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Module I 

INEQUALITIES IN INCOME  
 

UNIT 1: INCOME INEQUALITY 

 According to Frank. A. Cowell “Inequality is in itself an awkward word, as well as 
one used in connection with a number of awkward social and economic problems. The 
difficulty is that the word can trigger quite a number of different ideas in the mind of a 
reader or listener, depending on his training and prejudices”. 

 The term inequality obviously suggests a departure from some idea of equality. In our 
society there are differences among people in terms of asset ownership, land holdings, 
income etc. The measures of inequality addresses to measure the degree and magnitude of 
inequality of variables.  

 There are different methods for measuring inequality in variables. The important 
graphical methods are frequency table graphs and Lorenz Curve. Range, Mean deviation, 
Coefficient of variation, Gini concentration ratio, Pareto distribution and lognormal distribution 
are the other inequality measures.  

 Income may be defined as the increase in a personal command over resources during 
a given time period. By income inequality we mean a scalar representation of the 
interpersonal differences in income with in a given population.  

Method of Measuring Inequality  

 Most of the results in inequality measurement and many inequality indices 
themselves are based on the Lorenz curve for an income distribution. Here we confined to 
the construction of Lorenz curve for an empirical data only without giving mathematical 
equivalence.  

LORENZ CURVE 

 Lorenz curve is a graphical representation to study the variation in a distribution like 
income, profit, wealth etc. It is named after Max O Lorenz who designed it to study the 
concentration of wealth or income. Like ogive it is in the form of cumulative frequency 
curve. Here the cumulative percentages of X and Y to the totals are taken along the X and Y 
axis. If the percentage number of persons are plotted on the X axis and the percentage of total 
incomes along the Y axis the graph so obtained is called the Lorenz Curve. The Lorenz curve 
is compared with a line of equal distribution which is a straight line joining 0 with 100 
percent. This line indicates that if all the persons in a particular town were possessing equal 
wealth, then 5% of them would have 5% of wealth, 40% of them would have 40% of wealth 
and so on. The more Lorenz curve is away from the line of equal distribution, the greater the 
inequality of income or wealth amongst the persons.  
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Measuring Income Inequality 

 Inequality in the distribution of income and wealth in a society can often be inferred 
by mere inspection. The nature and sources of inequality and how latter affects the lives of 
people have been studied elaborately by calculating various social indices.  

 A visually appealing way of representing the inequality of income distribution is 
obtained by plotting the cumulative share in total income against the cumulative proportion of 
the population with income not exceeding a given level, for every level of income. This is called 
Lorenze Curve.  

 The Lorenze curve corresponding to the distribution in which every one receives the 
same income is the line OD, which is referred to as the line of ‘perfect equality’. There are 
several inequality indices which attempt to measure the divergence between the Lorenze 
Curve for a given income distribution and the line of perfect equality. The best known and 
most widely used among these is the Gini coefficient.  

Gini Coefficient 

 The Gini coefficient G is defined as the area between the Lorenze Curve and the line 
of equality divided by the area of the triangle below this line. The Gini coefficient varies from 
0 to 1.  

 A variant of the Gini coefficient given by Prof. Amartya Sen is given below. Suppose 
there are ‘n’ individuals or households who are arranged in ascending order of their income 
as y1 < y2 < y3 <… < yn Sen defines Gini coefficient as  

 G = 1+
µn

2
n
1

2− [ny1 + (n –1) y2… + 2yn –1 + 1yn] 

where µ is the average income.  
 This form makes clear the income weighting scheme so that the poorest person 
receives a weight of ‘n’ and the richest person a weight of unit.  

Example 1 
 Construct Lorenz curve for the following data relating to the income distribution of 
families in two regions A and B. 

For Region A For Region B 
Income (in lakhs) No. of families Income (in Lakhs) No. of families 

10 
20 
30 
40 
50 
60 
70 
80 

8 
12 
13 
15 
20 
14 
12 
6 

10 
20 
30 
40 
50 
60 
70 
80 

7 
13 
14 
16 
18 
12 
11 
9 
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Solution  

For Region A 

Mid Value fA Total value of x Cum value of x % cum. value Cum. fA % Cum. fA 

10 
20 
30 
40 
50 
60 
70 
80 

8 
12 
13 
15 
20 
14 
12 
6 

80 
240 
390 
600 

1000 
840 
840 
400 

80 
320 
710 

1310 
2310 
3150 
3990 
4470 

1.78 
7.16 

15.88 
29.30 
51.67 
70.47 
89.26 

100.00 

8 
20 
33 
48 
68 
82 
94 

100 

8 
20 
33 
48 
68 
82 
94 

100 
 

For Region B 
Mid Value fA Total value of x Cum value of x % cum. value Cum. fB % Cum. fB 

10 
20 
30 
40 
50 
60 
70 
80 

8 
13 
14 
16 
18 
12 
11 
9 

70 
260 
420 
640 
900 
720 
770 
720 

70 
330 
750 

1390 
2290 
3010 
3780 
4500 

1.55 
7.33 

16.66 
30.88 
50.88 
66.88 
84.00 

100.00 

7 
20 
34 
50 
68 
80 
91 

100 

7 
20 
34 
50 
68 
80 
91 

100 
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Example 2 
 A factory produces two types A and B of a product. In an experiment relating to their 
life, the following results were obtained.  

Length of Life (in hours) Type A Type B 
500-700 5 4 
700-900 11 30 
900-1100 26 12 
1100-1300 10 8 
1300-1500 8 6 

Compare the variability of the life of the two variables using Lorenz Curve. 
Solution  
For type A 
Mid Value fA Total life Cum value of life % cum. value Cum. fA % Cum. fA 

600 
800 

1000 
1200 
1400 

5 
11 
26 
10 
8 

3000 
8800 

26000 
12000 
11200 

3000 
11800 
37800 
49800 
61000 

4.91 
19.34 
61.96 
81.64 

100.00 

5 
16 
42 
52 
60 

8 
26 
70 
86 

100 
For type B 
Mid Value fA Total life Cum value of life % cum. value Cum. fA % Cum. fA 

600 
800 

1000 
1200 
1400 

4 
30 
12 
8 
6 

2400 
24000 
12000 
9600 
8400 

2400 
26400 
38400 
48000 
56400 

4.25 
46.80 
68.08 
85.10 

100.00 

4 
34 
46 
54 
60 

6 
56 
76 
90 

100 
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Example 3 

 Given the income in the thousands of rupees of ten families 10  15   8   13   12   20   30   
18   24   16 Calculate Gini Coefficient.  

Solution  
 Arranging the income of families in ascending order we have 8, 10, 12, 13, 15, 16, 18, 
20, 24, 30. The Gini coefficient is  

 G = 1+ 
µn

2
n
1

2− [ny1 + (n–1) y2 + …+ 2yn-1+1yn], µ= 6.16
10

166
=  

G=1+
6.1610

2
10
1

2 ×
−  [10 × 8 + 9 × 10 + 8 × 12 + 7 × 13 + 6 × 15 + 5 × 16 + 4 × 18 + 3 × 20 + 

2 × 24 + 1 × 30] 

 = 1+
1660

2
10
1
− (80+90+96+91+90+80+72+60+48+30) 

 = 1.1 – 
1660

7372× = 1.1 – 0.888 = 0.212 
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EXERCISES  
 

II. Very Short Answer Questions  

1. What is a Lorenz Curve? 
2. Define Gini index.  
3. What are the causes of inequality in income? 
4. Define income inequality.  
5. How will you construct Lorenz Curve? 
6. What are the measures to be taken to reduce income inequality? 
7. Calculate Gini index given the income of 10 persons as 72, 100, 30, 45, 150, 86, 110, 60, 94, 

35. 

IV. Long Answer Questions  
8. From the following table giving data regarding income of workers in two factories, draw 

a graph (Lorenz Curve) to show which factory has greater inequalities of income.  
Income Rs  Below 500 500-1000 1000-2000 2000-3000 3000-4000 
Factory A 6000 4250 3600 1500 650 
Factory B 5000 4500 4800 2200 1500 
 

9. Draw a Lorenz Curve for the following data 
Profit (in lakhs) : 10 15 20 25 30 35 
Factory A : 4 12 15 18 9 3 
Factory B : 8 15 28 25 10 2 
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Module II 

LINEAR PROGRAMMING  
 

UNIT 1: LINEAR PROGRAMMING 

 Linear programming (LP) is one of the most widely used and best understood 
Operations Research Techniques. The LP is concerned with the problem of allocating limited 
resources among the competing activities in an optimal manner. This type of problem arises 
in a number of situations such as manufacturing an item at a minimum cost, blending of 
chemicals, allocating salesmen to sales territories, selection of various media for advertising 
campaign, scheduling production etc.,  

 LP had its origin in the input output analysis developed by the economists Leonteif 
and Hitchcock. Koopman studied: ‘Transportation type problems’ during 1940s and Stigler 
discussed ‘diet problem’ in 1945. However Prof. George B. Dantzig is responsible for the 
development of the popular approach “simplex method”, a systematic procedure for solving 
LP problem. The early applications of LP technique were for solving military logistics 
problems. However, it was soon carried over into the government sector, business and 
industry and non-profit organizations. Immediately it was found to be a powerful technique 
for managerial decision problems in business. The development and use of computers have 
increased the utility of LP technique in the recent years.  

Basic requirements of LP problems.  

 Regardless of the nature of the problem, the use of LP technique should meet the 
following basic requirements.  

i. Well defined objection function: A linear programming problem (LPP) must have a well 
defined objective function. The objective function may be to maximize the contribution 
by utilizing the available resources or it may be to produce at the lowest possible cost 
by using the limited amount of production factors with in a certain time period.  

ii. Limited resources: The availability of resources is limited. If the resources are not 
limited, then the problem cannot be considered as a managerial decision making 
problem. These limited resources may be production capacity, skilled workers, 
money, technology etc., These limited resources are usually expressed as constraints in 
an LPP.  

iii. Decision variables and their relationships: Linear programming technique is most useful 
when the problem involves a large number of decision or activity variables which are 
interrelated in terms of utilization of the available resources. All decision variables in 
a LPP are continuous, controllable and non-negative.  

iv. Alternative courses of action: The problem must have alternative courses of action. For 
example, it may be possible to make a selection between various combination of 
manpower, machine-hours and money or it may be possible to allocate manufacturing 
capacities in a certain ratio for manufacturing various products.  
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Assumptions of LP: 

i. Certainty: In LP models, all model coefficients such as unit profit contribution of each 
product, the quantity of resources required per unit production etc., are assumed to be 
known with certainty. However, in some cases these may be either random variables 
following a probability distribution or tend to change. Such problems can be solved 
using stochastic LP model or parametric programming. Sensitivity analysis in LP can 
handle the uncertain situations to a considerable limit.  

ii. Divisibility or Continuity: The solution values of decision variables and resources are 
assumed to have either whole integers or mixed numbers (integers and fractionals). 
However, if only integer variables are desired (for ex: machines, men, etc.,) then 
another technique called integer programming is used to obtain non-fractional or 
integer solutions to decision variables.  

iii. Additivity: The additivity in LP means that the total sum of the resources used by 
different activities must be equal to the sum of the resources used by each activity 
individually. Further the value of the objective function for the given values of 
decision variables must equal to the sum of the resources used by each activity 
individually. Further the value of objective function for the given values of decision 
variables must equal to the sum of the contributions earned from each decision 
variable. This simply means that the total profit from the sale of two products must be 
equal to the sum of profits earned separately from the two products.  

iv. Linearity: The primary requirement of a linear programming problem is that the 
objective function and the constraints governing it, should be linear in form. ‘Linear’ 
implies that the relationships among the decision variables must be directly 
proportional. The proportionality requires that the measure of outcome and usage of 
resources must be proportional to the level of each activity.  

Formulation of LPP 

 In formulating a linear programming problem, it is necessary to specify (i) decision 
variables (ii) the objective function and (iii) constraints. The decision variables are the 
variables for which a decision is required to be taken.  

 We explain these concepts using the following examples.  

Example 1 

 The manager of an oil refinery must decide on the optimal mix of two possible 
blending processes of which the inputs and outputs per production run are as follows.  

Process 
Inputs (units) Outputs (units)  

Crude 1 Crude 2 Petrol 
(Superior) 

Petrol 
(Ordinary) 

A 10 6 10 16 
B 12 15 12 12 

 The availability of the two varieties of crude is limited to the extent of 400 units and 
450 units respectively per day. The market survey indicates that at least 200 units of superior 
quality petrol and 240 units of ordinary quality petrol is required every day. Process A 
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contributes Rs. 500 per run and the process B contributes Rs. 450 per run to the profit. The 
manager is interested in determining an optimal product-mix for maximizing the company’s 
profit. Formulate it as a LPP.  

Solution  

 Let x1, x2 be the number of production runs of processes A and B respectively.  

Objective function: Since the total profit consists of the profit derived from selling superior 
quality petrol and ordinary quality petrol at Rs. 500 and at Rs. 450 per unit, the total profit 
from x1 runs of process A and x2 runs of process B is given by 500x1 + 450x2. A the manager 
wants to achieve the maximum possible profit it can be stated mathematically as  

 Maximize Z = 500x1 + 450x2. 

Constraints: Constraints are limitations or restrictions placed on availability of resources and 
the demand in the market.  

i. Constraints on the availability of crude 

 As the amount of crude available is 400 and 450 units of two types, the constraints on 
the utilization of crudes would be 

 10x1 + 12x2 < 400 
and 6x1 + 5x2 < 450 

(Each unit of A requires 10 units of crude l and each unit of B requires 12 units of crude 2. 
Hence the total of crude 1 required is 10x1 + 12x2 etc.,)            

ii. Constraints in the demand  

 The market demand is for at least 200 units of superior quality petrol and for at least 
240 units of ordinary quality petrol. From a unit run of process A we get 10 units of superior 
quality petrol and from B we get 12 units of superior quality petrol. Therefore from x1 
production runs of process A and x2 production runs of process B, the number of units of 
superior quality petrol produced is 10x1 + 12x2. 

 Hence the required constraint is 10x1 + 12x2 > 200 

Similarly for ordinary petrol the constraint is 16x1 + 12x2 > 240. Further we cannot have 
negative production runs,  

 ie., x1 > 0, x2 > 0. 

Thus the problem can be stated as a linear programming problem as  

` Maximize z = 500 x1 + 450 x2 
 Subject to 10x1 + 12x2 < 400 
  6x1 + 5x2 < 450     
  10x1 + 12x2 > 200 
  16x1 + 12x2 > 240 
    x1 > 0, x2 > 0 
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Example 2 

 A furniture firm manufactures tables and chairs. Data given below shows the 
resources consumed and unit profits in manufacturing a table and a chair. The manager of 
the firm wishes to determine how many tables and chairs should be made to maximize the 
total profit. Formulate it as a LPP.  

Resource 
Unit Requirements  Amount 

Available Table  Chair 
Wood (sq. ft.) 30 20 400 
Labour (hours) 5 10 150 
Unit Profit  26 18  
 

Solution  

 Let x1 be the number of tables and x2 be the number of chairs to be manufactured.  

Objective Function: 

   Z = 26x1 + 18 x2 

Constraints: 

1. Constraints on wood available: 30 x1 + 20x2 < 400 
2. Constraints on labour hours: 5x1 + 10x2 < 150 

The problem is 
 Maximize Z = 26x1 + 18 x2 
 Subject to 3x1 + 20 x2 < 400 
   5x1 + 10 x2 < 150, x1, x2 > 0,  

Example 3 

 Three nutrient components, namely thiamine, phosphorous and iron are found in a 
diet of two food items A and B. The amount of each nutrient in each of the foods (in 
milligrams per pound) is given below.  

Component  A B 
Thiamine  3mg/lb 2.0mg/lb 
Phosphorous  15.0mg/lb 34mg/lb 
Iron 26.0mg/lb 22.0mg/lb 

 

 The cost of food A and B is Rs. 12 per pound and Rs. 17 per pound respectively. The minimum daily requirements of these nutrients are 
atleast 10 mg of thiamine, 75mg of the phosphorous and 100 mg of iron. Formulate this as LPP.  

Solution 

 Let x1 and x2 be the pounds of purchase of food items A and B respectively.  

Objective function:  Z = 12x1 + 17x2 
Constraints: 
i.  Constraint on thiamine   : 3x1 + 2x2 > 10 
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ii.  Constraint on phosphorous : 15x1 + 34x2 > 75 
iii.  Constraint on iron   : 26x1 + 22x2 > 100 
iv.  Non negativity condition  : x1 > 0 x2 > 0 
 Hence the problem is  
  Minimize z = 12x1 + 17x2 
      3x1 + 2x2 > 10 
    15x1 + 34x2 > 75 
    26x1 + 22x2 > 100 
        x1 > 0, x2 > 0 
Example 4 
 A manufacturing firm has recently discontinued productions of a certain product due 
to unfavourable market conditions resulting in considerable excess production capacity. The 
firm is planning to utilize this spare capacity by increasing the production of the remaining 
one or more of the existing three products. The currently available capacities are: 
 Milliing capacity : 300 machine hours/day 
 Lathe capacity : 225 machine hours/day 
 Grinder capacity : 100 machine hours/day  
 The number of machine hours required for each of the products are.  

Machine Type Machine hours required 
Product A Product B Product C 

Milling  12 3 4 
Lathe  6 4 1 
Grinding  3 1 2 
 The profit on each of the three product are Rs. 300, Rs. 250 and Rs. 150. The manager 
wishes to allocate the available capacities amongst the three products as to maximize the 
profit. Formulate this as a LPP.  
Solution 

 Let x1, x2 and x3 be the quantity of products of A, B and C produced with in the 
available capacities.  

Objective function: Z = 300x1 + 250 x2 + 150x3 

Constraints: 
 i.  Constraint on milling man hour  :  12x1 + 3x2 + 4x3 < 300. 
 ii.  Constraint on Lathe man hour   :     6x1 + 4x2 +   x3 < 225. 
 iii.    Constraints on grinding man hour :   3x1 +   x2 + 2x3 < 100. 
 iv.  Non negativity conditions   :     x1 > 0,x2> 0,x3> 0  

 Hence the problem is  

   Maximize z = 300x1 + 250x2 + 100x3 

   Subject to    12x1 +     3x2 + 4x3 < 300 
       6x1 + 4x2 +   x3 < 225 
       3x1 +   x2 + 2x3 < 100   
        x1, x2, x3 > 0 
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UNIT 2 

 GRAPHICAL SOLUTION 
 

 Graphical method is used for solving those LP problems, which involve only two 
variables.,  

 The method is explained with the help of an example.  

 

Consider the LPP 

 Maximize z = 180x1 + 150 x2 

 Subject to       4x1 + 2x2 < 40 

          x1 + 3x2 < 15 

         x1 , x2  > 0.  

 Let the horizontal axis represent the variable x1 and the vertical axis the variable x2. 
We will plot a line for each of the two constraints and the two non-negativity conditions. 
Because of the non-negativity conditions the solution space area is restricted to the first 
quadrant only.  

 Now in order to plot the constraints on the graph, temporarily we will consider 
inequalities as equations.  

 i.e.,  4x1 + 2x2 = 40 

    x1 + 3x2 = 15 

 When plotted on the graph, these will represent straight lines. A straight line is 
completely specified by knowing any two points that fall on that line. Therefore, to plot any 
straight line we need only to specify two points on that line and then draw the line 
connecting these two points. Even though any two points will do our purpose it is always 
easy if we take points in which one of the values of x1 or x2 is zero.  

 Take x1 = 0 in 4x1 + 2x2 = 40  

 Then   4 x 0 + 2x2 = 40 

  ⇒ 2x2 = 40 or x2 = 20 

i.e., (0,20) is a point on the line 4x1 + 2x2 = 40 

Then put x2 = 0 in 4x1 + 2x2 = 40. That is 4x1 = 40 or x1 = 10.  

i.e., (10,0) is a point. Then mark the points (10,0) and (0,20) and join the points to draw the 
line.   
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 Next we have no determine the region determined by 4x1 + 2x2 < 40. It is not advisable 
to guess the region. Take a known point say (0, 0) and check whether the inequality is 
satisfied by that point or not and select the region accordingly.  

 Here for the point (0, 0) 

 4x1 + 2x2 = 0< 40. Therefore the region is the region in which the point (0, 0) lies. Shade 
the region.  

Then consider x1 + 3x2 = 15. 

 Putting x1 = 0, 3x2 = 15 or x2 = 5, i.e., (0,5) is a point on the line. Now putting x2 = 0 we 
get x1 = 15 or (15, 0) is a point on the line. Plot the points (15, 0) and (0, 5) and join them to 
draw the line. Here also we determine the region determined by x1 + 3x2 < 15 and shade the 
region using a different pattern.  

 The area OABC in the graph is the collection of all points that satisfy all the 
constraints.  

 4x1 + 2x2 < 40 

 x1 + 3x2 < 15 

 x1 > 0, x2 > 0 

 The area OABC is called the feasible region. The points in this region satisfy all the 
constraints and we have to find that point which maximize the objective function.  

 Note that the shaded region contains infinitely many points. But we can 
mathematically prove that the optimal solution of any LPP corresponds to one of the corner 
points (extreme points) of the feasible region.  

 Here there are only four extreme points, O, A, B and C.  

The point O is (0, 0), A is (0,5) and C is (10, 0). The point B is in the intersection of the lines and 
hence the co-ordinates can be determined by solving the corresponding two equations.  

0 5 10 15 20 25

0 

5 

10 

15 

20 
4x1 + 2x2 = 40 

A 

C 

B x1 + 3x2 = 15 
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 4x1 + 2x2 = 40     … (1) 
 x1 + 3x2 = 15      … (2) 

Multiplying equation (2) by 4 we get 4x1 + 12 x2= 60 – (3) 

   Substracting equation (3) from (1) 
 We get – 10x2 = -20 so that x2 = 2 
 From (3), x1 + 3x2 = 15 or x1 = 9 

So that the point B is (9, 2) 

Extreme Point 
Value of the objective function 

Z = 180x1 + 150x2 
O (0, 0) Z = 180 × 0 + 150 × 0 = 0  
A (0, 5) Z = 180 × 0 + 150 × 5 = 750 
B (9, 2) Z =180 × 9 + 150 × 2 = 1920 

C (10, 0) Z = 180 × 10 + 150 × 0 = 1800 
 

 From this the maximum value of Z is Z* = 1920 and the corresponding optimum value 
of x1 = 9 and x2 = 2. 

Summary of the Graphical Method  

Step 1 : Formulate the LPP 
Step 2 : Plot the constraint inequalities considering them as equations 
Step 3 : Identify the feasible solution regions.  
Step 4 : Locate the corner points of the feasible region.  
Step 5 : Calculate the value of the objective function at these corner points       
Step 6 : Identify the point where the objective function has the optimal value.  
Example  
 Minimize  Z = 5x1 + 8x2 

 Subject to       6x1 + 2x2 > 12 

         2x1 + 2x2 > 8 

         4x1 + 12x2 > 24 

           x1 > 0, x2 > 0 

Solution  
 We avoid the details. The procedure is well explained in the previous example.  
Take  6x1 + 2x2 = 12; 
 x1 = 0 implies 2x2 = 12 or x2 = 6, (0, 6) is a point.  
 x2 = 0 implies 6x1 = 12 or x1 = 2, (2, 0) is a point.  
Take 2x1 + 2x2 = 8; 
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 x1 = 0 implies x2 = 4  (0, 4) is a point. 
 x2 = 0 implies x1 = 4 (4, 0) is a point. 

Take 4x1 + 12x2 = 24; 
 x1 = 0 implies x2 = 2,  (0, 2) is a point.  
 x2 = 0 implies 4x1 = 24 or x1 = 6, (6, 0) is a point.  

x1 > 0, x2 > 0 implies that we need to concentrate is the first quadrant only.  

 

 

 

 

 

 

 

 

 

 
 
6x1 + 2x2 > 12 ⇒ (0, 0) is not a point in that region.  

2x1 + 2x2 >  8 ⇒ (0, 0) is not a point in that region 

4x1 + 12x2 > 24 ⇒ (0, 0) is not a point in that region          

 From the graph it is clear that the common region bounded by the extreme points A, 
B, C, D is the feasible region. hence the optimum solution will correspond to one of the 
vertices. A, B, C, D. The point A is A (0, 6). 

B lies in the intersection of the lines (1) and (2). 

   6x1 + 2x2 = 12  - (1) 

Solving (1) and (2); 2x1 + 2x2 = 8  - (2)  

(1) – (2) gives 4x1 = 4 therefore x1 =1 

substituting in (1); 6 + 2x2 = 12 ⇒ x2 = 3 

 i.e., B is  B(1, 3) 

(Don’t guess the coordinates, or take from the graph. Directly solve the equations). 

C lies in the intersection of the lines (2) and (3). Solving (2) and (3). 

  2x1 + 2x2 = 8  -(2) 
  4x1 + 12 x2 = 24 - (3) 

  (2) × 2 ⇒  4x1 + 4x2 = 16 

4 

A 

B 

D

(1) 

7

2 

  1 2 3 4 5 

1 

5 

6 

6

3 

7 
  

  

  
E 

C 

8

(2) 

(3) 
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 (3) – (4) ⇒ 8x2 = 8 ⇒ x2 = 1 
Putting in (2) ⇒  2x1 + 2 = 8 ⇒ x1 = 3 
i.e., C is (3, 1). 

Extreme Point  Value of the objective function  
Z = 5x1 + 8x2 

A (0, 6) Z = 5 × 0 + 8 × 6 = 48 
B (1, 3) Z = 5 × 1 + 8 × 3 = 29 
C (3, 1) Z =5 × 3 + 8 = 23* 
D (6, 0) Z = 5 × 6 +  0 = 30 

The minimum value of Z is Z* = 23 and the optimum solution is 
*

1
x =3, 

*

2x =1. 

Example  
 Minimize Z = 45x1 + 48x2 
 Subject to  2x1 + 3x2 < 15 
   3x1 + 2x2 < 15 
   x1 < 4 
   x2 < 4 
   x1 > 0, x2 > 0. 

Solution  

 Take the first quadrant. 

 2x1 + 3x2 = 15; x1 = 0 ⇒ x2 = 5; 

    x2 = 0 ⇒ x1 = 
2

15  

 i.e., (0, 5) and (
2

15 , 0) are points on this line.  

3x1 + 2x2 = 15; x1 = 0 ⇒ x2 = 
2

15 ; 

   x2 = 0 ⇒ x1 = 5 

 i.e., (0, 
2

15 ) and (5, 0) are the points on this line.  

x1 = 4; a line parallel on x2 – axis passing through x1 = 4. x2 = 4; a line parallel to x1 – axis 
passing through x2 = 4. Check with the point (0, 0) to determine the regions determined by 
the inequalities.  

 2x1 + 3x2 < 15,  
 3x1 + 2x2 < 15 
 x1 < 40 and  
  x2 < 40 
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 The region bounded by the extreme points, O, A, B, C, D, E is the feasible region. The 
vertex) is (0, 0), A is A (0, 4), To get B, solve x2 = 4 and 2x1 + 3x2 = 15. 

 x2 = 4 ⇒ 2x1 = 15 – 12 = 3 i.e., x1 = 3/2 

 i.e., B is (3/2, 4) 

To get C solve the equations 2x1 + 3x2 = 15 and 3x1 + 2x2 = 15 

 2x1 + 3x2 = 15 – (1) 
 3x1 + 2x2 = 15 – (2) 

(1) x 3;  6x1 + 9x2 = 45 – (5) 
(2) x 2;  6x1 + 4x2 = 30 – (6) 
(5) – (6);  5x2 = 15 ⇒ x2 = 3 

put in (1); 2x1 + 9 = 15 ⇒ x1 = 3 

the point C is C (3, 3) 

To get D: solve x1 = 4 and 3x1 + 2x2 = 15  

 i.e., 3*4 + 2x2 = 15 

 2x2 = 15-12 = 3 or  x2 = 3/2 

  i.e., D is D (4, 3/2) 

The point E is E (4, 0) 

Vertices Value of the objective function 
Z = 45x1 + 48x2 

O (0,0) Z = 45 × 0 + 48 × 0 = 0 
A (0, 4) Z = 45 × 0 + 48 × 4 = 192 

B (3/2, 4) Z = 45 × 3/2 + 48 × 4 = 259.5 
C (3, 3) Z = 45 × 3 + 48 × 3 = 279 

D (4, 3/2) Z = 45 × 4 + 48 × 3/2 = 252 
E (4,0) Z = 45 × 4 + 0 = 180 

 

4 A 

0 1 2 3 4 5 

1 

2 

5 

6 

(3) 

C 

6 7

3 

7 

B 

D 

(4) 

(2) 

(1) 

O 
E 
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Maximum of Z is Z* = 279 

and the optimum solution is *
1x = 3, *

2x = 3. 

Example  
 Maximize  Z = 2x1 + 3x2 
 Subject to  2x1 + 3x2 > 120 
   x1 + x2 < 40 

 2x1 + 
2
3 x2 > 90, x1> 0, x2 0,  

Solution  
 Take,  2x1 + 3x2 = 120;  x1 = 0 ⇒ x2 = 40,  
   x2 = 0 ⇒ x1 = 60 

 Take  x1 + x2 = 40,  
   x1 = 0 ⇒ x2 = 40, x2 = 0 ⇒ x1 = 40 

 Take  2x1 + 3/2x2 = 90;  x1 = 0 ⇒ x2 = 60 
   x2 = 0 ⇒ 45. 

 

 

 

 

 

 

 

 

 

 
 

 Clearly the common region contain no points. Hence there exists no feasible solution. 
That is the LPP has no solution.  

General Linear Programming Problem  

 The general linear programming problem can be stated as follows.  

 The problem is to find a vector X = (x1, x2, ..., xn) which maximizes the objective 
function.  

 Z = C1 x1 + C2x2 + ... + Cn xn 
Subject to   a11x1 + a12x2 + ... + a1nxn < b1 
  a21x1 + a22 x2 + ... + a2nxn < b2 

40 

  10 20 30 40 50

10 

20 

50 

60 

60 70

30 

70 
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  M  
   am1x1 + am2 x2 + ... + amn xn < bm 
 and  xj > 0; j = 1, 2, ..., n. 

where aij, bi and cj are known constants and m < n.  

Applications of LP 

 Linear programming is the most widely used technique of decision-making in 
business, industry and in various other fields.  

1. Production management: Linear programming techniques can be used in production 
management to determine the optimal product mix to make the optimum use of available 
resources.  

2. Marketing management: Linear programming helps in analyzing the audience coverage of 
an advertising campaign based on the available advertising media and budget. LP is also 
used to determine the optimal distribution of the products from various factories to 
different stores in a minimum cost. This is called transportation problem. Also it is useful 
to a travelling salesman to determine the shortest route for his tour. This is known as 
travelling salesman problem.  

3. Personnel management: LP techniques are useful to analyze the problems related to 
selections and training of employees. It is also used to determine the optimum 
assignment of works to workers so as to complete the work in a minimum cost. This is 
known as assignment problem.  

 The technique can be used to determine the minimum number of employees need to 
work in various shifts for optimum production.  

4. Financial management: LP techniques can be used as a powerful tool to select proper 
investment schemes from the various available ones.  

Merits and Limitations of L/P 

Merits 

 Linear programming can be used to solve allocation type problems. Usually their 
solution is difficult due to the fact that there is a possibility of infinitely many solutions. 
Using LP techniques we can determine the optimal solution in a very efficient way. It also 
provides additional information concerning the value of the resources to be allocated. It 
allows modification of its mathematical solution.  

 Linear programming improve the quality of decisions. It makes decisions more 
objective than subjective. Linear programming helps in highlighting the bottlenecks in the 
production processes. Linear programming helps in attaining optimum use of production 
factors. It also indicates the significance and utility of these factors more effectively.  
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Limitations  

 The linear programming problem assumes the linearity of objective function and 
constraints. But in most of the real life situations the objective function and constraints are 
not linearly related to the variables. To solve such problems we have to use non-linear 
programming techniques. Again if we want the solution in integers, LP Model may not be 
always useful. We have to use integer programming techniques in such situations. A major 
assumption regarding the parameters appearing in the LP model are assumed to be constant 
through out. But in real-life situations they are not known completely. In some cases they are 
random variables. In such cases we use stochastic programming techniques.  

 Another limitation of LP technique is that it does not take into consideration the effect 
of time and uncertainty. Again in LP models we deal with only one objective where as in real 
life situations we may come across more than one objective. Where we have two or more 
objectives to optimize we may use Goal programming techniques.  
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UNIT 3 

SIMPLEX METHOD 

 

 We explain the principle of the simplex method with the help of the two variable 
linear programming problem by means of the following examples.  

Example 1  

Maximize  50x1+60x2 

Subject to  2x1 + x2 < 300 
  3x1 + 4x2 < 509 
  4x1 + 7x2 < 812 

    x1 and x2 > 0 

Solution  

We introduce variable x3 > 0, x4 > 0, x5 > 0 

So that the constraints become equations as, 

  2x1 + x2 + x3 = 300 
  3x1 + 4x2 + x4 = 509 
  4x1 + 7x2 + x5 = 812 

The variables x3, x4, x5 are known as slack variables corresponding to the three constraints. 
The system of equations has five variables (including the slack variables) and three 
equations.  

Basic Solution  

In the system of equations as presented above we may equate any two variables to zero. The 
system then consists of three equations with three variables. If this system of three equations 
with three variables is solvable such a solution is known as a basic solution. 

In the example considered above suppose we take x1 = 0, x2 = 0. The solution of the system 
with remaining three variables is x3 = 300, x4 = 509, x5 = 812. This is a basic solution of the 
system. The variables x3, x4 and x5 are known as basic variables while the variables x1, x2 are 
known as non basic variables (variables which are equated to zero). 

Since there are three equations and five variables the two non basic variables can be chosen 
in 5C2 = 10 ways. Thus, the maximum number of basic solutions is 10, for in some cases the 
three variable three equation problem may not be solvable.  

In the general case, if the number of constraints of the linear programming problem is m and 
the number of variables (including the slack variables) is n then there are at most nCn–m = nCm 
basic solutions.  
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Basic Feasible Solution 

A basic solution of a linear programming problem is a basic feasible solution if it is feasible, 
i.e., all the variables are non negative. The solution x3 = 300, x4 = 509, x5 = 812 is a basic 
feasible solution of the problem. Again, if the number of constraints is m and the number of 
variables (including the slack variables) is n, the maximum number of basic feasible solution 
is nCn–m = nCm.  

The following result (Hadley, 1069) will help you to identify the extreme points of the convex 
set of feasible solutions analytically.  

Every basic feasible solution of the problem is an extreme point of the convex set of feasible 
solutions and every extreme point is a basic feasible solution of the set of constraints.  

When several variables are present in a linear programming problem it is not possible to 
identify the extreme points geometrically. But we can identify them through the basic 
feasible solutions. Since one of the basic feasible solutions will maximize or minimize the 
objective function, we can carry out this search starting from one basic feasible solution to 
another. The simplex method provides a systematic search so that the objective function 
increases (in the case of maximization) progressively until the basic feasible solution has 
been identified where the objective function is maximized. The computational aspect of the 
simplex method is presented in the next section.  

COMPUTATIONAL ASPECT OF SIMPLEX METHOD  

We again consider the linear programming problem 

Maximize  50x1+60x2 

Subject to  2x1 + x2 + x3 =  300 

  3x1 + 4x2 + x4 = 509 

  4x1 + 7x2 + x5  = 812 

     x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0 

The slack variables provide a basic feasible solution to start the simplex computation. This is 
also known as initial basic feasible solution. If z denote the profit then z = 0 corresponding 
to this basic feasible solution. We denote by CB the coefficient of the basic variables in the 
objective function and by XB the numerical values of the basic variables. The numerical 
values of the basic variables are  

XB1 = 300, XB2 = 509, XB3 = 812. The profit z = 50x1 + 60x2 can be also expressed as z – 50x1 – 
60x2 = 0. The computation starts with the first simplex Table as indicated below: 
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Table 1 

CB Basic 
Variables  

Cj 

XB 

50 60 0 0 0 

0 x3 300 2 1 1 0 0 
0 x4 509 3 4 0 1 0 
0 x5 812 4 7 0 0 1 
 z  -50 -60 0 0 0 

 

The coefficients of the basic variables in the objective function are CB1=CB2=CB3= 0. The 
topmost row of Table 1 indicates the coefficient of the variables x1, x2, x3, x4 and x5 in the 
objective function respectively. The column under x1 presents the coefficient of x1 in the three 
equations. The remaining columns have also been formed in a similar manner.  

On examining the profit equation z = 50x1 + 60x2 you may observe that if either x1 or x2 
which is currently non basic is included as a basic variable the profit will increase. Since the 
coefficient of x2 is numerically higher we choose x2 to be included as a basic variable in the 
next iteration. An equivalent criterion of choosing a new basic variable can be obtained from 
the last row of Table 1 (corresponding to z). Since the entry corresponding x2 is smaller 
between the two negative values x2 will be included as a basic variable in the next iteration. 
However with three constraints there can only be three basic variables. Thus by making x2 a 
basic variable one of the existing basic variables will become non basic. You may identify this 
variable using the following line of argument.  

From the first equation  

 2x1 + x3 = 300 – x2 

But x1 = 0. Hence, in order that x3 > 0 

 300 – x2 > 0 i.e., x2 < 300 

Similar computation from the second and the third equation lead to  

 x2 < 
4

509 ,  x2 < 
7

812 = 116 

Thus x2 = Min ⎟
⎠
⎞

⎜
⎝
⎛

7
812,

4
509,

1
300  = 116 

If x2 = 116, from the third equation you may observe that  

 7x2 + x5 = 812 i.e., x5 = 0 

Thus the variable x5 becomes non basic in the next iteration. The revised values of the other 
two basic variable are 

 x3 = 300 – x2 = 184 

 x4 = 509 – 4 ×116 = 45 

Referring back to Table 1, we obtain elements of the next Table (Table 2) using the following 
rules: 
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1) In the z row we locate the quantities which are negative. If all the quantities are 
positive, the inclusion of any non basic variable will not increase the value of the 
objective function. Hence the present solution maximizes the objective function. If 
there are more than one negative values we choose the variable as a basic variable 
corresponding to which the z value is least as this is likely to increase the profit most.  

2) Let xj be the incoming basic variable and the corresponding elements of the jth column 
be denoted by yij, y2j and y3j. If the present values of basic variables are xB1, xB2 and xB3 
respectively, then we compute 

Min 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

j3

3B

j2

2B

j1

1B

y
x,

y
x,

y
x  

for y1j > 0, y2j > 0, y3j> 0. You may note that if any yij<0, this need not be included in 

the comparison. If the minimum occurs corresponding to 
rj

Br

y
x then the rth basic 

variable will become non basic in the next iteration.  

3) Table 2 is computed from Table 1 using the following rules. 

a) The revised basic variables are x3, x4 and x2. Accordingly, we make CB1=0, CB2 = 0 
and CB3 = 60 

b) As x2 is the incoming basic variable we make the coefficient of x2 one by dividing 
each element of row 3 by 7. Thus the numerical value of the element 

corresponding to x1 is 
7
4 , corresponding to x5 is 

7
1 in Table 2.  

c) The incoming basic variable should appear only in the third row. So we multiply 
the third row of Table 2 by 1 and subtract it from the first row of  Table 1 element 
by element. Thus the element corresponding to x2 in the first row of Table 2 is zero. 
The element corresponding to x1 is  

2 – 1 × 
7

10
7
4
=  

the element corresponding to x5 is  

 0 –1 × 
7
1

7
1

−=  

In this way we obtain the elements of the first and the second row in Table 2. The 
numerical values of the basic variables in Table 2 can also be computed in a similar 
manner.  

Let CB1, CB2, CB3 be the coefficients of the basic variables in the objective function. For 
example in Table 2 CB1 = 0, CB2 = 0, CB3= 60. Suppose corresponding to a variable j, the 
quantity zj is defined as zj = CB1, Y1 + CB2, Y2j + CB3 Y3j. Then the final row (z-row) can also be 
expressed as zj – Cj. For example 

 z1 – c1 = 
7

10 × 0 + 
7
5 × 0 + 60 × 

7
4 – 50= –

7
100  
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 z5 – c5 = – 
7
1 × 0 – 

7
4 × 0 +

7
1 × 60 – 0 = 

7
60  

1) We now apply rule 1 to Table 2. The only negative zj – cj is z1-c1 = –  
7

100  

Hence x1 should be made a basic variable at the next iteration.  

2) We compute the minimum of the ratios 

Min 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

7
4

116

7
5
45,

7
10
184  

= Min ⎥⎦
⎤

⎢⎣
⎡ 203,63,

5
644 = 63. 

Since this minimum occurs corresponding to x4, it becomes a non basic variable in 
next iteration.  

3) Table 3 is computed from Table 2 using the rules (a), (b) and (c) as described before.  

Table 2 

CB Basic 
Variables  

Cj 

XB 

50 
x1 

60 
x2 

0 
x3 

0 
x4 

0 
x5 

0 x3 184 
7

10  0 1 0 –
7
1  

0 x4 45 
7
5  0 0 1 – 

7
4  

60 x2 116 
7
4  1 0 0 

7
1  

 zj – cj  
7
100−  0 0 0 

7
60  

Table 3 

CB Basic 
Variables  

Cj 

XB 

50 
x1 

60 
x2 

0 
x3 

0 
x4 

0 
x5 

0 x3 94 0 0 1 –2 1 

50 x1 63 1 0 0 
5
7  – 4/5 

60 x2 80 0 1 0 –4/5 3/5 

 zj – cj  0 0 0 22  – 4   
 

1) z5 – c5 < 0. Hence x5 should be made a basic variable in the next iteration.  
2) We compute the minimum of the ratios 
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Min ⎥⎦
⎤

⎢⎣
⎡

5/3
80,

1
94  = 94 

Note that since y25<0, the corresponding ratio is not taken for comparison. The 
variable x3 becomes non basic at the next iteration.  

3) Table 4 is computed from Table 3 following the usual steps.   
 

Table 4 

CB Basic 
Variables  

Cj 

XB 

50 
x1 

60 
x2 

0 
x3 

0 
x4 

0 
x5 

0 x5 94 0 0 1 –2 1 
50 x1 691/5 1 0 4/5 –1/5 0 
60 x2 118/5 0 1 –3/5 2/5 0 
 zj – Cj  0 0 4 14 0 
 

Since zj – Cj >0 for all j, the objective function cannot be improved any further.  

Hence the objective function is maximized for x1 = 
5

691 and x2  = 
5

118 . The maximum value 

of the objective function is 8326. 

SIMPLEX METHOD WITH SEVERAL DECISION VARIABLES  

The computational procedure explained in the previous section can be readily extended to 
linear programming problems with more than two decision variables. This is illustrated with 
the help of the following example.  

Example 2 
The products A, B and C are produced in three machine centres X, Y and Z. Each product 
involves operation of each of the machine centres. The time required for each operation for 
unit amount of each product is given below. 100,77 and 80 hours are available at machine 
centres X, Y and Z respectively. The profit per unit of A, B and C is Rs.12, Rs.3 and Rs. 1 
respectively.  
 

Products  Machine Centres  
Profit Per Unit 

X Y Z 
A 10 7 2 Rs. 12 
B 2 3 4 Rs. 3 
C 1 2 1 Re. 1 
Available hours 100 77 80  

Find out a suitable product mix so as to maximize the profit. 
Solution  
The linear programming formulation of the product mix problem is as follows: 
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 Maximize 12x1 + 3x2 + x3 

 Subject to  
10x1 + 2x2 + x3 < 100 

  7x1 + 3x2 + 2x3 < 77 
  2x1 + 4x2 + x3  <  80 
  x1 > 0, x2 > 0, x3 > 0  

We introduce slack variables x4, x5 and x6 to make inequalities equations. Thus the problem 
can be stated as maximize 12x1 + 3x2 + x3 

 Subject to : 
10x1 + 2x2 + x3 + x4 =100 

  7x1 + 3x2 + 2x3 + x5 = 77 
  2x1 + 4x2 + x3  + x6 =  80 
  x1 > 0, x2 > 0, x3 > 0, x4> 0, x5 > 0, x6 > 0 

The first simplex Table can be obtained in a straight forward manner from the equations. We 
observe that the basic variables are x4, x5 and x6. Therefore CB1 = CB2 = CB3 = 0. 

Table 1 
CB Basic 

Variables  
Cj 

XB 

12 
x1 

3 
x2 

1 
x3 

0 
x4 

0 
x5 

0 
x6 

0 X4 100 10 2 1 1 0 0 
0 X5 77 7 3 2 0 1 0 
0 X6 80 2 4 1 0 0 1 
 zj – Cj  –12 –3 –1 0 0 0 
1) Z1 – C1 = –12 is the smallest negative value. Hence x1 should be made a basic variables 

in the next iteration.  
2) We compute minimum of the ratios  

Min ⎥⎦
⎤

⎢⎣
⎡

2
80,

7
77,

10
100 = 10 

The variable x4 corresponding to which minimum occurs is made a non basic variable.  
3) Table 2 is computed from Table 1 using the following rules. 

a) The revised basic variable are x1, x5 and x6. Accordingly, we make CB1=12, CB2 = 0 
and CB3 = 0 

d) As x1 is the incoming basic variable we make the coefficient of x1 one by dividing 
each element of row 1 by 10. Thus the numerical value of the element 

corresponding to x1 is 
10
2 , corresponding to x3 is 

10
1 and so on in Table 2.  

e) The incoming basic variable should appear only in the first row. So we multiply 
the first row of Table 2 by 7 and subtract it from the second row of Table 1 element 
by element. Thus the element corresponding to x1 in the second row of Table 2 is 
zero. The element corresponding to x2 is  
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3 – 7 × 
10
16

10
2
=  

In this way we obtain the elements of the second and the third row in Table 2. The 
computation of the numerical values of the basic variables in Table 2 is made in a 
similar manner.  

Table 2 

CB Basic 
Variables  

Cj 

XB 

12 
x1 

3 
x2 

1 
x3 

0 
x4 

0 
x5 

0 
x6 

12 x1 10 1 1/5 1/10 1/10 0 0 

0 x5 7 0 16/10 13/10 –
7/10 1 0 

0 x6 60 0 18/5 4/5 –1/5 0 1 
 zj – cj  0 –3/5 1/5 6/5 0 0 
 

1) Z2 – C2 = –
5
3 . Hence x2 should be made a basic variable at the next iteration.  

2) We compute the minimum of the ratios  

   Min 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

5
18
60,

10
16
7,

5
1

10  

= Min 
16
70

18
300,

16
70,50 =⎥⎦

⎤
⎢⎣
⎡  

 Hence the variable x5 will be a non-basic variable in the next iteration.  

3) Table 3 is computed from Table 2 following the rules indicated in a, b and c. 
 

Table 3 

CB Basic 
Variables  

Cj 

XB 

12 
x1 

3 
x2 

1 
x3 

0 
x4 

0 
x5 

0 
x6 

12 x1 73/8 1 0 –1/16 3/16 –1/8 0 
3 x2 35/8 0 1 13/16 –7/16 5/8 0 
0 x6 177/4 0 0 –17/8 11/8 –9/4 1 
 zj – cj  0 0 11/16 15/16 3/8 0 
 

As all Zj – Cj > 0, the present solution x1 = 73/8, x2 = 35/8 and x6 = 177/4 maximizes the 
value of the objective function. The Maximum value of the objective function is 12×

8
981

8
353

8
73

=×+ . 
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TWO PHASE AND M-METHOD  

The simplex method illustrated in the last two sections was applied to linear programming 
problems with less than or equal to type constraints. As a result we could introduce slack 
variables which provided an initial basic feasible solution of the problem. Linear 
programming problems may also be characterized by the presence of both “less than or 
equal to” type or “greater than or equal to type” constraints. It may also contain some 
equations. Thus it is not always possible to obtain an initial basic feasible solution using slack 
variables.  

Two methods are available to solve linear programming by simplex method in such cases. 
These methods will be explained with the help of numerical examples.   

Two phase method  

We illustrate the two phase method with the help of the following example.  

Example 3 

 Minimise 12.5x1 + 14.5x2 
 Subject to: 
  x1 + x2 > 2000 
  0.4 x1 + 0.75 x2 > 10000 
  0.075 x1 + 0.1x2 < 200 
  x1> 0, x2 > 0 

Solution  

Although the objective function 12.5x1 + 14.5x2 is to be minimized, the values of x1 and x2 
which minimized this objective function are also the values which maximize the revised 
objective function –12.5x1 – 14.5x2. 

The second and the third constraint are multiplied by 100 and 1000 respectively for 
computational convenience. Thus the linear programming problem can be expressed as 

  Maximize – 12.5x1 – 14.5x2 
   Subject to: 
    x1 + x2 > 2000 

    40x1 + 75x2 > 10000 

    75x1 + 100x2 < 200000 

    x1 > 0, x2 > 0 

we convert the first two inequalities by introducing surplus variables x3 and x4 respectively. 
The third constraint is changed into an equation by introducing a slack variable x5. Thus the 
linear programming problem can be expressed as 

 Maximise – 12.5x1 – 14.5x2 = –
2

25 x1 –
2

29 x2 
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  Subject to: 
   x1 + x2 – x3 = 2000 
   40x1 + 75x2 – x4 = 100000 
   75x1 + 100x2 + x5 = 200000 
   x1 > 0, x2 > 0, x3 > 0, x3 > 0, x5 > 0 

Although surplus variables can convert grater than or equal to type constraints into 
equations they are unable to provide initial basic variables to start the simplex computation. 
We introduce two additional variables x6 and x7 known as artificial variables to facilitate the 
computation of an initial basic feasible solution. The computation is carried out in two 
phases.  

Phase I 
In this phase we consider the following linear programming problem 
 Maximize 
  – x6 – x7  
 Subject to:  
  x1 + x2 – x3 + x6 = 2000 
  40x1 + 75x2 – x4 + x7 = 100000 
  75x1 + 100x2 + x5 = 200000 
  x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0, x6 > 0, x7 > 0 

An initial basic feasible solution of the problem, is given by x6 = 2000, x7 = 100000. x5 = 
200000. As the minimum value of the Phase I objective function is zero at the end of the 
Phase I computation both x6 and x7 become zero.  

Phase II 
The basic feasible solution at the end of Phase I computation is used as the initial basic 
feasible of the problem. The original objective function is introduced in Phase II computation 
and the usual simplex procedure is used to solve the problem.  

Phase I Computation  
Table 1 

CB Basic 
Variables  

Cj 

XB 

0 
x1 

0 
x2 

0 
x3 

0 
x4 

0 
x5 

–1 
x6 

–1  
x7 

–1 x6 2000 1 1 –1 0 0 1 0 
–1 x7 100000 40 75 0 –1 0 0 1 
0 x5 200000 75 100 0 0 1 0 0 
  zj – cj –41 –76 1 1 0 0 0 

 
x2 becomes a basic variables and x7 becomes a non basic variable in the next iteration. It is no longer 
considered for re-entry.  
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Table 2 

CB Basic 
Variables  

Cj 

XB 

0 
x1 

0 
x2 

0 
x3 

0 
x4 

0 
x5 

0 
x6 

–1 x6 3
2000  

15
7  0 –1 

75
1  0 1 

0 x2 3
4000  

15
8  1 0 –

75
1  0 0 

0 x5 3
200000  

3
65  0 0 

3
4  1 0 

  zj – cj –
15
1  0 1 –

75
7  0 0 

x1 becomes a basic variable and x6 becomes a non basic variable in the next iteration. It is no longer 
considered for re-entry.  

Table 3 

CB Basic Variables  Cj 

XB 

0 
x1 

0 
x2 

0 
x3 

0 
x4 

0 
x5 

0 x1 7
10000  1 0 –

7
15  

35
1  0 

0 x2 7
4000  0 1 

7
8  –

35
1  0 

0 x5 7
250000  0 0 

7
325  

21
16  1 

  zj – cj 0 0 0 0 0 

The Phase I computation is complete at this stage. Both the artificial variables have been removed 
from the basis. We have also found a basic feasible solution of the problem, namely x1 = 

7
250000x,

2
4000x,

7
10000

52 == . In Phase II computation we use the actual objective function of the 

problem.  

Phase III Computation  
Table 1 

CB Basic 
Variables  

Cj 

XB 2
25

−  

x1 

2
29

−  

x2 

0 
x3 

0 
x4 

0 
x5 

2
25

−  x1 7
10000  1 0 –

7
15  

35
1  0 

2
29

−  x2 7
4000  0 1 

7
8  –

35
1  0 

0 x5 7
250000  0 0 

7
325  

7
5  1 

  zj – cj 0 0 
14
143  

35
2  0 
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As all Zj – Cj > 0 the current solution maximizes the revised objective function. Hence the 

solution of the problem is given by x1 = 
7

10000 = 1428 
7
4 , x2 = 

7
4000 = 571

7
3 . The minimum 

vale of the objective function is 26142
7
6 .  

M-Method  

The M-method also uses artificial variables for locating an initial basic feasible solution. We 
illustrate this method with the help of the previous example.  

 Maximize – 
2

25 x1 – 
2

29 x2 

 Subject to: 
  x1 + x2 – x3 = 2000 

  40x1 + 75x2 – x4 = 100000 

  75x1 + 100x2 + x5 = 200000 

  x1 > 0, x2 > 0, x3 > 0, x4>0, x5 > 0 

 

We introduce artificial variables x6 > 0, x7 > 0 to the first and the second constraint 
respectively. The objective function is revised using a large positive number M. Thus instead 
of the original linear programming problem the following linear programming problem is 
considered.  

 Maximize – 
2

25 x1 – 
2

29 x2 – M (x6 + x7) 

 Subject to: 
  x1 + x2 – x3 + x6 = 2000 

  40x1 + 75x2 – x4 + x7 = 100000 

  75x1 + 100x2 + x5 = 200000 

  x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0, x6 > 0, x7 > 0.  

 

The coefficients of the artificial variables in the objective function are large negative 
numbers. As the objective function is to be maximized in the optimum or optimal solution 
(where the objective function is maximized) the artificial variables will be zero. The basic 
variables of the optimal solution are therefore variables other than artificial variables and 
hence is a basic solution of the original problem. The successive simplex Tables are given 
below: 
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Table 1 

CB Basic 
Variables  

Cj 

xB 2
25

−   

x1 
2

29
−  

x2 

0 
x3 

0 
x4 

0 
x5 

– M – M 

–M x6 2000 1 1 –1 0 0 1 0 

–M x7 100000 40 75 0 –1 0 0 1 

0 x5 200000 75 100 0 0  1 0 0 

 zj – cj  

–
41M 

+
2

25  

–
76M 

+
2

29  
M M 0 0 0 

 

As M is a large positive number, the coefficient of M in the Zj – Cj row would decide the 
incoming basic variable. As – 76M < – 41M, x2 becomes a basic variable in the next iteration 
replacing x7. The variable x7 being an artificial variable it is not considered for re-entry as a 
basic variable.  

Table 2 

CB 

Basic 
Variable
s  

Cj 

xB 2
25

−   

x1 
2

29
−  

x2 

0 
x3 

0 
x4 

0 
x5 

– M 
x6 

–M x6 3
2000  7/15 0 –1 1/75 0 1 

–29/2 x2 3
4000  

15
8  1 0 –

75
1  0 0 

0 X5 3
200000

 3
65  0 0 

3
4  1 0 

  zj – cj 
–

15
7 M 

+
30

143  
0 M 

–
75
M  

+
150
29  

0 0 

 

x1 becomes a basic variable replacing x6. The variable x6 being an artificial variable is not 

considered for re-entry as a basic variable.  
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Table 3 

CB Basic 
Variable
s  

Cj 

xB 2
25

−   

x1 
2

29
−  

x2 

0 
x3 

0 
x4 

0 
x5 

2
25

−  x1 7
10000  1 0 –

7
15  

35
1  0 

2
29

−  x2 7
4000  0 1 

7
8  –

35
1  0 

0 x5 7
250000

 
0 0 

7
325  

21
16  1 

  zj – cj 0 0 
14
143  

35
2  0 

 

Hence the optimum solution of the problem is x1 = 
7

10000 = 1428 
7
4 ,                  x2= 

7
4000 = 571 

7
3 with the minimum value of the objective function being 26142 

7
6 . 

MULTIPLE, UNBOUNDED SOLUTIONS AND INFEASIBLE PROBLEMS 

The simplex method can identify multiple solutions of a linear programming problem. If a 
problem possesses an unbounded solution it is also located in course of simplex 
computation. If a linear programming problem is infeasible it is revealed by simplex 
computation. We illustrate these applications of simplex method with the help of a number 
of examples.  

Example 4 

We consider the following linear programming problem.  

 Maximize 2000x1 + 3000x2 
 Subject to: 
  6x1 + 9x2 < 100 
  2x1 + x2 < 20 
  x1 > 0, x2 > 0 

Solution  

After introducing slack variables x3 > 0, x4 > 0 the inequalities can be converted into 
equations as follows 

6x1 + 9x2 + x3 = 100 

  2x1 + x2 + x4 = 20 

  x1 > 0, x2 > 0, x3 > 0, x4 > 0 

The successive tables of simplex computation are shown below: 
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Table 1 

CB Basic 
Variable
s  

Cj 

xB 
2000 
x1 

3000 
x2 

0 
x3 

0 
x4 

0 x3 100 6 9 1 0 
0 x4 20 2 1 0 1 
 zj – cj  –2000 –3000 0 0 

 

Table 2 

CB Basic 
Variable
s  

Cj 

xB 
2000 
x1 

3000 
x2 

0 
x3 

0 
x4 

0 x2 100/9 2/3 1 1/9 0 
0 x4 80/9 4/3 0 –1/9 1 

 zj – cj  0 0 3000/
9 0 

Since Zj–Cj > 0 for all the variables, x1=0, x2=100/9 is an optimum solution of the problem. 
The maximum value of the objective function is 100000/3. However, the Zj–Cj value 
corresponding to the non basic variable x1 is also zero. This indicates that there is more than 
one optimum solution of the problem. In order to compute the value of the alternative 
optimum solution we introduce x1 as a basic variable replacing x4. The subsequent 
computation is presented in the next Table.  
   

CB Basic 
Variables  

Cj 

xB 
2000 
x1 

3000 
x2 

0 
x3 

0 
x4 

3000 x2 3
20  0 1 

6
1  

2
1  

2000 x1 3
20  1 0 –

12
1  

4
3  

 zj – cj  0 0 3
1000

 
3000 

Thus x1 = 20/3, x2 = 20/3 also maximise the objective function. The maximum value as in the 
previous solution is 100000/3. 

Example 5 

Consider the linear programming problem 

 Maximize 5x1 + 4x2 
 Subject to: 
  x1 < 7 
  x1 – x2 < 8 
  x1 > 0, x2 > 0 
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Solution  

After introducing slack variables x3 > 0, x4> 0 the corresponding equations are 
  x1 + x3 = 7 
  x1 – x2 + x4 = 8 
  x1 > 0, x2 > 0, x3 > 0, x4 > 0.  

The successive simplex iterations are shown below: 

Table 1 

CB Basic  
Variables  

Cj 

XB 

5 
x1 

4 
x2 

0 
x3 

0 
x4 

0 x3 7 1 0 1 0 
0 x4 8 1 –1 0 1 
 zj – cj  –5 –4 0 0 

Table 2 

CB Basic  
Variables  

Cj 

XB 

5 
x1 

4 
x2 

0 
x3 

0 
x4 

0 x1 7 1 0 1 0 
0 x4 1 0 –1 –1 1 
 zj – cj  0 –4 5 0 

 

z2 – c2 <0 indicates x2 should be introduced as a basic variable in the next iteration. However, 
both y12< 0, y22 < 0. Thus it is not possible to possible to proceed with the simplex 
computation any further as you cannot decide which variable will be non basic at the next 
iteration. This is the criterion for unbounded solution.  

If in the course of simplex computation Zj – Cj < 0 but yij < 0 for all i then the problem has 
no finite solution.  

Intuitively, you may observe that the variable x2 in reality unconstrained and can be 
increased arbitrarily. This is why the solution is unbounded.  

Example 6 

We consider the linear programming problem given below.  

 Minimize 200x1 + 300 x2 

 Subject to: 
  2x1 + 3x2 > 1200 
  x1 + x2 < 400 
  2x1 + 3/2x2 > 900 
  x1 > 0, x2 > 0. 
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Solution  

After converting the minimization problem into a maximization problem and introducing 
slack, surplus, artificial variables the problem can be presented as 

 Maximize – 200x1 – 300x2 

 Subject to: 
  2x1 + 3x2 – x3 + x6 = 1200 
  x1 + x2 + x4 = 400 
  2x1 + 3/2x2 – x5 + x7 = 900 
  x1 > 0, x2> 0, x3 > 0, x4 >, x5 > 0, x6 > 0, x7 > 0.  

The variables x6 and x7 are artificial variables. We use two phase method to solve this 
problem. In Phase I, we use the objective function: 

 Maximum – x6 – x7 

along with the constraints given above. The successive simplex computations are given 
below: 

Table 1 

CB Basic  
Variables  

Cj 

XB 

0 
x1 

0 
x2 

0 
x3 

0 
x4 

0 
x5 

–1 
x6 

–1 
x7 

–1 x6 1200 2 3 –1 0 0 1 0 
0 x4 400 1 1 0 1 0 0 0 
–1 x7 900 2 3/2 0 0 –1 0 1 
 zj – cj  –4 –9/2 1 0 1 0 0 

 

Table 2 

CB Basic  
Variables  

Cj 

XB 

0 
x1 

0 
x2 

0 
x3 

0 
x4 

0 
x5 

–1 
x7 

0 x2 400 2/3 1 –1/3 0 0 0 
0 x4 0 1/3 0 1/3 1 0 0 
–1 x7 300 1 0 1/2 0 –1 1 
 zj – cj  –1 0 –1/2 0 1 0 

 

Table 3 

CB Basic  
Variables  

Cj 

XB 

0 
x1 

0 
x2 

0 
x3 

0 
x4 

0 
x5 

–1 
x6 

0 x2 400 0 1 –1 –2 0 0 
0 x1 0 1 0 1 3 0 0 
–1 x7 300 0 0 –1/2 –3 –1 1 
 zj – cj  0 0 1/2 –3 –1 0 
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Thus Zj – Cj > 0 for all the variables but the artificial variable x7 is still a basic variable. This 
indicates that the problem has no feasible solution.  

If in course of simplex computation by two phase method one or more artificial variables 
remain basic variables at the end of Phase I computation, the problem has no feasible 
solution.  
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UNIT 4 

DUALITY IN LINEAR PROGRAMMING 
 

 In a decision making problem finding the optimum solution alone need not is the 
objective of the management. They may be interested in the additional informations 
regarding the impact of technological innovations, economics of resource utilization etc. 
Such informations can be obtained by considering a related problem called dual problem.  

 To every LP problem there corresponds another problem called its dual. The original 
problem is called the primal. Either problem can be considered as primal and the other 
problem dual. There exists an important theoretical relationship between the primal and its 
dual which is of practical use also.  

 Consider the linear programming problem 
 Maximize Z = c1x1 + c2x2 + … + cnxn 
 Subject to a11x1 + a12x2 + … + a1nxn< b1 

 a21x1 + a22x2 + … + a2nxn < b2 
  M   

 am1x1 + am2x2 + … + amn xn < bm 
x1 > 0, x2 > 0, …, xn > 0 

This problem is called primal (in the standard form) 

The corresponding dual problem is 

 Maximize  b1y1 + b2y2 + … +bmym 
 Subject to  a11y1+a21y2+…+am1ym > c1 
   a12y1 + a22y2 + … +am2ym > c2 

  M   
  a1ny1 + a2ny2 + … + amnym > cn 
  y1>0, y2 > 0, …, ym > 0 

Example 1 

 Find the dual of the LP problem 

 Maximize Z = x1 – x2 + 3x3 
 Subject to  x1 + x2 + x3 < 10 
   2x1 – x3 < 2 
   2x1 – 2x2 – 3x3 < 6 
   x1, x2, x3 > 0 

Solution  

 Dual Minimize w = 10y1 + 2y2 + 6y3 
 Subject to y1 + 2y2 + 2y3 > 1 
  y1 – 2y3 > –1 
  y1 – y2 – 3y3 > 3 
  y1, y2, y3 > 0 
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Example 9 

 Final the dual.  
 Minimize Z = 3x1 – 2x2 + 4x3 
 Subject to 3x1 + 5x2 + 4x3 > 7 
 6x1 + x2 + 3x3 > 4 
 7x1 – 2x2 – x3 < 10 

x1 – 2x2 + 5x3 > 3 
4x1 + 7x2 – 2x3 > 2 
x1, x2, x3 > 0 

Solution  

First we convert the primal problem in to standard form.  

Maximize Z = –3x1 + 2x2 – 4x3 
Subject to – 3x1 – 5x2 – 4x3 < –7 
 – 6x1 – x2 – 3x3 < – 4  
 7x1 – 2x2 – x3 < 10 
 –x1 + 2x2 – 5x3 < –3 
 –4x1 – 7x2 + 2x3 < –2 
 xi > 0, i = 1, 2, 3 

The we can write the dual directly.  

Minimize  W = –7y1–4y2 + 10y3 – 3y4 – 2y5 

Subject to  –3y1 – 6y2 + 7y3 – y4 – 4y5 > –3 
   –5y1 – y2 – 2y3 + 2y4 – 7y5 > 2 
  – 4y1 – 3y2 – y3 – 5y4 +2y5> – 4 
  yi > 0, i = 1, 2, 3, 4, 5  

Example 3 

 Find the Dual  

 Maximize  Z = 5x1 + 12x2 + 4x3 
 Subject to  x1 + 2x2 + x3 < 10 
   2x1 – x2 + 3x3 = 8 
   x1, x2, x3 > 0 

Solution  

 The constraints 2x1 – x2 + 3x3 = 8 may be written as two constraints  

  2x1 – x2 + 3x3 < 8 and  
  2x1 – x2 + 3x3 > 8 or 
  2x1 – x2 + 3x3 < 8 and  
  –2x1 + x2 – 3x3 < – 8 

so that the Primal is  

 Maximise Z = 5x1 + 12x2 + 4x3 
 Subject to x1 + 2x2 + x3 < 10 
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  2x1 –x2 + 3x3 < 8 
  –2x1 + x2 –3x3 < –8 
  x1, x2, x3 > 0 

Its dual is 

 Minimize W = 10y1 + 8y2–8y3 
 Subject to y1 + 2y2–2y3 > 5 
  2y1 – y2 + y3 > 12 
  y1 + 3y2 – 3y3 > 4 
  y1, y2, y3 > 0 
We can summarize the above facts as follows.  
 Primal  Dual  

n n Variables  n Constraints  

m m Constraints  m Variables  

c1, c2, …, cn Cost coefficients  Constraint Constants  
b1, b2,…, bm Constraint constants  Cost–coefficients  

Variables  x1, x2, …, xn > 0 y1, y2, …, ym > 0 
Constraints  

∑
=

≤
n

1j
ijij bxa  ∑

=
≥

n

1i
jjij cya  

Objective function 
Maximize ∑

=

n

1j
jjxc  Minimize ∑

=

m

1i
iiyb  

ie., In a primal linear programming problem, the objective is to maximize the objective 
function with n decision variables and m constraints. The associated dual LPP contains m 
decision variables with n constraints. Also note that the number of primal variables 
determines the number of dual constraints, and the number of primal constraints determines 
the number of dual variables. The per unit contribution of the primal variables (c1, c2, …, cn) 
becomes the right hand side values of the dual constraints, and the primal RHS values 
become the per unit contribution of the dual problem.  

Example 4 

 Show using an example that the dual of the dual is primal 

Solution  

 Consider Maximise Z = x1 – x2 + 3x3 
 Subject to  x1 + x2 + x3 < 10 
   2x1   – x3 < 2 
     2x1 – 2x2 – 3x3 < 6, x1, x2, x3 > 0 

Its dual is 
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 Minimize  10y1 + 2y2 + 6y3 
 Subject to y1 + 2y2 + 2y3 > 1 
   y1 – 2y3 > –1 
   y1– y2 – 3y3 > 3 
   y1, y2, y3 > 0 

 This is an LPP and we can treat this problem as primal writing this in the standard 
form we get. 

 Maximize – 10y1 – 2y2 – 6y3 
 Subject to – y1 – 2y2 – 2y3 < –1 
       – y1 + 2y3 < 1 

     – y1 + y2 + 3y3 < – 3  
y1, y2, y3 > 0 

Its dual is  

Minimize – x1 + x2 – 3x3 
Subject to  – x1 – x2 – x3 > – 10 
   –2x1 + x3 > –2 
  – 2x1 + 2x2 + 3x3 > – 6 
  x1, x2, x3 > 0 
i.e., Maximize x1 – x2 + 3x3 
     Subject to x1 + x2 + x3 < 10 
  x1 – x3 < 2 
  2x1 – 2x2 – 3x3 < 6 
  x1, x2, x3 > 0   

 which is nothing but the primal  

 This is not by chance. This is true for any LPP. That is Dual of the dual is primal.  

Solution of the Dual 

 Consider the primal problem 

 Maximise Z = 45x1 + 8x2  
 Subject to 5x1 + 20x2 < 400 
  10x1 + 15x2 < 450 

 x1, x2 > 0 

Its dual is minimize  400y1 + 450y2 
Subject to  5y1 + 10y2 > 45 
  20y1 + 15y2 > 80 
  y1, y2 > 0 

 let us solve the problem graphically.  

Primal 

 5x1 + 20x2 = 400;  x1 = 0 ⇒ x2 = 20, (0, 20) is a point 
    x2 = 0 ⇒ x1 = 80 (80, 0) is a point 
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 10x1 + 15x2 = 450,  x1 = 0 ⇒ x2 = 30 ⇒ (0, 30) is a point 
    x2 = 0 ⇒ x1 = 45 ⇒ (45, 0) is a point 

OABC is the feasible region.  

 

 

  

 

 

 

Vertex  Z = 45x1 + 80x2 
O(0, 0) Z = 0 

A (0, 20) Z = 1600 
B (24, 14) Z = 2200 
C(45,0) Z = 2025 

Maximum Z*= 2200 *
1x = 24, *

2x = 14 

Dual 

 5y1 + 10y2 = 45, y1 = 0 ⇒y2 = 4.5; y2 = 0 ⇒y1 = 9 

 20y1 + 15y2 = 80, y1 = 0 ⇒y2 = 
15
80 ; y2 = 0⇒ y1= 4  

 

 

 

 

 

 

 

 

 

 

Vertex  400y1 + 450y2 
A(0, 80/15) 400 × 0 + 450 × 80/15 = 2400 

B (1, 4) 400 + 1800 = 2200 
C (9, 0) 400 × 9 = 3600 
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 The minimum value is 2200; and the optimum solution is *
1y = 1, *

2y =4 

 We note that the maximum value of the primal objective function is equal to the 
minimum value of the dual objective function. This is also not by mere chance. We have the 
following example. 

Duality Theorem: If either the primal or the dual problem has a finite optimum solution, 
then the other problem has a finite optimum solution and the extremes of the linear 
functions are equal.  

 If either problem has an unbounded solution, then the other problem has no feasible 
solution.  

Remark: The values of the primal and dual objective functions satisfy the following 
relationships. 

1. If X = (x1,..., xn) is any feasible solution of the primal and Y = (y1, y2, ..., ym) is any feasible 
solution of the dual then the value of the primal objective function at x will be less than or 
equal to the value of the dual objective function y.  

ie., ∑
=

n

1i
iixc ∑

=

m

1i
ii yb  

2. At the optimum solution value of the primal objective function = value of the dual 
objective function.  

Economic Interpretation of the Dual Problem  

 The linear programming problem can be viewed as a resource allocation model in 
which the objective is to maximize the income or profit subject to available limited resources. 
Looking at the problem from this stand point, the associated dual problem offers interesting 
economic interpretations of the LP resource allocation model.   

 Consider the following resource allocation model. A furniture firm manufactures two 
items, say tables and chairs, Assume that (for simplicity) wood and labour are the only two 
resources which are used for the manufacturing of items. It is known that to make a chair it 
requires 1 unit of wood and 5 man– hours and it yields a profit of 10 Rs. Each table uses 2 
units of wood and 6 man hours and yields a profit of Rs. 15. Also it is known that only 28 
units of wood and 100 man hours of labour are available. Then the problem is to determine 
how many tables and chairs should be made so that the profit is a maximum.  

 The problem is modeled as  

 Maximize Z = 10x1 + 15x2 

 Subject to  x1 +2x2 < 28 
   5x1 + 6x2 < 100 
   x1 > 0, x2 > 0 

 Let y1 and y2 be the cost per unit of wood and man–hour. Since a chair uses 1 unit of 
wood and 5 man hours the total worth of resources used for a chair is y1 + 5y2. Similarly the 
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total worth of resources used for a table is 2y1 + 6y2. The manufacturer is eager to know 
whether worth of a chair is greater than or equal to 10, the profit he gets from a chair. 
Similarly he wishes to know whether the worth of a table is greater than or equal to 15, the 
profit he gets from a table.  

  y1 + 5y2 > 10 
 ie.,  2y1 + 6y2 > 15 

which are nothing but the dual constraints. He also wishes to minimize the total worth of the 
resources, ie., min W = 28y1+100y2, which is the dual objective function. At the point of 
economic equilibrium, maximum of the primal objective function equals minimum of the 
dual objective function.  

 Clearly if the worth of a chair is greater than the profit earned from a chair it is not 
advisable to continue with its production. Similarly if the worth of a table is greater than the 
profit earned from a table it is better to stop the production of tables. The worth of the 
resources is also called shadow prices (some times dual prices). 

 When we solve the above primal and the dual using graphical techniques we get the 
solution of primal as x1 = 8, x2 = 10 and the maximum profit is 10x1 + 15x2 = 230 and the 

solution of the dual as y1= 
4
5y,

4
15

2 =  and minimum of 28y1 + 100y2 = 230. That means y1=
4

15  

and y2 = 
4
5  are the shadow prices of wood and man hour. That means at the optimum level 

the worth of timber is 
4

15  Rs./unit and the worth of man hour is 
4
5 /hour. This in turn 

implies that if the manufacturer can get timber at less than Rs. 4
15  per unit and man hour at 

less than Rs. 4
5 per hour he can get extra profits. In this particular example the 

manufacturer uses all the resources (x1+ 2x2 = 8 + 20 = 28 and 5x1 + 6x2 = 40 + 160 = 200). In 
some cases it can happen that some resources are not fully utilized and there is idle capacity. 
The idle capacity has no contribution to the profit. In such a case, at the optimal value, 
manufacturer cannot get any more profit by adding an extra unit of this resource.  

 It is to note that the shadow price of a resource indicates the amount by which the 
objective function would increase if we increase the supply of the resource by one unit. That 
simply means that if the supply of the timber is increased by 1 unit the objective function 
would increase from 230 to 935/4. This is so since in that case the problem is  

 Maximize Z = 10x1 + 15x2 

 Subject to  x1 + 2x2 < 29   
   5x1 + 6x2 < 100 
   x1 > 0, x2 > 0. 

Solving it is we get (solve!) x1 = 26/4 and x2 45/4 and Z*= 10 × 26/4 + 15 × 45/4 = 935/4 and 
the increase is (935/4)– 230 = 15/4, the value of y1. Similarly when we increase the value of 
man–hour from 100 to 101 we get x1 = 34/4, x2=39/4, Z = 935/4 (Do it graphically) and the 
increase is (935/4)–230 = 15/4, the value of the dual variable y2. 
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EXERCISES  

II. Fill up the blanks 

1. …….variables are introduced to make…… type inequalities equations. 

2. A system with m equations and n variables has at most ……… basic solutions.  

3. A basic solution with m equations and n variables has ……… variables equal to zero.  

4. A basic feasible solution is a basic solution whose variables are……… 

5. The maximum number of basic feasible solutions in a system with m equations and n 
variables is …………… 

6. In a linear programming problem every …………… point of the Convex set of feasible 
solutions is a ……………… solution of the problem.  

7. The objective function of a linear programming problem is maximized or minimized at a 
………………. solution. 

III. Very Short Answer Questions  

8. What is an objective function? 

9. What are constraints? 

10. Define feasible solution. 

11. Define basic feasible solution.  

12. Define feasible region.  

13. Define alternate optimum solution.  

14. What do you mean by unbounded solution. 

15. What is infeasible solution? 

16. Define a slack variable. 

17. Define a surplus variable. 

18. Define artificial variable. 

19. What is a dual problem? 

20. What is primal? 

21. What is a shadow price? 

22. What are dual variables? 
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IV. Short Answer Questions  

23. Explain the terminologies of linear programming model. 

24. What are the assumptions of LPP? 

25. Formulate a generalised LPP 

26. Explain the limitations of LPP. 

27. Briefly describe the application of LPP. 

28. Show that dual of the dual is primal by means of an example. 

29. Explain the economic interpretation of a dual. 

30. What are the chief merits of LPP? 

V. Long Answer Questions  

31. A small manufacturer employs 5 skilled men and 10 semi-skilled men for making a 
product in two qualities; a deluxe model and an ordinary model. The production of a 
deluxe model requires 2-hour work by a skilled man and 2-hour work by a semi-skilled 
man. The ordinary model requires 1-hour work by a skilled man and 3-hour work by a 
semi-skilled man. According to worker union’s rules, no man can work more than 8 
hours per day. The profit of the deluxe model is Rs. 1000 per unit and that of the ordinary 
model is Rs. 800 per unit. Formulate a linear programming model for this manufacturing 
situation to determine the production volume of each model such that the total profit is 
maximized. 

32. A firm manufactures three products A, B and C. Their profits per unit are Rs. 300, Rs. 200 
and Rs. 400, respectively. The firm has two machines and the required processing time in 
minutes on each machine for each product is given in the following table: 

       Product  

    A B C 

  1 4 3 5  

Machine   2 2 2 4 

 Machine 1 and 2 have 2000 and 2500 machine-minute, respectively. The upper limits 
for the production volumes of the product A, B and C are 100 units, 200 units and 50 
units, respectively. But, the firm must produce a minimum of 50 units, respectively. But, 
the firm must produce a minimum of 50 units of the product A. Develop a LP model for 
this manufacturing situation to determine the production volume of each product such 
that the total profit is maximized.  

 



School of Distance Education 

 

Mathematical Economics   52 

 

33. Solve the following LP problem graphically;  

Maximize Z = 20X1 + 80X2 

Subject to        4X1 + 6X2 < 90 

  8X1 + 6X2 < 100 

  5X1 + 4X2 < 80 

    X1 and X2 > 0 

34. Solve the following LP problem graphically: 

Maximize Z= 20X1 + 10X2 

Subject to        X1+ 2X2 < 40 

  3X1 + X2 > 30 

  4X1 + 3X2 > 60 

  X1 and X2 > 0 

35. Solve the following LP problem graphically: 

Maximize Z= 45X1 + 55X2 

Subject to            X1+ 2X2 < 30 

  2X1 + 3X2 < 80 

  X1 – 4X2 > 8 

  X1 and X2 > 0 

36. Solve the following LP problem graphically: 

Maximize  Z= 3 X1 + 2X2 

Subject to   –2X1+ 3X2 < 9 

     X1 – 5X2 > –20 

      X1 and X2 > 0 

37. Solve the following LP problem graphically: 

Maximize Z= 6X1 + 4X2 

Subject to         2X1+ 3X2 < 30 

  3X1 + 2X2 < 24 

    X1 +   X2 > 3 

    X1 and X2 > 0 



School of Distance Education 

 

Mathematical Economics   53 

 

38. Himalayan Orchards have canned apple and bottled juice as its product with profit 
margins of Rs. 2 and Rs.1 respectively per unit. The following table indicates the labour, 
equipment and material to produce per unit of each product.  

 Bottled 
Juice 

Canned 
Apple 

Total 
Resources  

Labour (man hours) 3.0 2.0 12.0 

Equipment (machine hours) 1.0 2.3 6.9 

Material (unit) 1.0 1.4 4.9 

Find by simplex method the product mix which will maximize the profit. 

39. A company manufactures three products using three types of input A, B, C in different 
proportions. The following Table gives the requirements of various inputs (in kg) per 
kilogram of the three products.  

  A B C 

Products 

1 4 8 8 

2 4 6 4 

3 8 4 0 

The three profit coefficients are C1 = 20, C2 = 40 and C3 = 10. The company has 800 kg of 
input A, 1800 kg of input B and 500 kg of input C. Find out the product mix which will 
maximize the profit. What is the maximum profit? 

40. Solve the following linear programming problem by two-phase method and M-method 
using artificial variables corresponding to second and third constraints.  

Maximize 12x1 + 15x2 + 9x3 

Subject to: 

  8x1 + 16x2 + 12x3 < 250 

  4x1 + 8x2 + 10x3 > 80 

  7x1 + 9x2 + 8x3 = 105 

  x1 > 0, x2 > 0, x3 > 0 
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41. Solve the linear programming problem by simplex method and give your comments.  
Maximise x1 + x2 

Subject to: 

 – 2x1 + x2 < 1 

 x1     < 2 

 x1 + x2     < 3 

 x1 > 0, x2 > 0 

42. Solve the following linear programming problem by simplex method and give your 
comments.  

Maximise 3x1 + 2x2 

Subject to; 

x1 – x2 < 1 

x1 + x2 > 3 

 x1 > 0, x2 > 0 

43. Write the dual of the LPP 

Max Z = – 3x1 – x2 

Subject to  x1 + x2 > 1 

 x1 + 3x2 > 2 

 x1, x2 > 0  

44. Write the dual of the LPP 

Max Z = 3x1 + 4x2 

Subject to x1 – x2 < 1 

 x1 + x2 < 4 

 x1 – 3x2 < 3 

 x1, x2> 0 

45. Write the dual of the LPP 

Max Z = 3x1 + 2x2 

Subject to x1 – x2 < 1 

 x1 + x2 > 3 

 x1, x2 > 0 
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46. Describe feasible solution and basic feasible solution of a linear programming problem 

(LPP). Write down the dual of the following LPP: 

Maximize Z = 5x1 + 10x2 + 15x3 subject to the constraints 
 x1 + 2x2 + x3 < 1 

  x1 + 3x3 < 5 

 x1 + x2 < 2 

 x1, x2, x3 > 0. 
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Module III 

THEORY OF GAMES  
 

UNIT 1: GAME THEORY 

 In problems considered in LPP the assumption has been that there is single decision 
maker whose interest lies in choosing the variables in such a way as to optimize the objective 
function. This type of problems can be considered as a game between a rational decision 
maker and nature. Since nature is generally not considered to be rational, the decision maker 
may choose to use something better than the most conservative strategy to try to maximize 
his gain. However, if the decision maker’s opponent is also rational and is trying to 
maximize his gain, the problem becomes a decision problem involving conflict of interests. 
In this case, very conservative strategies must be used by both the parties. Mathematical 
models of such situations and their solutions is the essence of game theory.  

Definition: Game is defined as an activity between two or more persons involving moves by 
each person according to a set of rules, at the end of which each person receive some benefit 
or satisfaction or suffers loss.  

 A set of rules defines the game. Going through the se of rules once by the 
participation defines a play.  

 The games are classified based on the following characteristics. 

1. Chance or strategy: If in a game the moves are determined by chance, we call it a 
game of chance, if they are determined by skill, it is a game of strategy. In general a 
game may involve partly strategy and partly chance.  

2. Number of Persons: A game is called an n-person game if the number of persons 
playing it is n.  

3. Number of moves: The number of moves may be finite or infinite.  

4. Number of alternative available to each person per move: These also may be finite of 
infinite.  

A finite game has a finite number of moves, each involving a finite number 
alternative. Other wise the game is infinite.   

5. Information available to players of the past moves of the other players: The two 
extreme cases are, (a) no information at all (b) complete information available. There 
can be cases in between in which information is partly available.  

6. Pay off: It is a quantitative measure of satisfaction a person gets at the end of the play. 
It is real a valued function of the variables in the game. 
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 Let Pi be the pay off to the person, Pi, i = 1, 2, …, n, in an n-person game.  

 Then if ∑
=

n

1i
iP = 0, the game is said to be a zero-sum game.  

TYPES OF GAMES 

 Games can be of several types. Important ones are as follows: 

(1) Two-person games and n-person games. In two-person games the players may have many 
possible choices open to them for each play of the game but the number of players 
remains only two. But games can as well involve many people as active participants, 
each with his own set of choices for each play of the game. In case of three players, it can 
be named as three-person game. Thus, in case of more than two persons, the game is 
generally named as n person game.  

(2) Zero sum and non-zero sum game. A zero sum game is one in which the sum of the 
payments to all the competitors is zero for every possible outcome of the game. In other 
words, in such a game the sum of the points won equals the sum of the points lost i.e., 
one player wins at the expense of the other (others). Two-person matrix game is always 
zero sum game since one player loses what the other wins. But in a non-zero sum game 
the sum of the payoffs from any play of the game may be either positive or negative but 
not zero.  

 Although some games involve more than two players, we will restrict our attention to 
two-person games. Suppose we consider the decision problem in which two rational players, 
Player I and Player II, each have a set of possible actions available to them. Each player 
might be a foot ball team, a company, an army, a contractor or a politician. Suppose players I 
and II have m actions a1, a2, …, am and n actions b1, b2, …, bn available, respectively. On each 
play of the game, each player selects a single action from his set of actions. The consequence 
of this decision by both players is a specific return or pay off. If the pay off is non-zero, it 
represents a gain or loss, to player I. We will consider the case where Player I’s gain is Player 
II’s loss and conversely. No units enter or leave the game. This type of game is called a two-
person zero sum game. Thus, with out loss of generality, we can always consider the pay off as 
being from Player II to Player I. Since Player I’s gain is Player II’s loss, and vice versa, the 
gain to Player II is the negative of the gain to Player I.  

 In general, we will let aij represent the pay off from Player II to Player I if Player I 
chooses action ai and Player II chooses action bj. The set of all possible pay offs is displayed 
in a table called the pay off matrix, which represents the pay off from Player II to Player I for 
all possible actions by both players. The following table could be considered Player I’s gain 
table or Player II’s loss table.  

 If Player I chooses action ai, we will say that he plays row i. Likewise, if Player II 
chooses action bj, we will say that he plays column j.  
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Player I 
Possible 
actions 

Player II 
Possible Actions  

b1 b2 b3 … bj … bn 

a1 

a2 
M  
ai 
M  

am 

a11 

a21 

M  
ai1 

M  
am1 

a12 

a22 

M  
ai2 

M  
am2 

a13 

a23 

M  
ai3 

M  
am3 

… 
… 
 

… 
 

… 

a1j 

a2j 

 
aij 

 
amj 

… 
… 
 
… 
… 

a1n 

a2n 

 
ain 

 
amn 

 A decision to play a certain row (column) with probability 1 and all other rows 
(columns) with probability 0 is called a pure strategy for player I (player II). 

 To solve a mathematical mode of a games is to investigate whether there is an 
optional way to play it, that is, whether there exists any rational argument in favour of 
playing it one way or the other. That is the problem is to find the optimal strategy.  

 Since each player knows that the other is rational and has the same objective, that is, 
maximize the pay off from the other player, each might decide to use the conservative 
minimax criterion to select an action. That is, Player I examines each row in the pay off 
matrix and selects the minimum element in each row. He then selects the maximum of these 
minimum elements.  

 Let 
iija i = 1, 2, …, m be the minimum in the ith row and ars is the maximum of these 

minimum elements. Then ν = ars = ( )⎥⎦
⎤

⎢⎣
⎡

ijji
aminmax =  )a(max iji

 is called the maximum value of 

the game and the decision to play row r is called the maximin pure strategy or maximin 
criterion. Likewise, player II examines each column in the pay off matrix to determine the 
maximum loss he would incur if he played that column. He then considers playing the 
column with the smallest maximum loss.  

 Let [ ]ijijtu amaxminaν ==  

 Then atu is called the minimax value of the game and the decision to play column u is 
called minimax pure strategy or minimax criterion.  

Remarks: 

1) It can be show that the minimax value ν > maximin value ν.  

2) ν < value of the game < ν . 

3) If ν = ν , the common value is called a saddle point and the minimax and maximin pure 
strategies are called optimal minimax strategies. 

4) If both players use their optimal minimax strategies, the resulting expected pay off is 
called the value of the game. When the optimal minimax strategies are pure strategies, 
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then the expected pay off using these optimal minimax strategies is just the value of 
the game.  

Example 1: Consider the game with the pay off matrix.  

     A = 
3
1

4
1

5
4

3
2

⎥
⎦

⎤
⎢
⎣

⎡       

Column maximum          3  5  4 

 
 Minimax value     

 The players will argue as follows: Player I knows that if he plays row I, he may gain 2, 
4, or 1 units, depending on which column player II plays. Similarly he will gain at least 3 
units if he plays row 2, regardless of what player II does. Thus Player I can be assured of at 
least 3 units if the plays the row 2. The pay off 3 units is the maximim value and the decision 
to play row 2 is the maximim pure strategy in this case.  

 Player II wishes to minimize his maximum loss, so he examines each column to 
determine the maximum loss that would be incurred if he plays that column. That is if 
column 1 is played, a maximum of 3 units would be lost, if column 2 is played a maximum of 
5 units would be lost and finally if column 3 is played a maximum of 4 units would be lost. 
Player II’s minimax pure strategy is then to play column1 and 3 is the minimax value of the 
game and it represents an upper bound on the value of the game.  

 Here, since, minimax value = maximin value = 3 the value 3 represents a saddle point 
and the value of game to Player I is 3 units.  

The Saddle Point 
 The saddle point in a payoff matrix is one which is the smallest value in its row and the largest 
value in its column. The saddle point is also known as equilibrium point in the theory of 
games. An element of a matrix that is simultaneously minimum of the row in which it occurs 
and the maximum of the column in which it occurs is a saddle point of the matrix game. In a 
game having a saddle point optimum strategy for player I is always to play the row 
containing a saddle point and for the prayer II to play the column that contains a saddle 
point. Saddle point also gives the value of such a game. Saddle point in a payoff matrix 
concerning a game may be there and may not be there. If there is a saddle point we can easily 
find out the optimum strategies and the value of the game by what is known as the solution 
by saddle point without doing much calculations. But when saddle point is not there we 
have to use algebraic methods for working out the solutions concerning game problems.  

Remark: If a saddle point exists, then the minimax and the maximin pure strategies are 
optimal minimax strategies for Players I and II. Player I can expect to gain at least an amount 
ν if he uses his maxmin pure strategy on each play of the game, and Player II can expect to 
lose no more than ν units if he uses his minimax pure strategy on each play of the game. 
Note that if Player I deviates from his optimal minimax strategy, Player II can possibly lose 

Row Minimum 

→ Maximum value

↓ 
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fewer than ν units on each play of the game. Similarly, if Player II deviates from his optimal 
minimax strategy, Player I can possibly gain more than ν units on each play of the game.  

Example 2: Consider the game with the pay off matrix.  

     A = 
2
1

2
4

3
1

⎥
⎦

⎤
⎢
⎣

⎡       

Column maximum           3  4 

 
 Minimax value     

Here there is no saddle point. Clearly  

 ν = minimax value = 3>2 = maximin value = ν. 

 Thus each player has some latitude to try to gain some of difference between ν and ν, 
namely 1 unit. Player I wants to increase his expected gain as much as possible upward from 
ν = 2 units, which player II wants to decrease his expected loss as much as possible from ν = 
3 units. Somewhere in between ν  and ν, (between 3 and 2 units) is value ν that represents 
the value of the game to Player I. This value ν is the minimum amount Player I can expect to 
gain, regardless of what Player II does. Clearly, playing the same pure strategy on each play 
of the game will not yield ν. Consequently, Player I might want to play one particular row on 
one play of the game, and other rows on successive plays of the game. But what proportion 
of the time should he play each row to maximize his expected pay off over the long run, 
regardless of what Player II does? 

 Essentially we want to determine a strategy for player I that tells us what proportion 
of the time each row should be played to maximize the expected pay off to Player I. Similar 
reasoning holds for Player II. This leads to use of mixed strategies.  

Mixed Strategies  

 In the case of pure strategies player I selects particular row with probability 1 (and 
other rows with probability 0). Suppose he decides to play row i with probability xi with i = 
1, 2, …, m (xi>0, Σxi=1). This decision X= (x1, x2,…, xm)′ is called a mixed strategy for player I 
(Note that if in X, one of the xi’s I, then it is a pure strategy) 

 Similarly, if player II decides to play column j with probability yj, j = 1, 2, …, n (yj > 0, 
Σyj=1) then Y = (y1, y2, …, yn) is called a mixed strategy for player II.  

Remark: Now the row to use on a given play of the game could be considered as a random 
variable, say R, which can take values in {1, 2, …, m} with probability P(R=i) = xi, i = 1, 2, …, 
m. If C denotes the random variable that represents the column to use on each given play of 
the game, then 

 P (C=j)=yj, j= 1, 2, …, n 

Row Minimum 

→ Maximum value

↓ 
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Example 3: Solution of (2x2) games.      

 Consider a 2 x 2 game with the pay off matrix A = ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

aa
aa

. We assume that the 

strategies are not pure strategies. (saddle point do not exist). Let x be the probability that 
player I selects row 1, then 1-x is the probability that he selects row 2. Similarly if y is the 
probability that player II selects strategy 1 then 1-y is the probability that he selects strategy 
2. 

 The expected gain to player I when player II uses his strategies 1 and 2 are given by 

  a11x + a21 (1-x) > v 
  a12x + a22 (1-x) > v 
   Considering the inequalities as equations and solving we get  

 x = ( )21122211

2122

aaaa
aa

+−+
−  

 Similarly expected loss to player II when Player I uses his strategies 1 and 2 are given 
by  a11y+ a12(1– y) < ν 

   a21y+ a22(1– y) < ν 

 Again as before y = ( )21122211

1222

aaaa
aa

+−+
 

 Putting this in a11y+a12 (1-y) = ν 

We get the value of the game ν as 

 ν = ( )21122211

12212211

aaaa
aaaa
+−+

−  

Example 4: Solve the game with pay off matrix ⎥
⎦

⎤
⎢
⎣

⎡
23
41

 

Solution       

   Consider  A = 
2
1

2
4

3
1

⎥
⎦

⎤
⎢
⎣

⎡       

Column maximum           3  4 

 
Minimax value       3   

 Since maximin ≠ minimax the situation is that of mixed strategies.  

 Using the previous formula 

Row Minimum 

→ Maximum value

↓ 



School of Distance Education 

 

Mathematical Economics   62 

 

 x = ( ) ( ) ( ) 4
1

4
1

3421
32

aaaa
aa

21122211

2122 =
−
−

=
+−+

−
=

+−+
−  

 y =  ( ) ( ) ( ) 2
1

4
2

3421
42

aaaa
aa

21122211

1222 =
−
−

=
+−+

−
=

+−+
−  

∴ Value of the game: ( ) ( ) ( ) 2
5

4
10

3421
4321

aaaa
aaaaν

21122211

12212211 =
−
−

=
+−+
×−×

=
+−+

−
=  

 Hence the optimal strategy for player I is ⎟
⎠
⎞

⎜
⎝
⎛

4
3,

4
1 and for player II is (½, ½) and the 

value of the game is 
2
5 . 
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UNIT 2 

LINEAR PROGRAMMING SOLUTION OF GAMES 

 Game theory bears a strong relationship to linear programming, in the sense that a 
two-person zero-sum game can be expressed as a linear program and vice-versa.  

 Consider the game with the payoff matrix.  

   Player A 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mn2m1m

n22221

n11211

aaa

aa1
aaa

3

2
1

M
 

 We assume that there is no saddle point. That means the strategies are not pure 
strategies.  

 Problem of Player A is to determine the probabilities x1, x2, ..., xm of selecting the 
strategies 1, 2, ..., m respectively, so as to maximize his minimum expected gain.  

 Now, the expected gains ν1, v2, ..., vn of Player A against B’s strategies are given by  

 ν1 = a11x1 + a21x2 + ...+am1xm 

 ν2 = a12x1 + a22x2 + ...+am2xm 
 M   

 νn = a1nx1 + a2nx2 + ...+amnxm 

 The Player A has to select x1, x2, ..., xm ⎟
⎠

⎞
⎜
⎝

⎛
=≥ ∑

=

m

1i
ii 1x,0x that will yield }v{minmax jxi

. 

That is 
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ ∑ ∑∑
= ==

m

1i

m

1i
iini2i

m

1i
i1ix

xa,...xa,xaminmax
i

  

Subject to x1 + x2 + ... + xm = 1,  
  x1 > 0, i = 1, 2, ..., m.  

Let ν = min ⎟
⎠

⎞
⎜
⎝

⎛ ∑∑∑
===

m

1i
iin

m

1i
i2i

m

1i
i1i xa...,xa,xa . 

This implies that, ∑
=

=≥
m

1i
iij .n...1,2,j ν,xa  

Player A’s problem thus can be written as 

Maximize  Z = ν, 

subject to  ∑
=

=≥
m

1i
iij n...1,2,j ν,xa   

  x1 + x2 + ...+ xm = 1,  
  xi > 0 i=1,2,..., m. 
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 Assume that ν > 0. (If ν < 0, modify that payoff matrix by adding a suitable constant C 
> 0 to all entries of (aij) and work with the modified matrix. After the optimum solution is 
obtained, the true value of the game is obtained by subtracting that constant C). 

 Let 
ν
xx i

i =′ , for i = 1, 2, ..., m.  

 Then the problem becomes,  

 Maximize ν = Minimize ∑∑
==

′==
m

1i
i

m

1i

i x
ν
x

ν
1 . 

ie., Minimize  .x...xxZ m21 ′++′+′=′  
 Subject to   a11 ,1xa...xax m1m2211 ≥′′++′+′  
   ,1xa...xaxa m2m222112 ≥′++′+′  

   M   
   ,1xa...xaxa mmn2n21n1 ≥′++′+′  

.m,...,2,1i,0x1 =≥′  

 

Similarly, Player B’s optimal strategies y1, y2, ..., yn are determined by solving the 
problem.  

 
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑∑∑
===

n

1j
jmj

n

1j
jj2

n

1j
jj1y

ya,...,ya,yamaxmin
j

 

Subject to y1+y2+...+yn=1 
  yi > 0, i = 1, 2, ..., n.  

Let max ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑∑∑
===

n

1j
jmj

n

1j
jj2

n

1j
jj1 ya,...,ya,ya = ν. 

This implies ∑
=

=≤
n

1j
jj1 m.1,2,...,i ν,ya  

 Proceeding on the lines as in the case of problem of Player A, problem of Player B is 

 Minimize  n21 y...yyω ′++′+′=′  
Subject to  ,1ya...yaya nn1212111 ≤′++′+′  

  

.n,...,2,1i,0y
1ya...yaya

1ya...yaya

1

nmn2m21m1

nn2222121

=≥′
≤′++′+′

≤′++′+′

M
 

 

Remark: It can be seen that B’s problem is the dual of A’s problem. (verify!) This means that 
the optimal solution of one problem automatically yields the optimal solution of the other.  
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Note that from final simplex table we get the value of m21 x,...,x,,x ′′′ and n21 y...,,y,y ′′′  and 
ν
1  

from which we can find x1, x2, ..., xm and y1, y2, ..., ym. Look at the following example 
carefully.  
 
Example 6. Solve the following problem by LP method 

  Player B 
 B1   B2   B3 

 Player A 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−

121
311
111

A
A
A

3

2

1

 

Solution: First let us see whether there exists a saddle point.  
    Row Minimum  Maximin 

  
1

1
1
1

121
311
111 −

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−
 

Column maximum       1     2     3 

 Minimax       1  

 Since there is a possibility that the value of game negative, let us and a constant 2 to 
all the entries of the matrix. Then the modified payoff matrix becomes  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

141
511
113

 

Now the problem of Player A is to determine 321 x,x,x ′′′  so as to  

Minimize  Z = 321 xxx ′+′+′  

Subject to  1xxx3 321 ≥′+′+′  

 
.0x,x,x

1xx5x
1xxx

321

321

321

=′′′
≥′+′+′
≥′+′+′

 

 The problem of Player B is to determine 321 y,y,y ′′′  

So as to maximize ω = 321 yyy ′+′+′  

 Subject to  1yyy3 321 ≤′+′+′  

1y5yy 321 ≤′+′+′  

.0,0,0
14

321

321

≥′≥′≥′
≤′+′+′

yyy
yyy
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 We solve Player B’s problem using simplex method.  
 Introducing 654 y,y,y ′′′ the problem is  
 Maximize  ω = .y.0y.0y.0yyy 654321 ′+′+′+′+′+′  
 Subject to  4321 yyyy3 ′+′+′+′   =1 
   5321 yy5yy ′+′+′+′   =1 
   6321 yyy4y ′+′+′+′  =1, yi > 0, i = 1, 2, 3 …, 6 
       c =      1      1       1       0        0        0  

Basis c P0 P1 P2 P3 P4 P5 P6 θ  

P4 0 1 3 1 1 1 0 0 
3
1  → 

P5 0 1 1 1 5 0 1 0 1  
P6 0 1 1 4 1 0 0 1 1  
 z = 0 =1↑ -1 -1 0 0 0   

 
Basis C P0 P1 P2 P3 P4 P5 P6 θ  

P1 0 
3
1  1 

3
1  

3
1  

3
1  0 0 1  

P5 0 
3
2  0 

3
2  

3
14  

3
1−  1 0 1  

P6 0 
3
2  0 

3
11  

3
2  

3
1−  0 1 

11
2  → 

  
3
1  0 

3
2− ↑ 

3
2−  +

3
1  0 0   

 
Basis C P0 P1 P2 P3 P4 P5 P6 θ  

P1 1 
11
3  1 0 

11
3  

11
4  0 

11
1−  1  

P5 0 
11
6  0 0 

11
50  

11
3−  1 

11
2−  

50
6  → 

P2 1 
11
2  0 1 

11
2  

11
1−  0 

11
3  1  

  
11
5  0 0 

11
6− ↑ 

11
3  0 

11
2    

 
Basis C P0 P1 P2 P3 P4 P5 P6   

P1 1 
25
6  1 0 0 

50
19  

50
3−  

50
4−    

P3 1 
25
3  0 0 1 

50
3−  

50
11  

50
2−    

P2 1 
25
4  0 1 0 

50
4−  

50
2−  

50
14    

  
25
13  0 0 0 

50
12  

50
6  

50
8    
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25
13

ν
1
=  that is 

13
25  ν =  

  .
13
6

13
25

25
6yνyy *

11
*
1 =×=⇒=  

.
13
4

13
25

25
4yνyy *

22
*
2 =×=⇒=  

.
13
3

13
25

25
3yνyy *

33
*
3 =×=⇒=  

Value of the original game: 
13
1

2
13
25

2
25/13

1
−=−=−  

∴ The optimum strategy for Player B is  
   ( )13

3,13
4,13

6  

The optimum solution of Player A is obtained from the final simplex table itself.  

 25
4x,25

3x,25
6x 321 =′=′=′  

∴ 13
6

25
3

25
6x*

1 =×=  

13
3

13
25

25
3x*

2 =×=  

13
4

13
25

25
4x*

3 =×=  

DOMINANCE  

 The concept of a dominated strategy is very useful for reducing the size of the payoff 
table.  

Rule for Dominance  

(a) If all the elements in a column are greater than or equal to the corresponding 
elements in another column, then that column is dominated.  

(b) Similarly, if all the elements in a row are less than or equal to the corresponding 
elements in another row, then that row is dominated. 

Dominated rows or columns may be deleted which reduces the size of the game. Always look for 
dominance when solving a game. This can be made clear by the following example. 

Example  

 Determine the optimum strategies and the value of the game from the following 2 x 5 
payoff matrix game for X: 

Y 

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

12423
30136

X  

Solution  

 There is no saddle point in the above game. Hence mixed strategies will be adopted 
by the two players. Further, if we look at the given payoff matrix from Y’s point of view we 
find that he chooses not to play column 1, 2 or 4 since either column 3 or column 5 (both with 
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two negative payoffs) offers a better alternative irrespective of the actions of player X. We 
can then say that columns 1, 2 and 4 are dominated by the remaining two columns viz., 
number 3 and 5 and hence would never be played by Y. As soon as Y decides never to play 
his first, second and fourth columns, the game is reduced to size 2 × 2 as stated below: 

Y 

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

14
31

X  

 Now the optimum strategies and the value of the game can easily be found out. The 
calculations can be shown as follows: 

 Game as stated above. 
Y 

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

14
31

X  

Step 1: Subtracting the payoffs. 

( )( )
( )( )

23
341.e.i
231.e.i

3
2

14
31

X

Y

=−−−
=−−−

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

 

( )( )341.e.i =−−−   ( )( )231.e.i =−−−  

Step 2. Pairs interchanged  

32
2
3

14
31

X

Y

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

 

Step 3. Pairs over the sum. 

( )
( )

)23/(3)32/(2
23/2
23/3

14
31

X

Y

++

+
+

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

 

Step 4. Fractions simplified and optimum strategies determined.  

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

14
31

X

Y

5/3
5/2

5/35/2  
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Value of the Game* 

 = ⎟
⎠
⎞

⎜
⎝
⎛ ×−+⎟

⎠
⎞

⎜
⎝
⎛ ×−

5
24

5
31  = 

5
11

5
8

5
3

−=⎟
⎠
⎞

⎜
⎝
⎛ −−  

 The above illustration is an example of solving the problem by what is known as the 

method of dominance.  

Graphic method  

 Graphic method can only be used in games with no saddle point and having payoff m 
× n matrices where either m or n is two. Graphic method enables us to substitute a much 
simpler 2 × 2 matrix for the original m × 2 or 2 × n matrix. We illustrate all this in the case of 
the above example.  

 We proceed to apply the graphic short-cut by plotting on 2 different vertical axis the 2 
payoffs corresponding to each of the 5 columns. The payoff numbers in the first row are 
plotted on axis 1 and those in second row on axis 2 which should be drawn at some distance 
away from the first axis but should be parallel to the first axis as shown in the following 

figure: 

 Thus the 2 payoff numbers 6 and 3 in the first column are 
denoted respectively by point A on axis 1 and point B on axis 2. Line 
AB then denotes Y’s move of the first column. By plotting the payoff 
numbers of each of the remaining 4 columns on the 2 axes we obtain 
in all five lines like the line AB which correspond to the given 5 
moves of Y.  

 If using a thick line we draw the segments which bound the 
figure from the bottom namely the segments KT and LT and mark 
the highest point (T) on this boundary, the two lines passing 
through it identify the two critical moves of Y which combined with 
two of X, yield the following 2 × 2 matrix: 

  
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

14
31

X

Y
 

 

      * Value of the game has been worked out as per one of the four methods already 
explained in diagrammatic form.  

The optimal strategies now can be determined in the way explained above.  

 

L 

Axis 1 Axis 2 

1 
2 
3 
4 
5 
6 

0 
1

2

3

4

5

6

0

–6 
–5  
–4 
–3 
–2 
–1 

–6

–5

–4

–3

–2

–1 

A

B

T

L
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EXERCISES  

II. Very Short Answer Questions 

1. What is a game? 

2. What is a zero sum game? 

3. What is saddle point? 

4. Define a two person zero sum game.  

5. What is a pay-off matrix? 

6. What is the use of pay-off matrix in game theory? 

III. Short Answer Questions  

7. Explain zero sum game and its applications and significance.  

8. Discuss theory of games. 

9. Explain the usefulness of game theory in economic analysis.  

10. Distinguish between a zero sum game and constant sum game. 

11. Distinguish between pure strategy game and mixed strategy game. 

12. Explain the interrelationship between linear programming and game theory.  

13. What are the characteristics based on which the games are classified? 

IV. Long Answer Questions 

14. Solve the following 2 person zero sum game 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

442
136
233

P

 
 

15. Solve using dominance property, the game with pay off matrix 

A = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
10513
6142
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16. Solve the game with the following payoff matrices.  

(i) ⎥
⎦

⎤
⎢
⎣

⎡
− 102

31
 (ii) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

212
101
212

 (iii) 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

8040
0424
4243
0423

 
 

17. Solve the following games graphically. (i) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

211
53
72

 (ii) ⎥
⎦

⎤
⎢
⎣

⎡ −
132
211

 

 

18. Write both the primal and the dual LP problems corresponding to the rectangle games 
with the following payoff matrices. Solve the game by solving the LP. Problem by 
simplex method. 

  (i)  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

021
102
210

 (ii) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

226
353

311
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Module IV 

INPUT-OUTPUT ANALYSIS 

 

UNIT I: INTRODUCTION 

 The input-output analysis technique was first propounded in 1951 by Prof. W.W. 
Leontief. The input-output analysis is called as the analysis of inter industry relations. Prof. 
Leontief gives an explanation to the concept of input-output  before launching his technique 
of input-output analysis. Input implies that object of material which is demanded by the 
entrepreneur for the purpose of production. Output is the result or outcome of the 
productive efforts of production. So whatever is sold by a producing firm is output and 
whatever is purchased by a producing firm is an input. Input gives the cost of production, 
output gives revenue to the producer.  

 The input-output analysis tells us that there are industrial inter-relationships and 
interdependencies in the economic system as a whole. The outputs of one industry are the 
input of another industry and vice-versa e.g., coal is an input for steel industry and steel is an 
input for coal industry. We know that agriculture and industry are independent in an 
economy. In Indian economy, most of our large scale industries are dependent on 
Agriculture because agriculture provides basic raw material. Agriculture is also dependent 
on industry because industry provides fertilizer, agriculture implements, machinery etc. 
Hence these two sectors are quite dependent on each other.  

 Input-output technique deals with the type of problems, one of which may be 
described in the following words.  

 “What level of output should each of the industries produce in an economy so that the 
total output goal for consumer (That is final consumption) and industrial use (that is 
intermediate consumption) gets fully satisfied; in other words, consumption equal 
production, that is all that produced is consumed”. 

 Input-output analysis is a method of analysis how an industry undertakes production 
by using the outputs of other industry in the economy and how the output of the given 
industry is used up in other industries or sectors. Various industries are mutually 
interdependent. Thus input-output analysis explains the interdependencies of inputs and 
outputs of various industries in the economy.  

Main Features  

1. Input-output analysis is concerned with production only. It determines the amounts 
of different inputs to be used in the production process to get a certain output. 
Demand theory has no role that is why Baumol calls it as a hard care of input-output 
analysis. It deals with only technological problems.  

2. It is purely an empirical investigation and quite different from theoretical analysis of 
general equilibrium and as a result, it is both simplified and narrow than the usual 
general equilibrium theory.  
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3. It lays more emphasis on equilibrium phenomenon. It investigates how the various 
sectors, sub-sectors or industries constituting an economy are interrelated. In 
Hirschman terminology, industries have both backward and forward linkages and 
thus are interdependent and with this interdependence of production activities seek 
to take account of the fact that each industry uses output of other industries as raw 
materials. According to C.F. Christ, it is like equilibrium theory that is it encompasses 
all industries and their products. Thus, the input-output analysis technique cannot be 
applied to the fields of partial equilibrium analysis.  

4. This analysis has two parts-first constructing an input output table and second 
making systematic use of the input-output model  

Assumptions of Input-output Analysis – In the construction of  a model for any social 
system, it is inevitable to make certain assumptions. These may not be totally valid but are 
justifiable to a large extent. They are also necessary to simplify the mathematical aspects.  

 Following are the assumptions inherent in the model- 

1. The economy consists of a number of interacting industries 

2. Each industry produces only one good and uses only one process of production.  

3. To produce a good the industry requires as input the goods made by other industries, 
labour and perhaps imports. An industry may use some of its own good. Such use may 
be considered as a sale to the industry itself.  

4. The output of any industry becomes either the input of another industry or the final 
demand (or the final consumption). 

5. In any productive process all inputs are used in fixed proportions and increase input is in 
proportion with the level of output. Production takes place through processes with 
constant technical coefficients. The technical coefficient shows the number of units of any 
industry’s output needed to produce the units of another industry’s output. In other 
words, it shows the amount of raw materials needed by an industry from any other 
industry to produce a certain product.  

6. All transactions may be considered in terms of money value since money is the suitable 
common unit for aggregating inputs and outputs of industries. Quantities and prices can 
also be considered for transactions.  

7. In order that the total demand for the product of any industry be just sufficient, we 
should know the level of output of each industry under consideration.  

8. The Isoquant surfaces have been assumed to be having usual convexity that is as we 
employ more of a factor in product, the output increases at a diminishing rate.  

Two Types of Models- Input-output models are of two types: closed in which the entire 
production is consumed by those participating in the production and open in which some 
of the production is consumed by external bodies. In the closed model we seek the 
income of each participant in the system and in the open model to achieve a forecasted 
demand when the amount of production needed to achieve current demand is known.  
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UNIT 2  

INPUT-OUT PUT MODEL 

 

Different Stages of Input-output relations- There are three main stages of input-output relations 
for practical uses in the planning. They are- 

A. Input-output table 

B. Input-output Coefficients  

C. General Solutions.  

 (A) Input-output table- The basic tool of input-output analysis is input-output table. 
It shows how the output of each industry is distributed among other industries and sectors 
of the economy. Let us first take the processing sector. X stands for the value of output and 
Xij denotes sales by industry where i, j = 1, 2, 3, 4, ….n. In the payment sector, the subscript 
simply refers to the industry or final demand sector making the factor payment and the same 
for imports. In processing half of the table each row shows how output of each industry is 
disposed of and each column shows the origins of inputs to each sector. The sum of each row 
gives the value of various factor payments and sum of the each column in the bottom left 
hand quadrant gives total value added to the input bought by different industries. In the 
intermediate sector, the sum of value added in payments plus imported inputs. Thus the 
columns in the intermediate sector and the row in the processing sector both add up to total 
value of domestic production.  

 The purpose of input-output analysis is to trace the flow of intermediate production 
as it makes its way through the structure of the industry and to show how production, all 
along the line, from primary to intermediate, to finished goods is affected by a change in the 
demand for final goods and services. Table, given below represents a hypothetical input-
output table. It is assumed in the simple example that the economy does not engage in 
foreign trade and that the productive sector (the processing sector) of the economy can be 
divided into three producing industries. Each industry is arranged both horizontally and 
vertically in the table. The rows represent the value of industry sales and the columns 
represent the value of purchases. For example x11 represents the sales of industry 1 to itself 
(retained production) x12 represents the sales of industry 1 to industry 2 and x13 represents 
the sales of industry 1 to industry 3. The sales of the industry to users of final goods and 
services is the industry’s final demand y1. In combination, the inter-industry sales plus the 
final demand account for the industry’s total production, or gross output x1. Similarly, the 
gross output of industry 2, is the sum of its inter industry sales + final demand, and gross 
output in industry 3 is the sum of inter industry sales plus final demand. 
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Table 1. A Hypothetical Input-Output Table  

  Inter-Industry sales Final 
Demand 

Groups 
Output   1 2 3 

Inter  1 X11 X12 X13 F1 X1 

Industry  2 X21 X22 X23 F2 X2 

Purchases  3 X31 X32 X33 F3 X3 

Value Added V1 V2 V3   

Gross Output X1 X2 X3   
  

        The gross output of each industry minus its inter industry purchases must equal the 
value added by the industry. This value added, in turn, equals the wages, interest and rented 
payment and the profits of the industry. Total final demand must equal the sum of all value 
added at each stage of productions. Consequently, denoting value added by V, it must be the 
case that ΣF=Σv.  

 The input-output table is perfectly consistent with national income accounting 
concepts. The sum of all gross outputs minus inter industry sales must equal gross output for 
all industries minus inter industries purchases. The respective differences represent the 
value of final goods and services and the sum total of factor payments. The differences must 
of course, be equal. In the familiar terminology of national accounting, the column entries 
represent the sources of national product, while the rows represent its uses.  

 The main purpose of input-output analysis is to calculate the output levels in the 
various industries that would be required by particular levels of final demands. Given this 
aim, it is necessary to establish some functional relationship between industry output levels 
and the levels of inter industry inputs. The basic assumption made in most input-output 
analysis is that the purchases of intermediate product of an industry are proportional to the 
level of gross output of the industry. Consequently, it is assumed that 

 aij = 
j

ij

X
X

or Xij = aijXj 

which is to say that the sales of industry i to industry j are a constant proportion (aij) of the 
output of industry j. According to this assumption of constant proportionality between 
inputs and outputs, we proceed to construct a table of input coefficients.  
  

               X11 = a11x1, X12 = a12x2 and so on.  
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Table 2. Matrix of Technological Coefficients  

 1 2 3 
1 a11 a12 a13 

2 a21 a22 a23 

3 a31 a32 a33 
 

 The coefficients are obtained by dividing each inter industry sale of table 1 by the 

gross output level of the purchasing industry. Therefore aij= 
j

ij

X
X

 defines input coefficients 

e.g. a12 = 
2

12

X
X . 

 Now the simultaneous equations are  

a11X1 + a12X2 + a13X3 + Y1 = X1 

a21X1 + a22X2 + a23X3 + Y2 = X2 

a31X1 + a32X2 + a33X3 + Y3 = X3 

 It makes no difference whether there are three industries. In either case the above 
equations could be expressed in matrix notation AX + F = X. When the equations are 
rearranged with the items consolidated, we obtain.  

 (1 – a11) X1 – a12X2 – a13X3 = F1 

– a21X1 +(1 – a22) X2 – a23X3 = F2 

– a31X1 –a32X2 + (1 – a33) X3 = F3 

which, in matrix form may be written as 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

3

2

1

3

2

1

333231

232221

131211

F
F
F

X
X
X

a1aa
aa1a
aaa1

 

or [I–A] X =F,  I = Identity Matrix  

Since  AX + F = X 

  F = X – AX 

  F = [I – A] X or  X = [I – A]-1 F 

Here, matrix (I – A) is known s Leontief Matrix 

 In order to solve the vector of gross output X, as a function of the vector final 
demands Y, it is necessary to invert the Leontief matrix I–A.  
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 Uses of Input-output Analysis – Input-Output analysis may have the following uses- 

1. Input-output analysis may be used for projection and forecasting purposes. Some 
planning is used to attain consistency in plans. If a plan lacks consistency, bottlenecks 
production process may develop and as a result overall growth is affected.  

2. Input-output analysis can be used to examine the stimulation process. The stimulation 
of development is concerned with what is economically feasible, as opposed to 
forecasting which is concerned with what one expects to happen on the basis of 
certain set of assumptions.  

3. The knowledge of input-output relationships has been found useful in growth and 
planning exercises of only those countries where manufacturing sector is considerably 
developed, as a result, there is great interdependence between various productive 
activities due to lack of considerable backward and forward linkages.  

4. The concept of input-output analysis have also some other uses e.g. to forecast import 
requirement and the balance of payments effects of given changes in final demand, to 
forecast labour requirements with a given growth target and to forecast investment 
requirements consistent with a given growth targets, if information is available on 
incremental capital – output ratio sector by sector.  

5. To calculate the matrix multiplier attached to different activities that is direct and 
indirect effects on the total output of all activities in the system from a unit change in 
the demand for the output of any one activity.  

Limitations of Input-Output Analysis 

 The input-output analysis has the following limitations- 

1. Unrealistic assumptions- The main shortcoming of this analysis is that it is based on 
unrealistic assumptions of constancy of input coefficient and technique of production.  

2. Lack of Substantial Inner-Industry Relations- The less developed countries have typically 
subsistence economies. Production in the past took place for self consumption. 
Marketing of goods was quite unimportant. Thus inter industry relations were lacking 
on a substantial scale.  

3. Neglects Economic Efficiency – This analysis neglects the aspects of economic efficiency. 
It simply analyses as to how outputs are distributed as inputs but this does not imply 
that resources will be efficient.  

4. Limited Scope – The input-output models are of greater use of industrially advanced 
countries where inter industry transactions are large.  

5. No Cost Adjustment – The analysis of cost price relations proceeds on the assumption 
that each industrial sector adjusts the price of its output by just enough to cover the 
change in the case of its primary and intermediate output.  
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6. Abstract Analysis- According to Prof. S. Chankravorthy, this analysis limits the 
usefulness of the model because the final consumption is an exogenously determined 
factor.  

7. No price Adjustment- There is no mechanism for price adjustment in input-output 
analysis. The analysis of cost price relations proceeds on the assumption that each 
industrial sector adjusts the price of its output by just enough to cover the change in 
the case of its primary and intermediate output.    

8. Complex Regidities are not Studied- The rigidity of the input-output model cannot reflect 
such phenomena as production bottleneck, diminishing returns etc. It is a model of 
smoothly running economy. 

 This analysis is based on the single production process in each industrial sector. The 
assumptions on which this model is based, restrict the usefulness of the input-output model 
particularly in respect of employment projections where the size of firm and the choice of 
production technique are of crucial importance in determining the impact of an increase in 
output on the employment generation. 

Example 1 

 The following table gives the inter-industry transactions in millions of rupees for an 
economy with three sectors S1, S2 and S3: 
    

   S1 S2 S3  Final Demand Total  
 S1  50 25 25  100   200 
 S2  40 50 10  200   300 
 S3 100 50 150  300   600 

Calculate the coefficient matrix 

Solution: Technical coefficient aij= 
j

ij

X
X

 

where Xij = total output of the jth sector absorbed by the ith sector  

Xj = total output of jth sector.  

 S1 S2 S3 
S1 25.

200
500

=  .08 .04 

S2 .02 .16 .016 
S3 .5 .16 .25 

 Thus the technological matrix is  

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

25.16.50.
016.16.20.
04.08.25.
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Example 2 

 Let us consider an economy with three sectors-primary, secondary and tertiary 
producing an output of Rs. 700 crores, Rs. 800 crores and Rs. 600 crores respectively in a 
particular year. The flow of output for intermediate use and final consumption is indicated 
in the following table.  

Flow of Output (Rs. crores) 
Sector Primary Secondary Tertiary Final demand Gross ouput 

Primary  35 200 72 393 700 
Secondary  105 96 120 479 800 
Tertiary  70 120 90 320 600 

Find the sectoral outputs? 

 

Solution 

 The input coefficients aij’s are derived by taking the ratio of the elements of the 
column of a particular sector to its output.  

∴ A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

15.015.010.0
20.012.015.0
12.025.005.0

600
90

800
120

700
70

600
120

800
96

700
105

600
72

800
200

700
35

 

∴ I – A = 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

85.015.010.0
20.088.015.0
12.025.095.0

15.0115.0010.00
20.0012.0115.00
12.0025.0005.01

 

Since the vector of sectoral output is given by  

X = (1 – A)–1 F, 

We have to first find out the inverse of (I – A). Now  

        ( )AI−   = 0.95 (0.748–0.03)+0.25(–0.1275–0.02)–0.12 (0.0225 + 0.088) 
  = 0.6821 – 0.036875 – 0.01326 
  = 0.631965 

Now co-factor of (I – A) = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

7985.02080.01556.0
1675.07955.02305.0
1105.01475.07180.0

 

∴ Adj (I – A) = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

7985.01675.01105.0
2080.07955.01475.0
1556.02305.07180.0
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∴ (I – A)–1 = ( )
( ) 631965.0

1
AI

AIAdj
=

−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

7985.01675.01105.0
2080.07955.01475.0
1556.02305.07180.0

 

∴ 
631965.0

1

X
X
X

3

2

1

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

320
479
393

7985.01675.01105.0
2080.07955.01475.0
1556.02305.07180.0

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

=
255.52 80.23 43.43

66.56 381.04 57.97
49.79 110.41 28.17

631965.0
1  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

600
800
700

18.379
57.505
37.442

631965.0
1  

∴ X1 = 700; X2 = 800 and X3 = 600. 

 These values of Xj’s tally with the sectoral output of X1, X2 and X3 shown in the above 
table.  

 The same results can be obtained by Using Cramer’s rule and this is left to the readers 
as an exercise.  

Example 4 In a three sector economy, the input coefficient matrix and final demand vector 
are as given below: 

 A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

600
700
500

Fand
03.02.0
4.03.01.0
3.02.03.0

 

Find the sectoral output X1, X2 and X3 using Cramer’s rule. 

Solution: The input-output structure is given by  

 (I – A) X = F 

Now (I – A) = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

13.02.0
4.07.01.0
3.02.07.0

 

∴ 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

13.02.0
4.07.01.0
3.02.07.0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

600
700
500

X
X
X

3

2

1
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Using Cramer’s rule we can solve for X1, X2 and X3 as 

 X1 = 
( )
( )

13.02.0
4.07.01.0
3.02.07.0

13.0600
4.07.0700
3.02.0500

AI
AI 1

−−
−−
−−

−
−
−−

=
−
−

 

 = ( ) ( ) ( )
( ) ( ) ( )14.003.03.008.01.02.012.07.07.0

4202103.02407002.012.07.0500
+−−−+−
−−−++−  

 = 2091
319.0

667
015.0036.0406.0

189188290
==

−−
++  

Similarly,  X2 = 
( )
( ) 319.0

16002.0
4.07001.0
3.05007.0

AI
AI 2 −

−−
−

=
−
−

 

  = ( ) ( )
319.0

140603.008.01.0500)240700(7.0 +−−−−−+  

  = 2270
319.0

724
319.0

2490658
==

−+  

 X3= 
( )
( ) 319.0

6003.02.0
7007.01.0
5002.07.0

AI
AI 3 −−

−
−

=
−
−

 

  = ( ) ( ) ( )
319.0

14.003.0500140602.02104207.0 +++−++  

  = 1699
319.0

542
319.0

8516441
==

++  

∴ the consistent level of sectoral outputs are X1 = Rs. 2091 crores; X2 = Rs. 2270 crores and X3 
= Rs. 1699 crores. The same results can be obtained by using matrix inversion and it is left to 
the readers as an exercise.  

Example 5: In a two industry economy, it is known that industry I uses 10 paise of its own 
product and 60 paise of commodity II to produce a rupee’ worth of commodity I; industry II 
uses non of its own product but uses 50 paise of commodity I in producing a rupee’s worth 
of commodity II and the open sector demands are Rs. 1000 for commodity I and Rs. 2000 for 
commodity II.  

a) Write out the input matrix, the technological matrix and the specific input- output 
matrix equation for this economy.  
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b) Find the solution output levels by Cramer’s rule.  

Solution: The input matrix is A = ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
060.0
5.010.0

aa
aa

2221

1211  

The technology matrix I – A = ⎥
⎦

⎤
⎢
⎣

⎡ −
160.0

5.09.0
   

The input-output equations are given by- 

x1 = 0.1x1 + 0.5x2 + 1000 

x2 = 0.6x1 + 0 + 2000 

or  0.9x1 – 0.5x2 = 1000 

 –  0.6x1 + x2 = 2000 

or ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

2000
1000

16.0
5.09.0

X
X 1

2

1  

Let  T = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
16.0

5.09.0
 

 T1 = ⎥
⎦

⎤
⎢
⎣

⎡ −
12000

5.01000
,  T2 = ⎥

⎦

⎤
⎢
⎣

⎡
− 20006.0

10009.0
  

By Cramer’s rule 

X1 = 
T
T

X,
T
T 2

2
1 =  

T  = 0.9 – 0.3 = 0.6 

1T = 1000 + 1000 = 2000 

2T = 1800 + 600 = 2400 

∴X1 = 
6.0

2000 = Rs. 3333
3
1  

X2 = 
6.0

2400 = Rs. 4000 
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EXERCISES 

II. Very Short Answer Questions  

1. What is an input-output table? 
2. Define Leontieff matrix 
3. What are technological coefficients? 
4. Give any two uses of input-output model. 
5. State two limitations of input-out model. 

III. Short Answer Questions  

6. What is the input-output technique? Give its nature and assumptions.  
7. What is input-output coefficients? What conditions may be filled if they are to be stable 

through time? 
8. What do you understand by Leontief Inverse Matrix and what does it show? 
9. What is input-output analysis? How indispensable it is as a planning technique? Explain.  
10. Discuss the significance of input-output table.  

IV. Long Answer Questions 

11. What are the main purposes (uses) of input-output analysis? 
12. Suppose there are two sectors, A, B and the final demand F. The input-output table is 

given below: 
Sectors A B Final Demand Total  

A 15 20 45 80 

B 5 20 15 40 

Primary Input 30 25 5 60 

What will be the level of output if the final demand becomes 65 for A and 25 for B? What will 
happen if final demand (i) doubled, (ii) halved? 

13. Explain Leontief input-output model. For a three sector economy the usage, final demand 
and output corresponding to each sector (in value) is given below: 

                User 
  S1 S2 S3 Final Demand  Output 

Producer 

S1 8
0 

10
0 

10
0 

40 320 

S2 8
0 

20
0 

60 60 400 

S3 8
0 

10
0 

10
0 

20 300 
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Assuming the technical matrix remain the same, find the output if the final demand 

vector changes to 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

20
40
10

. 

14. Solve the following input-output model (I – A) X = F by using Cramer’s rule given.  

a. A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

400
500
300

F;
2.02.01.0
1.02.00
4.02.03.0

 b. A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1300
1200
1000

F;
0

10
1

5
1

10
1

4
1

10
1

4
1

8
1

5
1

 

15. Find out direct and indirect employment requirement by Cramer’s rule given 

A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12.000
008.00
0010.0

L;
120
150
100

F;
2.04.01.0
1.01.03.0
1.02.02.0

 

 

 

 


