UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

B.A. HISTORY

(2011 Admission onwards)

THIRD SEMESTER

CORE COURSE

INFORMATICS AND HISTORY

QUESTION BANK

1.	Before the inven	tion of the	there wasn't er	nail.
	a) IPR	b) Delphi	c) WIPO	d) Internet
2.	Many people in t	he business world	l communicate sol	ely with
	a) Email	b) WIPO	c) ISDN	d) Sundial
3.	is esse	ntial in our societ	y in order to grow	and move towards
	the future.			
	a) Technology	b) Delphi	c)Olduvai	d) IPR
4.	The invention of	thehas	s brought economi	c and social change
	to the world.			
	a) Computer	b) WIPO	c)Ceramics	d) IPR
5.	The	allows us to inp	out personal info	rmation online for
	practically anyor	ne to see.		
	a) Delphi	b) internet	c) ISDN	d) IPR
6.	has a	llowed countries	across the worl	d to connect and
	interact without	having to fly tho	usands of miles to	communicate with
	each other.			
	a) Technology	b) WIPO	c) IPR	d) Delphi

7.	The importance of stone tools, circa 2.5 million years ago, is considered				
	fundamental indevelopment in the hypothesis.				
	a) Human b) ARPANET c) Usenet d) BITNET				
8.	Theis a major contributor to the development of new				
	technology in many ways.				
	a) Government b) Delphi c) IPR d) Microliths				
9.	is the author of 'The Lights in the Tunnel: Automation,				
	Accelerating Technology and the Economy of the Future'.				
	a) Martin Ford b) George B.Selden c) Jon Hall d) Sam Ockman,				
10.	Appropriate technology, sometimes calledtechnology, more				
	of an economics concern, refers to compromises between central and				
	expensive technologies of developed nations and those that developing				
	nations find most effective to deploy given an excess of labour and				
	scarcity of cash.				
	a) Intermediate b) ARPANET c) Usenet d) BITNET				
11.	In economics, definitions or assumptions of progress or growth are				
	often related to one or more assumptions about technology's economic				
	influence.Challenging prevailing assumptions about technology and its				
	usefulness has led to alternative ideas like uneconomic growth or				
	measuring well-being. These, and economics itself, can often be				
	described as technologies, specifically, as				
	a) Delphi b) ARPANET c) BITNET d) Persuasion technology				
12.	The implementation ofinfluences the values of a society				
	by changing expectations and realities.				
	a) WIPO b) Delphi c) ISDN d) Technology				
13.	The implementation of technology is also influenced by				
	a) Values b) ARPANET c) Delphi d) Gnomon				
14.	provides an understanding, and an appreciation for the				
	world around us.				
	a) Technology b) Catapult c) Horseshoe d) Delphi				
15.	is one proponent of the irresistibleness of technology to				
	humans.				

	a) Jacques Ellul b) George B.Selde	en c) Jon Hall d) Sam Ockman		
16.	espouses the idea t	hat humanity cannot resist the		
	temptation of expanding our knowled	ge and our technological abilities.		
	a) George B.Selden	b) Jacques Ellul		
	c) Michael Tiemann	d) Eric S. Raymond		
17.	The wheel was invented in the	, and has become one of the		
	worlds most famous and most useful	technologies.		
	a) 4th millennium BC	b) 1st millennium BC		
	c) 2 nd millennium BC	d) 3 rd millennium BC		
18.	The National Museum of Iran is locate	ed in		
	a) New York b) Harvard	c) New Jersey d) Tehran		
19.	concept of three major sta	ges of social evolution (savagery,		
	barbarism, and civilization) can be d	ivided by technological milestones,		
	such as fire, the bow, and pottery in the savage era, domestication of			
	animals, agriculture, and metalworking in the barbarian era and the			
	alphabet and writing in the civilizatio	n era.		
	a) Morgan's	b) George B.Selden's		
	c) Michael Tiemann's	d)Eric S. Raymond's		
20.	Instead of specific inventions,	decided that the measure by		
	which to judge the evolution of cultur	re was energy.		
	a) Leslie White	b) George B.Selden		
	c) Linus Torvalds	d) Richard Stallman		
21.	For"the primary function	as of culture" is to "harness and		
	control energy".			
	a) Leslie White b) Jon Hall	c) Sam Ockman d) Linus Torvalds		
22.	differentiates between five st	ages of human development: In the		
	first, people use energy of their own	n muscles.In the second, they use		
	energy of domesticated animals'.In	the third; they use the energy of		
	plants (agricultural revolution). In	the fourth, they learn to use the		
	energy of natural resources: coal, o	oil, gas. In the fifth, they harness		
	nuclear energy.			

	a) Eric S. Raymond	b) George B.Selden	
	c) Leslie White	d) Richard Stallman	
23.	introduced a formula	a P=E*T, where E is a measure	of energy
	consumed, and T is the mea	asure of efficiency of technica	l factors
	utilizing the energy.		
	a) Sam Ockman b) Jon Hall	c) Leslie White d) Michael Ti	emann
24.	Inwords, "culture evo	olves as the amount of energy h	arnessed
	per capita per year is increased	d or as the efficiency of the instr	rumental
	means of putting the energy to	work is increased".	
	a) Leslie White	b) George B.Selden	
	c) Linus Torvalds	d) Richard Stallman	
25.	Russian astronomer,	, extrapolated his theory cre-	ating the
	Kardashev scale, which cate	egorizes the energy use of a	advanced
	civilizations.		
	a) Nikolai Kardashev	b) George B.Selden	
	c) Jon Hall	d) Sam Ockman,	
26.	The later Stone Age, during	which the rudiments of agr	ricultural
	technology were developed, is ca	alled	
	a) The Neolithic period	b) ARPANET	
	c) Paleolithic Age	d) Mesolithic	
27.	Duringperiod, p	polished stone tools were made	from a
	variety of hard rocks such as fli	int, jade, jadeite and greenstone.	
	a) Mesolithic b) Paleolithic Ago	e c) Neolithic d) ARP	ANET
28.	The polished axes were used fo	r forest clearance and the estab	lishment
	of crop farming, and were effect	rive as to remain in use when br	onze and
	appeared.		
	a) Iron b) Usenet	c) BITNET d) ISDI	N
29	developed into the E	Bronze Age after the Neolithic Re	volution.
	a) The Stone Age b) ARPANE?	Γ c) Delphi d) ISDI	N
30.	TheRevolution	involved radical changes in agr	ricultural
	technology which included	development of agriculture,	animal
	domestication and the adoption	n of nermanent settlements	

	a) Usenet	b) ARPANET	c) Neolithic	d) IPR
31.	In many Eurasian	cultures,	was the last n	najor step before
	the development	of written langua	age, though agair	n this was not
	universally the case	e.		
	a) Neolithic Age	b) Paleolithic Age	c) ISDN	d) Iron Age
32.	, situate	ed in a resource-	rich area, is nota	ble for its early
	application of city p	olanning and sanit	ation technologies.	
	a) Kashmir	b) IPR c) Rajast	han d) Indus Va	lley Civilization
33.	Ancient India was	at the forefront	of seafaring tech	nology—a panel
	found at	., depicts a sailing	g craft.	
	a) Mohenjodaro	b) Calcutta	c) Goa	d) Bihar
34.	construc	tion and archite	ecture, called 'V	aastu Shastra',
	suggests a thoroug	h understanding o	of materials engine	ering, hydrology,
	and sanitation.			
	a) Indian	b) Chinese	c) Romans	d) Greek
35.	The famous	mechanism	n, a kind of anal	ogous computer
	working with a	differential gear,	and the astrola	be show great
	refinement in the a	stronomical scienc	ce.	
	a) Antikythera	b) IPR	c) Automobile	d) Airplane
36.	enginee	ers were also the	first to devise aut	omaton such as
	vending machines,	, suspended ink	pots, automatic v	washstands and
	doors, primarily a	s toys, which ho	wever featured m	any new useful
	mechanisms such	as the cam and gir	nbals.	
	a) Greek	b) Harvard	c) Switzerland	d) Oxford
37.	Thewere	e the first inventor	es of hydroponics.	
	a) Mayas	b) Romans	c) Greeks	d) Incas
38.	Though the	civilization	had no metall	urgy or wheel
	technology, they d	eveloped complex	writing and astro	logical systems,
	and created sculptu	aral works in stone	e and flint.	
	a) Greek	b) Inca	c) Roman	d) Maya
39.	The main contri	bution of the	rule was	s a system of
	communications be	etween the conque	red cities	

	a) Aztec	b) Maya	c) Inca	d) Roman
40.	technolo	gy in the middle	Ages may be best	described as a
	symbiosis of traditi	o et innovatio.		
	a) African	b) Asian	c) American	d) European
41.	Paper making, a 2 ¹	nd century	technology, wa	as carried to the
	Middle East.			
	a) Chinese	b) Arabian	c) Roman	d) Greek
42.	Paper making te	echnology was s _l	pread to Mediter	ranean by the
	conqu	ests.		
	a) Muslim	b) Chinese	c) portuguese	d) Spanish
43.	A paper mill was es	tablished in	in the 12 th cent	ury.
	a) Harvard	b) Sicily	c) Cambridge	d) Dublin
44.	credited th	e spinning wheel	with increasing the	e supply of rags,
	which led to chea	p paper, which w	as a factor in the	development of
	printing.			
	a) Lynn White		b) George B.Selde	n
	c) Linus Torvalds		d) Richard Stallm	an
45.	Note books of the	artis	t-engineers such a	as Taccola and
	Leonardo da Vinci	give a deep insig	ht into the mecha	nical technology
	then known and ap	oplied.		
	a) Renaissance		b) Reformation	
	c) Enlightenment		d) Ancient	
46.	Architects and eng	gineers were insp	ired by the struct	tures of Ancient
	Rome, and men	likecre	ated the large do	ome of Florence
	Cathedral as a resu	ılt.		
	a) Brunelleschi		b) George B.Selde	n
	c) Alexander W.Ast	in	d) Sir Robert Cott	on
47.	Military technology	developed rapidl	y with the widesp	read use of the
	cross-bow and ev	ver more powerfu	l artillery, as th	e city-states of
	were usua	lly in conflict with	one another.	
	a) Italy	b) Harvard	c) New Jersey	d) New York

48.	The sailing ship (N	lau or Carrack) ei	nabled the Age of	Exploration with
	the European	colonization of	the Americas,	epitomized by
	New .	Atlantis.		
	a) Francis Bacon's		b) Robert Stephe	nson's
	c) Richard Roberts		d) Joseph Whitw	orth
49.	Manufacture of s	hips' pulley bloc	ks by all-metal 1	nachines at the
	block m	ills instigated the	age of mass produ	ction.
	a) Portsmouth	b) Massachusetts	s c) California	d) Canada
50.	were even	tually completely	iron-clad, and pla	yed a role in the
	opening of Japan a	and China to trade	with the West.	
	a) Steamships	b) Spacecraft	c) Refrigeration	d) Television
51.	In the early	century, the	main technology b	eing developed is
	Electronics.			
	a)15 Th	b) 16 th	c) 18 th	d) 21st
52.	is trying to o	detect gravitationa	l waves undergrou	nd.
	a) FLESH	b) LIGO	c) ARPANET	d) Metals
53.	became a	computing device v	when it was first u	sed to design the
	abacus.			
	a) ARPANET	b) Wood	c) LIGO	d) FLESH
54.	were used	l in the early mad	chines of Pascal, 7	Thomas, and the
	production version	s from firms such	as Brundsviga, Mo	onroe, etc
	a) Rough stones	b) Metals	c) polished stone	s d)papers
55.	Theh	as the lowest level	capacity.	
	a) Minicomputers		b) Microcompute	r
	c) Medium-size cor	nputers	d) Large compute	ers
56.	Large-scale produc	tion ofb	oegan in 1971 and	this has been of
	great use in the pr	oduction of microc	computers.	
	a) ARPANET	b) Silicon chips	c) Minicomputers	d) ROM
57.	is a dig	gital computer sys	stem that is contro	olled by a stored
	program that us	es a microproce	ssor, a program	mable read-only
	memory (ROM) and	d a random-access	memory (RAM).	

	a) Minicomputers		b) The microcomput	cer
	c) Medium-size co	omputers	d) Large computers	
58.	Thedefine	es the instructions	s to be executed by	the computer
	while RAM is the fu	ınctional equivaler	nt of computer memor	ry.
	a) ARPANET	b) ROM	c) Silicon chips	d) Metals
59.	The Apple IIe, the I	Radio Shack TRS-8	30, and the Genie III	are examples
	of microcomputers	and are essentially	ygeneration	n devices.
	a) First	b) second	c) third	d) fourth
60.	have from	om 4k to 64k sto	orage location and a	re capable of
	handling small, s	ingle-business ap	plication such as s	ales analysis,
	inventory, billing as	nd payroll.		
	a) Microcomputer	'S	b) Minicomputers	
	c) Medium-size co	omputers	d) Large computers	
61.	In the,	the growing der	nand for a smalle	r stand-alone
	machine brought	about the manu	facture of the min	icomputer, to
	handle tasks that l	arge computers co	uld not perform econ	omically.
	a) 1960s	b) 1970s	c) 1970s	d) 1980s
62.	were we	ell known in the	1940s although t	hey are now
	uncommon.			
	a) Analog computer	rs	b) Digital computers	3
	c) Hybrid computer	rs .	d) Minicomputers	
63.	, Bla	ise Pascal, and	Gottfried Leibnitz	were among
	mathematicians w	ho designed and i	mplemented calculat	tors that were
	capable of addition	, subtraction, mul	tiplication, and divisi	on included.
	a) Wilhelm Schickl	hard	b) Clifford Ber	cry
	c) Ray Tomlinson		d) Burton Ste	in
64.	The first multi-p	urpose or progra	ammable computing	g device was
	probably Charles	Babbage's Differe	nce Engine, which	was begun in
	but neve	er completed.		
	a) 1823	b) 1827	c) 1832 d) 1865

65.	In, Babbage designed a m	ore ambitious machine, called the			
	Analytical Engine but unfortuna	tely it also was only partially			
	completed.				
	a) 1842 b) 1852	c) 1862 d) 1872			
66.	, together with Ada Lov	relace recognized several important			
	programming techniques, including	g conditional branches, iterative			
	loops and index variables.				
	a) Herman Hollerith	b) George Scheutz			
	c) Babbage	d) J.V.Atanasoff			
67.	A second early electronic mach	ine was Colossus, designed by			
	for the British military in 1943.				
	a) Alan Turing	b) Eckert			
	c) Mauchly	d) John von Neumann			
68.	The first general purposes program:	mable electronic computer was the			
	Electronic Numerical Integrator and	nd Computer (ENIAC), built by J.			
	Presper Eckert and John V. Mauchly	at the University of			
	a) Pennsylvania b) Cambridge	c) London d) Harvard			
69.	. In 1964,developed the	CDC 6600, which was the first			
	architecture to use functional parallelism.				
	a) Larry Augustin	b) George B.Selden			
	c) Seymour Cray	d) Bob Kahn			
70.	of Cambridge developed	a subset of CPL called BCPL (Basic			
	Computer Programming Language, 1	.967).			
	a) Martin Richards	b) George B.Selden			
	c) Todd Anderson	d) Larry Augustin			
71.	In 1970of Bell Labs of	developed yet another simplification			
	of CPL called simply B, in connection with an early implementation of				
	the UNIX operating system.				
	a) Ken Thompson	b) George B.Selden			
	c) Larry Augustin	d) Lawrence Roberts			
72.	invented the Atanas	soff-Berry Computer (ABC) which			
	introduced electronic binary logic in	the late 1930s.			

	a) Lawrence Roberts	b) Howard Aiken	
	c) George B.Selden	d) John Atanasoff	
73	first machine w	as known as Mark I and ori	ginally named
	the IBM ASCC and this v	ras the first machine tha	t could solve
	complicated mathematical pr	blems by being programme	d to execute a
	series of controlled operations	in a specific sequence.	
	a) Bob Kahn's	b) George B.Selden's	3
	c) Lawrence Roberts'	d) Howard Aiken's	
74.	The ENIAC (Electronic Nu	merical Integrator and Co	omputer) was
	displayed to the public on F	ebruary 14, 1946, at the Mo	oore School of
	Electrical Engineering at the	Jniversity of	
	a) Georgia b) Massachuset	s c) California d) Penn	sylvania
75.	The DEHOMAG D11 tabulator	was invented in	
	a) California b) Harvard	c) Massachusetts d) Germ	nany
76.	is popularly recog	nized in Germany as the	father of the
	computer and his Z1, a prog	rammable automaton built	from 1936 to
	1938, is said to be the world's	'first programmable calcula	ting machine'.
	a) Peter Scott b) Lawrence F	oberts c) Ray Tomlinson c	l) Korad Zuse
77.	built the Z4, a relay	computer with a mechanic	cal memory of
	unique design, during the wa	years in Berlin.	
	a) Korad Zuse b) Eduard St	efel c) Dr. Heinz d) Georg	ge B.Selden
78.	During the World war II, a y	oung German engineer,	studied
	the application of electronic a	nalog circuits for the guidan	ce and control
	system of liquid-propellant	ockets and developed a sp	ecial purpose
	analog computer, the 'Mischg	erat' and integrated it into th	e rocket.
	a) Peter Scott	b) George B.Selden	
	c) Lawrence Roberts	d) Helmut Hoelzer	
79.	The Colossus was designed as	d constructed at the Post O	ffice Research
	Laboratories at Dollis Hill in	Northin 1943 to	help Bletchley
	Park in decoding intercepted	German telegraphic message	S.
	a) Oxford b) Harvar	d c) Cambridge d	London

80.	, supercomputer and Internet pioneer, was born in 1954, in					
	Nigeria, Africa.					
	a) Philip Emeagwa	ali	b) George B.Seld	en		
	c) Todd Anderson		d) Larry Augustii	n		
81.	A computer	is a computer	peripheral device	that produces a		
	hard copy (perma	nent human-reada	able text and/or a	graphics, usually		
	on paper) from dat	ta stored in a comp	outer connected to	it.		
	a) printer	b) ICT	c) ARPANET	d) scanner		
82.	Theis a con	nputer printer for p	orinting vector gra	phics.		
	a) plotter	b) ICT	c) scanner	d) ARPANET		
83.	Ais a de	vice that captures	images from pho	tographic prints,		
	posters, magazine pages, and similar sources for computer editing and					
	display.					
	a) scanner	b) ARPANET	c) ICT	d) Mouse		
84.	Ais a sma	all device that a co	mputer user push	nes across a desk		
	surface in order to	point to a place or	n a display screen	and to select one		
	or more actions to	take from that pos	sition.			
	a) Mouse	b) ICT	c) ARPANET	d) open source		
85.	A computer	is an impo	rtant device that a	allows a person to		
	enter symbols like letters and numbers into a computer.					
	a) Keyboard	b) ARPANET	c) open source	d) Mouse		
86.	Ais the m	nain device used in	the field of digital	photography.		
	a) Digital camera	b) ICT	c) ARPANET	d) Mouse		
87.	Ais an in	nput device consist	ting of a stick that	pivots on a base		
	and reports its ang	gle or direction to t	he device it is cont	rolling.		
	a) joystick	b) ICT	c) DRM	d) ARPANET		
88.	also kn	own as 'control col	umns'.			
	a) Joysticks	b) barcode reader	r c) ICT	d) ARPANET		
89.	The Global Positio	ning System (GPS)) is ao	wned utility that		
	provides users wit	h positioning, navi	gation, and timing	(PNT) services.		
	a) U.S	b) Russia	c) China	d) Britain		
90.	Ais an	electronic device f	or reading printed	barcodes.		

	a) Barcode reader	b) ICT	c) DRM	d) ARPANET		
91.	Like a flatbed scan	ner, con	sists of a light s	ource, a lens and a		
	light sensor translating optical impulses into electrical ones.					
	a) Barcode reader	b) CD	c) DVD	d) ICT		
92.	Anis a	a mobile electronic	c device that is	designed primarily		
	for the purpose of 1	reading digital e-bo	ooks and periodi	cals.		
	a) e-book reader	b) ARPANET	c) open source	d) Barcode reader		
93.	are	a form of digital	storage media	found in personal		
	computers and ser	vers.				
	a) Hard drives	b) server	c) clients	d) ICT		
94.	ar	e collections of co	omputers, softw	are, and hardware		
	that are all connec	ted to help their us	sers work togeth	er.		
	a) DRM	b) Networks	c) Hard drives	d) server		
95.	Aconn	ects computers	by means of	cabling systems,		
	specialized software, and devices that manage data traffic.					
	a) Network	b) open source	c) Hard drives	d) clients		
96.	Aer	ables users to sl	nare files and i	resources, such as		
	printers, as well as	send messages ele	ectronically (e-m	nail) to each other.		
	a) ICT	b) Network	c) Cyberethics	d) DRM		
97.	Aconnects computers within a single geographical location,					
	such as one office l	ouilding, office sui	te, or home.			
	a) LAN	b) ICT	c) Cyberethics	d) DRM		
98.	A mobile phone also known as a					
	a) LAN	b) Cellular phone	c) open source	d) DRM		
99.	is a	a standard switch	ning technique,	designed to unify		
	telecommunication and computer networks.					
	a) Asynchronous T	ransfer Mode	b) digital	split		
	c) Cyberethics		d) DRM			
100	use	es asynchronous	time-division m	ultiplexing, and it		
	encodes data into s	small, fixed-sized c	ells.			
	a) Asynchronous T	ransfer Mode	b) ICT			
	c) ARPANET		d) open s	source		

101provides	data link layer so	ervices that run ov	ver a wide range
of OSI physical Laye	er links.		
a) Cyberethics		b) digital sp	olit
c) Asynchronous Tra	ansfer Mode	d) ARPANE	Γ
102has	functional simila	arity with both	circuit switched
networking and sma	all packet switche	d networking.	
a) Asynchronous Tra	ansfer Mode	b) ICT c) DRM	d) digital split
103wa	s designed for a	network that m	ast handle both
traditional high-thr	oughput data tra	affic (e.g., file tran	sfers), and real-
time, low-latency co	ntent such as voi	ce and video.	
a) Asynchronous Tra	ansfer Mode	b) digital sp	olit
c) Cyberethics		d) open sou	irce
104is a	core protocol use	d over the SONET	//SDH backbone
of the public swi	tched telephone	network (PSTN)	and Integrated
Services Digital Net	work (ISDN), but	its use is declining	g in favour of All
IP.			
a) Asynchronous Tra	ansfer Mode	b) digital split	c) ICT d) IPR
105is a so	cial issue refer	ring to the differ	ring amount of
information between	n those who have	e access to the Int	ernet (especially
broadband access) a	and those who do	not have access.	
a) Cyberethics	b) Digital Divide	c) IPR	d) DRM
106is the	e study of ethics	pertaining to com	puter networks,
encompassing user	behavior and	what networked	computers are
programmed to do,	and how this affec	cts individuals and	society.
a) Open source	b) DRM	c) Cyberethics	d) Digital Divide
107. A generalized defi	nition of	may be "unlaw	ful acts wherein
the computer is eith	er a tool or target	or both"	
a) Cyber crime		b) open source	
c) Word processing		d) Digital Divide	
108 in his w	vork "The Concep	ot of Law" has said	l 'human beings
are vulnerable so ru	le of law is requir	ed to protect them	•
a) Hart b) Geo	orge B.Selden c)	Todd Anderson d	Larry Augustin

109	is a malicious software	program written intentionally to
	enter a computer without the user's p	ermission or knowledge.
	a) VERONICA	b) Microsoft Windows
	c) Computer Virus	d) Cyber crime
110	.Anis a set of software	that manages computer hardware
	resources and provides common serv	ices for computer programs.
	a) Operating system	b) Microsoft Windows
	c) open source	d) Word processing
111	.The main function of	is to coordinate the user and
	outside devices used in computer sys	tem.
	a) Disk operating system	b) Microsoft Windows
	c) Word processing	d) VERONICA
112	. While operating a computer, user er	nters some commands
	converts these commands into a vers	ion which is readable by computer
	memory.	
	a) Disk operating system	b) Microsoft Windows
	c) VERONICA	d) open source
113	converts the error messag	es generated by computers into an
	understandable format.	
	a) BOOT record b) open source	c) Word processing d) DOS
114	. To load disk operating system, y	our computer must be equipped
	with	
	a) BOOT record b) Microsoft Wind	lows c) VERONICA d) open source
115	enables read-only memory	(ROM) to load the disk operating
	system.	
	a) BOOT record	b) Microsoft Windows
	c) open source	d) Digital Divide
116	. In production and development,	is a philosophy, or
	pragmatic methodology that promote	s free redistribution and access to
	an end product's design and impleme	ntation details.
	a) open source b) VERONICA	c) Digital Divide d) BOOT record

117.	The label "open so	ource" was adopted	d by a group of p	eople in the free
	software movemen	t at a strategy sess	sion held at Palo A	Alto, in
	reaction to Netsca	pe's January 1998	3 announcement of	of a source code
	release for Navigate	or.		
	a) California	b) Massachusetts	c) pensylvania	d) Newjercey
118.	of M	IIT first proposed	a global network	of computers in
	1962, and moved	over to the Defe	ense Advanced R	esearch Projects
	Agency (DARPA) in	late 1962 to head	the work to develo	p it.
	a) David Rothenber	rg	b) Ray Tomlinson	ı
	c) Frederick G. Kilg	gour	d) J.C.R. Licklide	r
119.	Roberts moved o	ver to DARPA in	n 1966 and deve	eloped his plan
	for			
	a) JDPC	b) VERONICA	c) cable	d) ARPANET
120.	E-mail was adapte	d for ARPANET by	of BBN	in 1972.
	a) Ray Tomlinson		b) Frederick G. K	ilgour
	c) Peter Scott		d) David Rothenb	erg
121.	picked	the @ symbol from	om the available	symbols on his
	teletype to link the	username and add	dress.	
	a) Ray Tomlinson	b) Frederick G. Ki	ilgour c) Bob Kah	n d) Peter Scott
122.	The Unix to Unix	Copy Protocol (UUC	CP) was invented in	ı at Bell
	Labs.			
	a) 1678	b) 1778	c) 1868	d) 1978
123.	was th	ne first national c	commercial online	service to offer
	Internet access to	its subscribers.		
	a) Delphi	b) cable	c) IPR	d) JDPC
124	· is a	form of Internet ac	ccess that uses th	e facilities of the
	public switched	telephone networ	k (PSTN) to esta	ablish a dialed
	connection to an Ir	nternet service prov	vider (ISP) via telep	hone lines.
	a) Dal-up Internet	access b) cal	ble c) ISDN	d) IPR
125.	is a fan	nily of technologie	s that provide in	ternet access by
	transmitting digita	l data over the wire	es of a local telepho	one network.
	a) DSL	b) cable	c) ISDN	d) WIPO

126is a	wireless network	ing technolo	gy used acr	oss the glob	e.
a) WiFi	b) WIPO	c) IPR) -	d) JDPC	
127. Information	and Library	Network (II	NFLIBNET)	Centre is	s an
Autonomous 1	Inter-University C	Centre (IUC)	of	, Govern	ıment
of India.					
a) UGC	b)UNO	c)NCT	Έ	d) NCERT	
128.National Infor	matics Centre (N	(C) is a pren	nier S & T i	institution (of the
Government	of India, establ	ished in	fo	or providir	ıg e-
Government	/ e- Governanc	e Solutions	adopting	best prac	tices,
integrated ser	vices and global s	olutions in G	overnment	Sector.	
a) 1976	b) 1978	c) 198	34	d) 1986	
129	is a prototype por	tal site for b	iological inf	ormation.	
a) BRNet	b) Word pro	cessing	c) INSAT	d) DSL	
130.The term 'V	Word processing	' was coin	ed at IBl	M's Boebli	ngen,
	Laboratory in	the 1960s.			
a) West Germa	any b)East Gern	nany c) Fra	nce	d) Spain	
131.A	, also known	as a work	sheet, con	tains rows	and
columns and	is used to recor	d and com	pare numer	rical or fina	ancial
data.					
a) PowerPoint	b) Microsoft	Office Acces	ss c) sprea	dsheet d) (CIET
132. Originally,	only exis	sted in pape	r format, b	ut now the	y are
most likely cr	eated and maint	ained throu	gh a softwa	re program	that
displays the n	umerical informat	tion in rows	and column	ıs.	
a) spreadsheet	ts b) PowerPoi	nt c) Mic	rosoft Offic	e Access d)	CIET
133 c	an be used in an	y area or fie	ld that worl	ks with nur	nbers
and are cor	nmonly found	in the acc	ounting, t	oudgeting,	sales
forecasting, fir	nancial analysis, a	and scientific	e fields.		
a) Microsoft C	Office Access b) S	Spreadsheets	s c) Power	Point d) C	IET
134.On a compute	rized spreadsheet	t, the interse	ction of a ro	ow and a co	lumn
is called	•••••				
a) a cell	b) Microsoft Office	e Access	c) INSAT	d) PowerP	oint

135.	is a present	tation graphics sof	tware tool.	
	a) Microsoft Office Access	b) PowerPoi	nt c) INSAT	d) CIET
136.	provides ι	users the easy ab	ility to create pro	ofessional-
	looking presentations.			
	a) CIET b) Microsoft	Office Access	c) PowerPoint	d) INSAT
137.	provides	editing, outlining,	drawing, grapl	ning, and
	presentation manageme	nt functions, in	one convenient	software
	package.			
	a) PowerPoint b) Micros	oft Office Access	c) INSAT d) Spre	eadsheets
138.	The original version of.	was	created by Thoma	as Rudkin
	and Dennis Austin of a co	ompany called Fore	ethought.	
	a) PowerPoint b) Microso	oft Office Access	c) Spreadsheets	d) INSAT
139.	describes t	he way text and	graphics can be	combined
	together on a single pag	ge which can the	n be printed out	as a high
	quality print.			
	a) Desk Top Publishing	b) CIET	c) Scilab	d) INSAT
140.	DTP is good for	•••••		
	a) importing text and grap	phics created elsew	vhere	
	b) long or specialised writ	ing tasks		
	c) specialised graphics ta	sks		
	d) exporting text and grap	ohics		
141.	DTP is not best for	•••••		
	a) exporting text and grap	ohics		
	b) combining text and gra	phics		
	c) importing text and grap	ohics created elsew	here	
	d) creating columns of tex	κt		
142.	referring to	a type of publish	hing that does n	ot include
	printed books.			
	a) E-publishing	b) INSAT	c) JDPC	d) CIET

143.I	n 2008 Stephen	Turner and	, both C	yber Classroom
iı	nstructors, realize	d that they had a	a rare opportunity	to make direct
c	comparisons of st	udent outcomes b	ooth without and	with the Cyber
C	Classroom recordin	ıgs.		
	a) Herman Holleri	ith	b) Sir Hans Sloan	e
	c) Robert Harley		d) Michael Farmer	r
144	include	es all forms of elec	ctronically support	ed learning and
te	eaching, and more	recently Edtech.		
a	a) E-learning	b) INSAT	c) TDCC	d) CIET
145.	w	vas founded in 19	999, as a vehicle	for education to
r	each students wh	no would otherwis	se never have the	opportunity to
p	participate in Mode	1 UN.		
a	a) Global Classroom	ns b) INSAT	c) JDPC	d) SIT
146.0	On May 13, 2010,	MTV Networks Int	ernational Preside	nt, MTV Staying
A	Alive Chairman, ai	nd UNAIDS Ambas	ssador	addressed the
C	Global Classrooms	international stud	dent delegation at	the UN General
A	Assembly, during	which he discusse	ed issues ranging	from AIDS and
H	HIV to global media	ì.		
	a) Hillary Clinton		b) Bill Roedy	
	c) Esther Brimme	r	d) N.Karashima G	eorge
147.	With Launching o	of a series of sate	llites by	broadcasting
(8	audio and video)	and teleconference	ing facilities are r	now available in
а	almost every states	and UTs of our co	untry.	
а	a) SIT	b) INSAT	c) TDCC	d) ISRO
148.7	The concept of bea	ming educational j	programmes throu	gh satellites was
d	lemonstrated for t	he first time in Inc	lia through	in 1975-76
u	ısing American Ap	plication Technolog	gy Satellite (ATS-6)	•
a	a) SITE	b) INSAT	c) JDPC	d) TDCC
149.K	Keeping in view u	sefulness of the I	NSAT in education	nal programmes
N	MHRD visualized E	DUSAT project in	October	
a	a) 2002	b) 1989	c) 1996	d) 1998

150	.The EDUSAT was 1	aunched on 20 Se	ptember	
	a) 1982	b) 1984	c) 1999	d) 2004
151	is the	first Indian satell	ite built exclusivel	y for serving the
	educational sector	offering an int	eractive satellite	based distance
	education system f	or the country.		
	a) EDUSAT	b) MBHS	c) Scilab	d) INSAT
152	is s _j	pecially configure	d for the audio	visual medium,
	employing digital	interactive classro	oom and multime	dia multicentric
	systems.			
	a) EDUSAT	b) INSAT	c) FORTRAN	d) MBHS
153	is prim	narily meant for	providing connect	tivity to school,
	college and higher			
	education including	g developmental co	ommunication.	-
	a) EDUSAT	_		d) FORTRAN
154	carries f	•	,	•
	Ku-band transpon			-
	band transponders	_		
	a) EDUSAT			d) HTML
155	. In the first phase	·	•	·
	INSAT-3R, which is		_	
	a) FORTRAN			d) Ku-band
156	.Theconfi			
100	network of instituti			-
	a) EDUSAT	,	S	
157	, leade	,	•	•
101	(BI) software that	•	· -	
	decisions every day	-	Samzations make	Setter Submess
	a) MBHS		DRTRAN d) Acc	ess Digital Data
1 50	•	•	•	
1 00	TheLibrar number of items.	y is the world's	largest library III	i terms or total
		h) Franch	a) Dritish	d) Dussian
	a) German	b) French	c) British	d) Russian

159.British Library	is located on the	e north side of E	Custon Road in St
Pancras,	•••		
a) Hardward	b) Cambridge	c) Oxford	d) London
160.The British Lib	rary was created o	n 1 July	. as a result of the
British Library	Act 1972.		
a) 1971	b)1973	c) 1982	d) 1985
161.In, the	British Library ab	sorbed the Nation	nal Sound Archive,
which holds ma	ny sound and vide	o recordings, with	over a million discs
and thousands	of tapes.		
a) 1983	b) 1986	c) 1987	d) 1992
162. The core of the	ne British Library's	historical collecti	ons is based on a
series of donat	tions and acquisiti	ons from the 18t	th century, known
as			
a) The 'foundat	ion collections'	b) MBHS c)	HTML d) Scilab
163. An Act of Parlia	ament in	established the p	rinciple of the legal
deposit, ensuri	ng that the Britisl	n Library and five	e other libraries in
Great Britain aı	nd Ireland are entit	led to receive a free	e copy of every item
published or dis	stributed in Britain		
a) 1901	b)1909	c) 1911	d) 1931
164'S	Sitting on History' v	vas purchased for	the British Library
by Carl Djerass	i and Diane Middle	brook in 1997.	
a) John E. Mito	chiner's	b) Herman Hol	lerith's
c) Bill Woodrow	's	d) T.V. Mahalir	ngam's
165. In20	10 the British Lib	rary launched its	Management and
business studie	s portal.		
a) October	b) November	c)December	d) January
166. TheLit	orary Philatelic Coll	ections are held at	St Pancras
a) British	b) American	c) French	d) Indian
167fou	nded the Tabulatir	ng Machine Compa	any in 1896 which
later became	the popular IBM	(International B	Business Machines
Corporation.A v	ariety of machines	were developed du	ring the WWII.

	a) John E. Mitchine	er	b) Herman Hollerith	
	c) W.W.Grummond		d) T.V. Mahalingam	
168	.The first all-electro	nic computer	is called	
	a) ENIAC	b) COBOL	c) FORTRAN	d) HTML
169	9.The first non-milit	ary electroni	c programmable compu	ter,, for
	data processing wa	s introduced	in 1950.	
	a) UNIVAC	b) COBOL	c) FORTRAN	d) HTML
170). Theis	a compute	r application that pro	vides statistical
	analysis of data.			
	a) SPSS	b) Scilab	c) UNIVAC	d) COBOL
171	. SPSS (originally,	Statistical 1	Package for the Social	Sciences) is a
	software program	developed in	the late 1960s by gr	aduate students
	at Univ	versity		
	a) Oxford	b)Harward	c) Stanford	d) Cambridge
172	is the o	lata analysis	package of choice for p	eople wanting to
	analyze quantitativ	e data.		
	a) Scilab	b) SPSS	c) COBOL	d) UNIVAC
173	for W	indows is a	a comprehensive, inter	ractive, general-
	purpose package	for data ar	nalysis and it include	s most routine
	statistical techniqu	es.		
	a) SPSS	b) Scilab	c) ENIAC d) Acc	cess Digital Data
174	is a true	Windows pac	ckage being mouse-drive	en with movable,
	scalable windows,	drop-down m	enus and dialog boxes.	
	a) Scilab	b) SPSS	c) Access Digital 1	Data d) INSAT
175	for Wind	lows is prob	ably one of the easiest	major statistics
	package to use.			
	a) Scilab	b) SPSS	c) INSAT	d) JDPC
176	.In July,	in order to	improve the technolo	gy transfer, the
	Scilab Consortium	joined the Di	giteo Foundation	
	a) 2002	b)2007	c) 2008	d) 2011
177	allo	ws even ine	experienced users to a	run complicated
	statistical analyses	at the click	of a few hiittons	

a	a) ENIAC	b)	Scilab	c) SPS	S d)	Access	Digital 1	Data	
178	for	Windows	s provides	s a pow	erful st	atistical	analysi	s and	data
1	management	system	in a gra	aphical	enviro	nment,	using o	descrij	ptive
1	menus and si	mple dial	log boxes	to do n	ost of t	the task	s for you	1.	
a	a) CIET	b)	Scilab	(c) JDPC)	d) SP	SS	
179	I	provides	a pow	erful	statisti	cal-anal	ysis a	nd d	lata-
1	management	system	in a gra	aphical	enviro	nment,	using (descrij	ptive
1	menus and si	mple dia	log boxes	to do n	ost of t	the work	for you	.•	
a)) JDPC	b)	Scilab	(c) INSA	Γ	d) SP	SS	
180.	is	an open	source,	cross-p	latform	numeri	cal com	putati	ional
1	package and	a high-lev	vel, nume	erically o	oriented	d progra	mming l	angua	age.
a	a) Scilab	b)	ENIAC	c) Acce	ss Digi	tal Data	d) CC	BOL	
181	ca	n be use	d for sign	al proc	essing,	statistic	al analy	rsis, ir	nage
6	enhancement	, fluid dy	namics s	imulati	ons, nu	umerical	optimiz	ation,	and
1	modeling and	simulati	on of exp	licit and	l implic	eit dynar	nical sys	stems.	•
a	a) Scilab	b) Access	s Digital I	Data	c)	INSAT	d) JD	PC	
182.	MATLAB c	ode, wh	ich is s	similar	in sy	ntax, c	an be	conve	erted
t	to								
8	a) FORTRAN	b)	Scilab	(c) COBO	OL	d) IN	SAT	
183.	is o	ne of seve	eral open	source	alterna	atives to	MATLAI	3.	
8	a) FORTRAN	b)	ENIAC	(c) Scilat)	d) CC	BOL	
184.	Scilab incl	udes a	free pac	kage c	alled .	fe	or mod	eling	and
8	simulation of	explicit	and imp	licit dy	namica	l system	ıs, inclu	ıding	both
C	continuous a	nd discre	te sub-sy	stems.					
8	a) Access Dig	ital Data	b) EN	IAC o	c) Xcos		d) FC	RTRA	N
185.	can be	compare	ed to Sim	ulink fr	om the	MathWo	orks.		
a	a) Xcos	b) Access	s Digital I	Data d	c) Scilat)	d) FC	RTRA	N
186.	Scilab syntax	is largel	y based o	n the	1a	anguage	•		
a	a) ENIAC	b) Scilab		c) MAT	LAB		d) Xc	os	
187.7	The Scilab	Consorti	um was	forme	d in I	May	to) broa	aden
C	contributions	and pro	omote Sci	ilab as	worldw	vide refe	rence s	oftwar	e in
8	academia and	l industry	7.						

	a) 1983	b) 1993	c) 2003	d) 2006	
188	.In July 2008, in o	rder to improv	re the technolog	gy transfer, the Scilal	b
	Consortium joined	the			
	a) Digiteo Foundati	on b) Scilab	c) ENIAC	d) Access Digital Data	
189	is	a method by v	which a compa	ny can convert pape	r
	documents into dig	ital format.			
	a) Digital documen	tation b) Scilat	c) Access D	igital Data d) MATLAE	3
190	.Indus script is a pr	oduct of one of	the largest	civilisations ofter	n
	referred to as the H	arappan civilis	ation.		
	a) Neolithic Age	b)	Paleolithic Age		
	c) Bronze Age	d)	Mesolithic Age		
191	Civilisati	on was disting	guished for its	highly utilitarian and	d
	standardised life	style, exceller	nt water mana	agement system and	d
	architecture.				
	a) American	b)Mayan	c) Indus Va	lley d)Egyptian	
192	. The first publication	on of a Harappa	an seal dates to	1873, in a drawing by	у
	a) Alexander Cunni	ngham	b) Yuri Kno	rozov	
	c) John E. Mitchine	er	d) W.W.Gru	ımmond	
193	.In the early 1970s,	pı	ablished a corp	us and concordance o	ıf
	Indus writing listing	g about 3700	seals and abou	t 417 distinct signs in	n
	specific patterns.				
	a) Iravatham Maha	devan	b) John E.	Mitchiner	
	c) W.W.Grummond		d) T.V. Mah	alingam	
194	thou	ght that the Ir	ndus script was	s the archetype of the	e
	Brāhmī script.				
	a) Alexander Cunn	ingham	b) W.W.Gru	ımmond	
	c) MGS Narayanan		d)K.A.Nilak	andasastri	
195	In May 2007, the	Tamil Nadu A	rchaeological D	epartment found pot	s
	with arrow-head s	ymbols during	an excavation	in Melaperumpallan	n
	near				
	a) Poompuhar	b) Madras	c) Adavar	d) Tirunelveli	

196.A computational study od Indus Script conducted by a joint Indo-US
team led by Rajesh P N Rao of the University of
consisting of Iravatham Mahadevan and others from the Tata Institute
of Fundamental Research and the Institute of Mathematical Sciences
was published in April 2009 in Science.
a) Russia b) Washington c) France d)Delhi
197. The book 'Deciphering the Indus Script' was written by
a) Asko Parpola b) Shikaripura Ranganatha Rao
c) K.A. Nilakanta Sastri d) Appadorai
198. The Finnish scholarled a Finnish team in the 1960s-80s
that vied with Knorozov's Soviet team in investigating the Indus scrip
using computer analysis.
a) Shikaripura Ranganatha Rao b) Asko Parpola
c) John E. Mitchiner d) W.W.Grummond
199. South Indian History and Society Studies from Inscriptions A.D.850
1800' was written by
a) Noboru Karashima b) Prof.Champakalakshmi
c) D.N.Jha d) M.G.S. Narayanan
200 initiated a joint research project on the "Socio -
economic development in South India from the 13th century through the
18th century in 1984.
a) Robert Scoble b) Goldman
c) Noboru Karashima d) Jason Calacanis.
201. The Vijayanagar Inscriptions in South India brought out by Noboru
Karashima in is a remarkable example for computer
assisted research.
a) 2000 b)2002 c) 2005 d) 2007
202 is an electronic spreadsheet program that can be used for
storing, organizing and manipulating data.
a) ENIAC b) Scilab c) Excel d) Access Digital Data

203	is the study of	human cultures thro	ough the recovery		
documentat	tion and analysis of r	naterial remains inclu	ding architecture,		
artefacts, bi	ofacts, human remai	ins and landscapes.			
a) Numisma	itics b) Archaeolo	gy c) Anthropology	d)Paleography		
204. JSTOR is	an online system for	archiving academic	journals, founded		
in	•••				
a) 1985	b)1992	c) 1995	d) 2005		
205. The founde	r of JSTOR was				
a) Goldman		b) William G. Bo	owen		
c) Brad Fitz	patrick	d) Robert Scoble	d) Robert Scoble		
206	. is an autonomou	as institution commi	tted to scientific		
research in	history and social	sciences, Funded by	y the Ministry of		
Cultural Aff	airs, Government of	Kerala.			
a) ICHR	b) UNESCO	c) Scilab	d) KCHR		
207. KCHR is lo	cated at				
a) Thiruvan	anthapuram b)Delh	i c) Kottayam	d)Calcutta		
208. The British	ı Museum was estal	blished in, lar	gely based on the		
collections of	of the physician and	scientist Sir Hans Sloa	ane.		
a) 1733	b)1743	c)1753	d)1783		
209 is	a collaborative proje	ect to create a free ed	litable map of the		
world.					
a) UNESCO	b) OSM	c) ENIAC	d) KCHR		
210	was founded in July.	2004 by Steve Coast.			
a) ENIAC	b) UNESCO	c) Scilab d)	OpenStreetMap		
211.Ais	a personal journa	l published on the	World Wide Web		
consisting	of discrete entries	("posts") typically dis	played in reverse		
chronologic	al order so the most	recent post appears fi	rst.		
a) Scilab	b) blog	c) ENIAC	d) OSM		
212. The term "v	veblog" was coined by	yon 17 Dece	mber 1997.		
a) Jorn Barş	ger	b) Brad Fitzpatr	ick		
c) Evan Will	iams	d) Meg Houriha	n		

213	launched C	Open Diary in Oc	tober 1998, whic	ch soon grew to					
t	thousands of online diaries.								
8	a) Rustem Adagam	ov	b) Brad Fitzpatrick						
(c) Bruce Ableson		d) Alexey Navalny						
214.	214started LiveJournal in March 1999.								
8	a) Brad Fitzpatrick		b) Evan Williams						
(c) Meg Hourihan		d) Vladimir Putin	1					
215.7	The Blogger's Code	of Conduct is a p	roposal by	for bloggers to					
6	enforce civility on their blogs by being civil themselves and moderating								
(comments on their	blog.							
á	a) Tim O'Reilly		b) Meg Hourihan						
(c) Brad Fitzpatrick		d) Bruce Ableson	l					
216.0	Groupsite.com is fo	ormerly known as .	•••••						
á	a) Scilab	b) CollectiveX	c) ENIAC	d) CollectiveZ					
217.	217. Google Earth is a virtual globe, map and geographical information								
1	program that was c	originally called	•••••						
8	a) Earth Viewer 3D	b) Scilab	c) ENIAC d) Ea	arth Viewer 4D					
218.	is the pro	emier organization	for the archaeole	ogical researches					
and protection of the cultural heritage of the nation.									
8	a) ENIAC	b) UNESCO	c) ASI	d)ICHR					
219.4	ASI regulates all	archaeological acti	ivities in the cou	antry as per the					
1	provisions of the Ancient Monuments and Archaeological Sites and								
I	Remains Act,								
8	a) 1948	b)1958	c)1868	d)1978					
220. The Internet Archive Founded in 1996 located in									
8	a) France	b) Washington	c) NewDelhi d)	San Francisco					

ANSWER KEY

1.d	2.a	3.a	4.a	5.b	6.a	7.a
8.a	9.a	10.a	11.d	12.d	13.a	14.a
15.a	16.b	17.a	18.d	19.a	20.a	21.a
22.c	23.c	24.a	25.a	26.a	27.c	28.a
29.a	30.c	31.d	32.d	33.a	34.a	35.a
36.a	37.d	38.d	39.a	40.d	41.a	42.a
43.b	44.a	45.a	46.a	47.a	48.a	49.a
50.a	51.d	52.b	53.b	54.b	55.b	56.b
57.b	58.b	59.d	60.a	61.a	62.a	63.a
64.a	65.a	66.c	67.a	68.a	69.c	70.a
71.a	72.d	73.d	74.d	75.d	76.d	77.a
78.d	79.d	80.a	81.a	82.a	83.a	84.a
85.a	86.a	87.a	88.a	89.a	90.a	91.a
92.a	93.a	94.b	95.a	96.b	97.a	98.b
99.a	100.a	101.c	102.a	103.a	104.a	105.b
106.c	107.a	108.a	109.c	110.a	111.a	112.a
113.d	114.a	115.a	116.a	117.a	118.d	119.d
120.a	121.a	122.d	123.a	124.a	125.a	126.a
127.a	128.a	129.a	130.a	131.c	132.a	133.b
134.a	135.b	136.c	137.a	138.a	139.a	140.a
141.a	142.a	143.d	144.a	145.a	146.b	147.d
148.a	149.a	150.d	151.a	152.a	153.a	154.a
155.d	156.a	157.d	158.c	159.d	160.b	161.a
162.a	163.c	164.c	165.a	166.a	167.b	168.a
169.a	170.a	171.c	172.b	173.a	174.b	175.b
176.c	177.c	178.d	179.d	180.a	181.a	182.b
183.c	184.c	185.a	186.c	187.c	188.a	189.a
190.c	191.c	192.a	193.a	194.a	195.a	196.b
197.a	198.b	199.a	200.c	201.b	202.c	203.b
204.c	205.b	206.d	207.a	208.c	209.b	210.d
211.b	212.a	213.c	214.a	215.a	216.b	217.a
218.c	219.b	220.d				

© Reserved