

  
1 e  x / 2dx 

 
 

=   
 

 3 2    
 

  
 x / 2 

  
 

 1   
 

 e     

= 2 
.     

 

 1/ 2   
 

       

    3  
 

= [o  e
3/2

]  =  e
3/2

 
= P(Accept H0 /H1)   

= P(X  3 |  = 5)   
 

3 1 
     

1  ex / 5 
3 

 

 e  x / 5 dx   
 

=    

=     
 

    

5 
 

1/ 5 
 

 

 0 5        
 

          0 
 

= e
3/ 5

 1 = 1  e
3/5

  
 

           
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Example 5 
 

Find the probability of type I error of the test which rejects H0 if X > 

1  in favour of H1 if X has pdf 
 

f(x) =  x 

 
1

,0  x 1 with H0 :  = 1 and H1 :  = 2. Find the 

power of the test. 
 
Solution 
 

Given f(x) =  x 

 
1

,0  x 1  
 

P(Type I error)= P(Rejecting H0 | H0 true)  
 

  

= P(X > 1  
 

 
 = 1) 

 
 

    
 

   1 

 x 

 
1

 dx 

  
 

  =  when  = 1 
 

   1        
 

   1        
 

  =  dx = ( x )
1
  

 

   1      1  
 

           

  = 1  (1 ) =   
 

Power of the test = P(Accepting H0 | H0 true) 
 

  =  P(Rejecting H0 | H1 true) 
 

  

= P(X > 1  
 

  = 2) 
 

 

    
 

   1 

 x 

 
1

 dx 

  
 

  =  when  = 2 
 

   1        
 

   1        
 

  =  2x dx      
 

   1        
 

  
= x

2
 

1  
1  (1 )

2
 
 

 

   =  
 

    1       
 

  = 2 2      
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EXERCISES 

 
Multiple Choice Questions 
 

l An „hypothesis‟ means  
 a. assumption b. a testable preposition 

 c. theory d. supposition 

l A hypothesis may be classified as 
 a. simple b. composite 

 c. null d. all the above 

l A wrong decision about H0 leads to 
 a. One kind of error b. Two kinds of error 

 c. Three kinds of error d. Four kinds of error 

l Area of critical region depends on 
 a. Size of type I error b. Size of type II error 

 c. Value of the statistic d. Number of observations 

l The idea of testing of hypothesis was first set forth by 
 a. R.A. Fisher b. J. Neymann 

 c. E.L. Lehman d. A. Wald 

l The hypothesis under test is a 
 a. simple hypothesis b. alternative hypothesis 

 c. null hypothesis d. none of the above. 

l Rejecting H0 when H0 is true is 
 a. Type I error b. Standard error 

 c. Sampling error d. Type II error 

l H1 is accepted when the test statistic falls in the 
 a. critical region b. probability space 

 c. acceptance region d. None of the above 

l Power of a test is related to 
 a. Type I error b. Type II error 

 c. both (a) and (b) d. neither (a) nor (b) 
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l Level of significance is the probability of 
 a. type I error b. type II error 

 c. not committing error d. any of these 

l Level of significance is also called 
 a. size of the test b. size of the critical region 

 c. producer‟s risk d. all the above 

Fill in the blanks  

l A hypothesis is a testable .................. 
l The parametric testing of hypothesis was originated by .................. 
 and ..................   
l The hypothesis which is under test for possible rejection is called  
 

..................   
l .................. error is not severe than .................. error. 

l Probability of type I error is called ..................  

l Rejecting H0 when H0 is true is called ..................  

l Accepting H0 when H0 is flase is called ..................  
 
Very Short Answer Questions  
l Define the term „test of hypothesis‟ 
 
l Define simple and composite hypothesis l 

Define null and alternative hypothesis  
l Define type I and type II errors l 

Define level of significance  
l Define critical region. l 

Define power of a test l 

Define test statistic 

l State Neymann Pearson lemma  
l Define a parametric test of hypothesis l 

What is a statistical hypothesis. 

l Define size of the test.  
l Which is the first step in testing a statistical hypothesis? 
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Short Essay Questions  
l What do you mean by a statistical hypothesis? What are the two 

types of errors? Outline the Neyman-Pearson approach.   
l Explain the following with reference to testing of hypothesis: (i) 

Type I and II errors; (ii) Critical region; and (iii) Null and 

alternate hypothesis.  
 
l Distinguish between Simple and Composite hypotheses. Give one 

example each.   
l Explain the terms (i) Errors of the first and second kind; (ii) 

Critical region; (iii) Power of a test; and (iv) Significance level in 

test of hypothesis.  
 
l Explain with illustrative examples the terms : two types or error, 

critical region and significance level.   
l Explain the terms (1) Null hypothesis; (2) Level of significance; and  
 

(3) Critical region.   
l Explain the terms (i) statistical hypothesis; (ii) critical region (iii) 

power of a test.  
 
Long Essay Questions  
l To test the hypothesis H0 : p = 1/2 against H1 : p > 1/2, where p is the 

probability of head turning up when a coin is tossed, the coin was 

tossed 8 times. It was decided to reject H0 in case more than 6 heads 

turned up. Find the significance level of the test and its power  

 if H1 : p = .7.    

l X1   and  X2 are independent  Bernoulli r.v.s.  such  that 
 P(X1  =  1)  =  =  P(X2  =  1).  To  test   =  1/3  against   
 = 2/3 the test suggested is to reject if X1  + 2X2  > 1.  Find the 
 power of this test.    
l Consider the problem of testing the hypothesis H0 : X has uniform 

distribution over (0, 3) against H1 : X has uniform distribution 
over (5, 7). If (5, 7) is the critical region. find the probabilities of 
two kinds of errors.   

l Let X1,... Xn be a r.s. from N(  , 4). Obtain Best critical region 

for testing H0 :  = 10 against H1 :  = 15 with a sample of size n 

= 16 and with level of significance 0.05.   
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l To test H :  = 1 against the alternative  = 2 based on X which 
 

has the p.d.f. f(x) = 1 
e  x /  

, x  0 ; = 0. otherwise, the test  

  
 

     
  

proposed is to reject if X > log4. Compute probabilities of 

committing type I and II errors if this test is used. 
 

LARGE SAMPLE TESTS 
 

The statistical tests may be grouped into two. (a) Large sample tests  
(b) Small sample tests. For small sample tests the exact sampling 

distribution of the test statistic will be known. In large sample tests the 

normal distribution plays the key role and the justification for it is found 

in the famous central limit theorem. That is when the sample size is large 

most of the statistics are normally or atleast approximately normally 

distributed. Let Y be a statistic satisfying the conditions of the CLT, then 

the statistic given by 

Z  
Y

 
E(Y)

  N(0,1),  for large n.  
 V(Y) 

 

Here V(Y) is called the Standard Error of Y. 
 

 Z  
Y

 
E(Y)

  N(0,1) 
SEof Y 

 
If Z is chosen as the test statistic, the critical region for a given  

significance level can be determined from normal tables. The test based 

on normal distribution is called „normal test‟ or „Z test‟.  
To explain the terminology, let us consider a situation in which we want 

to test the null hypothesis H0 : 0 against the two sided alternative 

hypothesis H1 :  0 . Since it appears reasonable to accept the null 

hypothesis when our point estimate ˆ of  is close to 0 and to reject it 
 
when ˆ is much larger or much smaller than 0 , it would be logical to let 

the critical region consists of both tails of the sampling distribution of our 
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test statistic. Such a test is referred to as a two-tailed test or two-sided 
test.  

On  the  other  hand,  if  we  are  testing  the  null  hypothesis  
H0 : 0 against the one sided alternative H1 :  0 , it would seem 
 
reasonable to reject H0 only if when ˆ is much smaller than 0 . Therefore, 
 
in this case it would be logical to let the critical region consist only of the 

left hand tail of the sampling distribution of the test statistic. Likewise, in  
testing H0 : 0 against the one sided alternative H1 :  0 we reject 
 
H0 only for larger values of ˆ and the critical region consists only of the 
 
right tail of the sampling distribution of the test statistic. Any test where 

the critical region consists only one tail of the sampling distribution of 

the test statistic is called a one tailed test, particularly they are called left 

tailed and right tailed test respectively. 
 
Best critical regions of z-test  

To test H0 : 0 against H1 :  0 
 

: 0 
 

: 0 
 
for the significance level  the best critical regions are respectively. 

  Z Z   Z  Z  and,   
 

Z 
 

 

Z
 /2 

 
 

   
 

For example, when           
 

 = 0.05, the best critical regions are respectively  
 

  Z 1.645 ,   Z 1.645 and   
 

Z 
 

1.96 

= 0 . 0 2 5 

 

  
 

 =  0 . 0 5  = 0 . 0 2 5     
 

       

      = 0 . 0 2 5  
 

1 . 6 45 z = 0 +  z=01.645+1 . 9 6 z = 01 . 9 6 +  
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When  = 0.01, the best critical regions are respectively 
 
 
 

=  0.01    =0.01 =0.005   0.005 
        =  

2 . 236 z = 0 +   z=02.236 + 2.58 z=0 2.58 + 

When  = 0.02, the best critical regions are respectively    

=0.02    =0.02  0.01  =0.01 
      =    

2 . 05 5 z = 0 +   z=0 2.236 + 2 . 2 36 z =0 2 . 236 +  
 

Testing mean of a Population 
 

By testing the mean of population we are actually testing the significant 

difference between population mean and sample mean. In other words we are 

deciding whether the given sample is drawn from the population having  
the mean given by H0 . 
 

Suppose we want to test the null hypothesis H 0 :   0 against one of 

the alternatives H1 :   0 ; H1 :   0 or H1 :   0 on the basis of a 

random sample of size n from a normal population with known variance  
 

2
 .  
For the significance level  , the best critical regions are respectively, 

  Z Z ,   Z > Z and   Z  Z /2 . 

The test statistic is 

Z  

x
 


 


0   

 /  n  
Using the sample data, calculate the value of Z. If it lies in the criticl 

region, reject H0 otherwise accept. (Usually we will accept H0 if the 
calculated value is less than the table value) 
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Note:  
(i) For  = 0.05,  = 0.02 or  = 0.01 we can fix the critical regions by 

determining the critical values using normal area table. (Refer best 

critical regions)  
(ii) If the population is given to be normal, the test procedure is valid 

even for small samples, provided  is known.   
(iii)When is unknown and n is large, in the statistic we have to replace 

 by its estimate s. 
 
Example 1  

A sample of 25 items were taken from a population with standard 

deviation 10 and the sample mean is found to be 65. Can it be regarded 

as a sample from a normal population with  = 60. 
 
Solution 
 

Given n = 25,  = 10,  x = 65, 0 = 60  

We have to test H0 : = 60 against H1 :  60. 
 

Let  = 0.05. The best critical region is   Z 1.96 . Here the test  
statistic is  

 

  

 

0 
  

65  60 
 

25 
 

 

Z  

x  

   2.5 
 

 / 
 

 

10 
 

10 
 

n 25 
 

         

 
 

Z 
 

 2.5  1.96 
 

           
  

Since Z lies in the critical region, H0 is rejected.  
That is, the sample cannot be regarded as drawn from a normal 

population with  = 60 
 
Example 2 
 

A news stereo needle was introduced into the market claiming that it 

has an average life of 200 hours with a standard deviation of 21 hours. 

This claim came under severe criticism from dissatisfied customers. A 

customer group tested 49 needles and found that they have an average 

life of 191 hours. Is the claim of the manufacturer justified? 
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Solution 
 

Given 0 = 200,  = 21, n = 49,  x =191 
 

We have to test  
H0 :  = 200 against H1 :  < 200 

 
Let  = 0.05. The BCR is   Z 1.645 

 
The test statistics is  
 

  

 

0 
  

191  200 
 

63 
 

 

Z  
x  

  3  

     

 

   

21 
 

 / n 21 49 
  

      
  

Since Z lies in the critical region. H0 is rejected.  
That is, the claim of the manufacturer is not justified. 

 
Testing the Equality of two population Means 
 

By testing the equality of two population means we are actually 

testing the significant difference between two sample means. In other 

words we are deciding whether the two samples have come from 

populations having the same mean. 
 

In applied research, there are many problems in which we are interested 

in hypothesis concerning difference between the means of two populations. 
 

Suppose we want to test the null hypothesis.  
H0 : 1  2  0 (or H0 : 1 = 2) against one of the alternatives. 

 

H1 : 1  2  0 , H1 : 1  2  0 or H1 : 1  2  0 , based on 

independent random samples of sizes n1 and n2 from two populations  
having the means 1 and 2 and the known variances 1

2
 and 2

2
 . 

 
For the significance level  , the critical regions are respectively 

  Z Z ,   Z  Z and   
 

Z 
 

 


 

Z
 / 2 

 

  
 

 
   

 
1  

 
2 
    

 

The test statistic is   Z  x x     
 

             

  


2
 
 
 2 

    

      
 

 1     2    
 

    
n

 1  
n

2 
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Calculate the value of Z using the sample information, and if it lies in 

the critical region reject H0 , otherwise accept it. 
 
Note: 
 
(i) When we deal with independent random samples from populations with 

unknown variances which may not even be normal we can still use the 

test which we have just described with s1 substituted for 1 and s2  
 

substituted for  2 so long as both samples are large enough to invoke 

the central limit theorem.  

(ii) To test H0 : 1  2   against  
 

H1 : 1  2   ,  H1 : 1  2   ,  H1 : 1  2   
 

the procedure is exactly the same as in the case of equality of two 

population means. In this case the test statistic is given by 

Z  
(
 

 

1 


 
 

2 ) 
 

x x 
 

  
2
 

2
  

 

   1  2  
 

   n 1 n2 
  

Example 1 
 

Suppose that 64 senior girls from College A and 81 senior girls from  
College B had mean statures of 68.2” and 67.3” respectively. If the 

standard deviation for statures of all senior girls is 2.43, is the difference 

between the two groups significant? 
 
Solution 
 

Given n1 = 64, n2 = 81,  x1 = 68.2,  x2 = 67.3  
1  2   = 2.43 

We have to test  
H0 : 1  2 = 0 against H1 : 1  2  0 

 
Let  = 0.05. The BCR is   Z 1.96 
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The test statistic is  Z    

  

1  
 

2 
      

 

x x       
 

 

              

 2 
 
 2 

      

       
 

1   2      
 

   n 1  n2      
 

      68.2  67.3 
 

                

=    2.43 
2
   2.43

2
  =  2.21 

 

      64   81   
 

 
 Z  2.21  1.96 

 
Since Z lies in the critical region, we reject H0 . 

 
That is, the two groups are significantly different with reference to 

their mean statures. 
 
Example 2 
 

A random sample of 1000 workers from factory A shows that the 

mean wages were Rs. 47 per week with a standard deviation of Rs. 23. A 

random sample of 1500 workers from factory B gives a mean wage of 

Rs. 49 per week with a standard deviation of Rs. 30. Is there any 

significant difference between their mean level of wages? 
 
Solution  

Given n1 = 1000, n2 = 1500,  x1 = 47,  x2 = 49  
s1 = 23 s2 = 30 

We have to test  
H0 : 1  2 = 0 against H1 : 1  2  0 

 
Let  = 0.02. The BCR is   Z  2.326 

 

The test statistic is  Z    

 

1  
 

2 
 

 

x x  
 

 

        

 

s 
2
 
 

s
2
 

  

    
 

1 2  
 

   n 1  n2  
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  47  49          2     
 

                        

 

 

23 
2
 

 

 30
2 

                

=  =   529   900   
 

        

1000 
 

1500 
  

 

 1000  1500  
 

  2         2      
 

= 

   

= 

    

= 

 

1.882 

  
 

      

  

    

 

    

 .529  0.6  1.129    
  

 Z  1.882  2.326 
 
Since Z lies in the critical region, H 0 is accepted. That is, there is no 

significant difference between the samples. 
 
Testing the proportion of success of a population 
 

By testing population proportion of success we mean the testing of 

the significant difference between population proportion of success and 

the sample proportion of success. 
 

Now let us familiarise the following notations. 
 

p : population proportion of success (unknown) p0 

: the assumed value of p (given) 
 

    x  
 

 

: 

 

n ; the proportion of success of a sample 
 

p  
 

x  : the number of successes 
 

n  : sample size 
  

Suppose we want to test the null hypothesis 
 

H 0 : p = p0 against one of the alternatives 
 

H 1 : p  p0 or H 1 : p  p0 or H 1 : p  p0 based on a large sample 

of size n whose proportion of success is p . 
 

For the significance level  , critical regions are respectively. 
 

  Z Z ,   Z  Z  and   Z  Z / 2 
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The test statistic is Z  p   p0  
 

 

 

 

    

   p 0 q 0    

n  
Calculate the value of Z and if it lies in the critical region reject H0, 

otherwise accept it.  
Example 1  

In a survey of 70 business firms it was found that 45 are planning to 

expand their capacities next year. Does the sample information contradict 

the hypothesis that 70% the firms are planning to expand next year.  
Solution  

x  45 

Here we have p = n = 70 = 0.643  
p0 =70% = 0.70, n = 70 

Here we are testing 

H 0 : p = 0.70 against H1 : p < 0.70 
 

Let  = 0.05. The BCR is   Z 1.645 
 

The test statistic is Z  
p

 

 


 
p0

 
p

 0 
q

 0 
n 

 
0.643  0.70 

= 0.7  0.3  =   1.04 
70 

 
Since Z lies in the acceptance region, H0 is accepted. That is, 70% of the 

firms are planning to expand their capacities next year. 

Testing difference of two population proportions 
 

By testing the difference of two population proportions we are testing 

the equality of two population proportions or the significance difference 

between two sample proportions. In other words we are deciding whether 

the two samples have come from populations having the same 

proportions of success. 
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Let us consider the following notations.   
 

p1  : proportion of success of the first population   
 

p2  : porportion of success of the second population.  
 

x1  : number of successes in the first sample   
 

x2  : number of successes in the second sample   
 

n1  : first sample size   
 

n2  : second sample size   
 

 
: porportion of success of the first sample =  x 1 / n1 

 
 p

1  
 

 
: porportion of success of the second sample = x 2 / 

n
2  p

2 
 

Suppose we want to test the null hypothesis   
 

H 0 : p1  p2  0 against one of the alternatives   
 

H 1 : p1  p2  0 or H 1 : p1  p2  0 or H 1 : p1  p2  0 based 
 

on two independent large samples of sizes n1 and n2 with proportions of 

success p1and p2 respectively.  
For the significance level  , the critical regions are respectively. 

 

  Z Z ,   Z  Z and   
 

Z 
 

 Z 
 

  
 

       p       
 

The test statistic is Z  
  p1 2      

 

 

           

          

1  
 

            
 

 

  p * q *  1         

        
 

      
n

 1     
n

2  
 

                 
 

   n 1 p1 n 2 p 2       

where p* = 
n

 1 n2          
 

and q*  = 1 p*             
 

Calculate Z and if it lies in the critical region, reject H0, otherwise accept it. 
 
Example 1  

Before an increase in excise duty on tea 800 persons out of a sample 

1000 perons were found to be tea drinkers. After an increase in duty 800 

people were tea drinkers in a sample of 1200 people. Test whether there is 

significant decrease in the consumption of tea after the increase in duty. 
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Solution                             
 

   
  800       

    800          
 

   

= 1000 = 0.8 
                    

 

We have  p1    
p

2 
=

 1200 
= 0.67

  
 

Here we have to test                      
 

H 0 : p1  p2  0 against H1 : p1  p2  0      
 

Let  = 0.05. The BCR is   Z 1.645      
 

                              
 

The test statistic is  Z  
    p1  p2          

 

 

                 

 

p * q * 
 

 1 
 

  1 
    

 

               
 

          

       
 

          

n 1 

      
 

                   
n

2    
 

            
800  800  

   
1600   

   
n
 1 

p
1 n 2 p 2    

  
 

Now  p* = 
 

n 1 n2 
 =

 1000  1200 2200 = 0.727 
 

     
 

q*  = 1 p* = 1 0.727 = 0.273                  
 

Z = 
    0.80  0.67          

= 6.816 
 

 

 

                      

      1     1    
 

                     
 

  0.727  0.273                        

    

1200 
          

       1000            
 

 
 Z  6.816  1.645 

 

Since Z lies in the critical region,H0  is rejected.  
That is, there is a significant decrease in the consumption of tea after 

the increase in duty. 
 
Example 2 
 

In a sample of 600 men from city A, 450 are found to be smokers. 

Out of 900 from city B, 450 are smokers. Do the data indicate that the 

cities are significantly different with respect to prevalence of smoking. 
 
Solution 
 

 
450  

 
450  

 

=
 600 = 0.75 

=
 900 = 0.50 

 

Here p1 p2 
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We are testing 
 

H 0 : p1  p2 against H1 : p1  p2 
 

Let  = 0.01. The BCR is   | Z|  2.58 
 

              p         
 

The test statistic is  Z  
   p

1 2        
 

 

                 

 

p * q * 
 

 1 
 

 
  

1  
 

            
 

        

       

        

n 1 

    
 

                
n

2  
 

   
n 

   
450  450 

 
 900 

 
 

  
n
 1 

p
1 2 

p
 2  

  
 

Now  p* =n 1 n2 
   =

  600  900 1500 
= 0.6

 
 

    
 

q*  = 1   p* = 1 0.6 = 0.4                
 

Z =  0.75  0.50     = 9.68        
 

                   

   1    1              
 

  
0.6  0.4     

   

              

600 900 
            

 

                  
 

 
 Z  9.68  2.58 

 

Since Z lies in the critical region,H0  is rejected.  
That is, the two cities are significantly different w.r.t. prevalence of 

smoking. 
 
 

EXERCISES 
 
Multiple Choice Questions 
 
l Large sample tests are conventionally meant for a sample size 
 

a. n = 20 b. n < 30 c. n  30 d. n = 100 
 
l A parametric test is performed as a large sample test using 
 

a. central limit theorem b. Techebysheff inequality 

c. Weak law of large numbers d. none of these 
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l For a two failed test with  = 0.05, the best critical region of a Z 

test is  
 

a. Z <   2.58 b. Z > 2.58 
 

c. 
 

Z 
 

1.96 d. 
 

Z 
 

 2.58 
 

    
 

 

l To test H0 :   0 against H0 :   0 when  is known, the 

appropriate test is  
 

a. t-test b. Z-test 

c. F-test d. none of these  

l To test H0 :   500 against H0 :   500, we use  
 

a. one sided left tailed test  
 

b. one sided right tailed test  
 

c. two-tailed test d. all the above  

l Testing H0 :   200 against H0 :   500 leads to 
 

a. left tailed test b. right tailed test 
 

c. two-tailed test  d. none of these 
 
l To test an hypothesis about proportions of success in a class, the 

usual test is  
 
 a. t-test b. F-test c. Z-test  d. None of these  

Fill in the blanks    

l A test based on the outcome of tosing of a coin is a ................ test.  
l When  is known, the hypothesis about population mean is tested 

by ................  
 
l If the smple drawn from a population is large, then the hypothesis  

about  can be tested by ................ 
 
l A large population of heights of person is distributed with mean 66 

inches and SD = 10 inches. A sample of 400 persons had the mean 

height = 62 inches. The data ........ the hypothesis H0 :  = 66 inches.  
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l The critical value of one sided left tailed Z test, for = 0.05 is  
 

.....................   
l A  two sided  test  is  used  for  testing  a  null  hypothesis 

 

 H 
0 :  =  0 against ................. 

 

      

 
Very Short Answer Questions 
 
l Distinguish between large sample and small sample tests. l How 

will you decide the best critical regions of a Z test? 
 
l Give the Z statistic to test the mean of a population when  is 

known.   
l State the test statistic for testing H0 : p1  p2 against H1 : p1  p2 

. 
 
Short Essay Questions  
l Distinguish between large sample and small sample tests 

illustrating with suitable examples.  
 
l Explain the importance of normal distribution in large sample tests.  
l Discuss the use of standard error in large sample tests. Illustrate 

with an example.  
 
l Explain the method of testing the significance of the difference 

between a large sample mean and population mean.  
 
Long Essay Questions 
 
l An electrical firm manufactures light bulbs that have a length of life 

that is aporoximatey normally distributed with a mean of 800 hours 

and a standard deviation of 40 hours. Test H0 :  = 800 hours,  
 

against the alternative H1:   800 hours if a random sample of 30 

bulbs has an average life of 788 hours. 
 
l A random sample of 36 drinks from a soft-drink machine has an 

average content of 7.4 ounces with a standard deviation of 0.48 

ounces. Test the hypothesis H0 :  =7.5 ounces against H1:  < 

7.5 at  = 0.5  
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l A random sample of 625 items from a normal population of 

unknown mean has x = 10 and Standard Deviation = 1.5. At a later 

stage it was claimed that the population mean is 9. Test the truth 

of this claim.  
 
l A random sample of 900 members is found to have a mean of 3.4 

cms. Could it come from a large population with mean  = 3.25 

cms. and  = 2.61cms?  
 
l A sample of 200 boys who passed the S.S.L.c. Examination were 

found to have an average of 50 marks with S.D. = 5. The average 

marks of 100 girls was found to be 48 with S.D. = 4. Does it  
 

indicate any significant difference between the performance of 

boys and girls.  = 0.5.   
l Test the significance of the difference between the means of the 

samples from the following data:  = .01.   
 Size Mean S.D. 

Sample A : 100 61 4 

Sample B : 200 63 6 
 
l Two samples of people consisting of 400 and 500 individuals have 

mean heights 171.3 and 165.3 cms. with variances 40 and 37.5 

respectively. Examine whether the populations from which the 

samples are taken have the same mean.  
 
l A coin is tossed 10,000 times and it turns up head 5195 times. Is it 

reasonable to think that the coin is unbaised.  = .05.  
 
l In 324 throws of a six faced die, odd points appeared 181 times. 

Would yu say that the die is not fair.  = .01.  
 
l In a hospital 480 females and 520 males were born in a week. Do 

these figures confirm the belief that males and females are born 

equal numbers.  = .05.  
 
l In a sample of 628 men from town A, 379 are found to be smokers. In 

another sample of 943 from town B, 415 are smokers. Do the data 

indicate that the two towns are significantly different with  
 

respect to the prevalence of smoking among men. Use two tailed 

test and  = .05.  
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SMALL SAMPLE TESTS 

 
In the above section we discussed some large sample tests, where 

central limit theorem and normal distribution plays an important role, to 

shape the sampling distribution of the test statistic as normal or 

approximately normal. But in small sample tests, when the sample size n 

is less than 30 the exact sampling distribution of the test statistic can be 

determined. Based on the sampling distribution of the test statistic, the 

tests can be classified as Z - test, t - test, F-test and chi-square test. We 

have already discussed Z-test in detail as a large sample test. Here we 

discuss other small sample tests. 
 
The student’s ‘t’ test  

The test of hypothesis based on the Student‟s „t‟ distribution is called 

t-test. The t-test is a very powerful test procedure in statistics. The t-test 

is used as a test of significance, in the following cases. 
 
1. To test the significance of the mean of a small sample from a normal 

population.  
 
2. To test the significance of the difference between the means of two 

independant samples taken from a normal population.  
 
3. To test the significance of the difference between the means of two 

dependant samples taken from a normal population.  
 
4. To test the significance of an observed correlation coefficient.  
 
5. To test the significance of an observed regression coefficient.   

We now discuss some of these tests in some detail to emphasize the 

importance of „t‟ - distribution. 
 
1. t-test for population mean  

To test the mean of a population using Student‟s t-test, the following 

assumptions must be made.  
i. The parent population from which the sample is drawn is normal.  
 
ii. The sample observations are independent and random.  
 
iii. The sample should be small (n < 30)   
iv. The population standard deviation  is unknown.   

By testing the mean of a normal population, we are actually testing the  
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