UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

B Sc (MATHEMATICS)

(2011 Admission Onwards)

I Semester

Core Course

FOUNDATIONS OF MATHEMATICS (MODULE 1 & II)

QUESTION BANK

a) А b) В c) Ø d) $A \cap B$ 2) If A and B are two disjoint sets, then $A \oplus B = \dots$ b) A∩B A∪B a) А c) d) В 3) If $A = \{a, e, i, o, u\}$ and $B \{a, b, c, d, e\}$, then $A - B = \dots$ a) { i, o, u } b) { b, c, d, } c) Ø d) {a, b, d,} For any two sets A and B, $A - B = \dots$ 4) d) $\overline{A} \cap \overline{B}$ $A \cap \overline{B}$ $\overline{A} \cap B$ B – A b) a) c) If $A_i = \{1, 2, 3, \dots, i\}$ for $I = 1, 2, 3, \dots$, then $\bigcap A_i = \dots$ 5) $\{1, 2, 3, \dots, i\}$ c) $\{1, 2, 3, \dots, i\}$ a) {1} b) d) Ø 6) If $A = \{1, 3, 5\}$ and $B \{1, 2, 3\}$, then $A \oplus B = \dots$ a) {5} b) {2} c) {2, 5} d) $\{1, 2, 3, 5\}$

If A and B are two sets such that $A \subseteq B$, then $A \cup B$ is

Foundations of Mathematics

1)

7)	Who is considered to be the father of set theory?											
	a)	Bertand Russel			b)	Ge	eorge Cantor					
	c)	Srinivasa Ramai	nujan		d)	Ge	eorge Boole					
8)	Whic	ch:@fftthe followin	g is a	n identity?								
	a)	$\overline{\mathbb{A} - \mathbb{B}} = \mathbb{B} - \mathbb{A}$			b)	A	$\overline{-B} = \overline{A} \cap B$					
	c)	$\overline{\mathbb{A} - \mathbb{B}} = \mathbb{A} \cup \mathbb{B}$			d)	A	$\overline{B} = A \cap \overline{B}$					
9)		nd B are subsets ments and A∩B ha				-						
	a)	11	b)	16		c)	22	d)	10			
10)	Tw	o sets A and B ar	e call	ed disjoint if	A∩B	=						
	a)	А	b)	В		c)	Ø	d)	A∩B			
11)	Foi	r any two sets A a	and B	, A – B define	ed by							
	a) c)	$\{x : x \in A \text{ and } x \in X \in A \text{ and } x \in X \notin A \text{ and } x \in X \in A \text{ and } x \in X \in A \text{ and } x \in X \in X \}$	-			b) d)	$ \{x : x \in A \text{ and } x \\ \{x : x \in A \text{ or } x \} $	-				
12)	Tł	ne cardinality of {	{Ø} is									
	a)	0	b)	2)		c)	1	d)	not defined			
13)	Tł	ne number of sub	sets o	of the set A =	= {x : :	xis a	day of the weel	x} is				
	a)	7	b)	2 ⁶		c)	27	d)	14			
14)	If	A = 24, B = 0	69 an	$d A \cup B = 3$	81, th	ien	$ A \cap B = \dots$					
	a)	12	b)	10		c)	14	d)	15			
15)	Foi	r any two sets A a	and B	, (A ∪ B) ∩ ((A ∪	B)	=					
	a)	В	b)	Ā	21 	c)	А	d)	\overline{B}			

9

16)	For any two sets A and B, $\overline{\mathbb{A} \cup \mathbb{W} \cup \mathbb{B}} = \dots$											
	a) $\overline{A} \cup \overline{B}$	b) Aim B	c) $A \cap \overline{B}$	d)	$\overline{A} \cap B$							
17)	For any two sets A	and B, $\overline{\mathbb{A}} = \dots$										
	a) $\overline{A} \cap \overline{B}$	b) $\overline{A} \cap B$	c) $\overline{A} \cup \overline{B}$	d)	$\overline{A} \cup B$							
18)	If a set A has n eler	nents, then the num	iber of its subsets is									
	a) 2 ⁿ	b) 2^{n+1}	c) 2n	d)	n ²							
19)	If A = {1, 2, 3, 4}, th	en the number of no	on-empty subsets of	A is								
	a) 16	b) 15	c) 32	d)	3							
20)	A - B = A if and on	ly if										
	a) A⊆B	b) B⊆A	c) $A = B$	d)	$A \cap B = \emptyset$							
21)	$A - B = \emptyset$ if and on	ly if										
	a) $A \subseteq B$	b) B⊆A	c) $A \cap B = \emptyset$	d)	None of these							
22)	A - B = B - A if and	l only if										
	a) $A \subseteq B$	b) B⊆A	c) $A = B$	d)	$A \cap B = \emptyset$							
23)	Which of the follow	ving is not true?										
	a) A∩B⊆A	b) $A \subseteq A \cup B$	c) $A - B \subseteq A$	d)	$A \subseteq A - B$							
24)	A − (B∪C)=											
	a) $(A - B) \cup (A - B)$		b) (A∪B) – (A∪									
	c) (A – B) – (A –	C)	d) $(A - B) \cap (A$	– C)								
25)	For any three sets	A, B, C, (A∪ (B∩ C) =	=									
	a) $(A \cup B) \cap (A \cup B)$		b) $(A \cup B) \cup (A \cup A)$									
20	c) $(A \cap B) \cap (A \cap B)$		d) None of thes	e								
26)		wo sets, then $(A \cup B)$			đ							
	a) A – B	b) B – A	c) $(A-B) \cup (B-$	A) d)	Ø							

27)	A∩	(A∪B) =								
	a)	А	b)	В	c)	A∪B		d) $A \cap B$		
28)	The	e set of all Prime n	umb	er is						
	a)	A finite set			b)	A singleton s	set			
	c)	An infinite set			d)	None of these				
29)	If A	$\cap \mathbf{B} = \mathbf{A} \text{ and } \mathbf{A} \cup \mathbf{B}$	B = A	, then						
	a)	$A \subseteq B$	b)	$B \subseteq A$	œ)	A = B		d) None of these		
30)	If a	and B are any two	sets	s, then $A \cap (\overline{A} \cup$	JIB) =	=				
	a)	В	b)	$\overline{\mathbf{B}}$	c)	А	d)	Ø		
31)	For	any two sets A an	d B,	A - (A - B) =						
	a)	B – A	b)	$A \cap B$	c)	Ø	d)	None of these		
32)	If A	and B are any two	o set	s, then A ∪B is	s not	equall too				
	a)	(A – B)∪(B – A)	U(Ar	רB)	b)	$\left(\overline{A_{i}} \cap \overline{B_{i}}\right)$				
	c)	$(A - B) \cup (B - A)$			d)	A∪(B – A)				
33)	A, E	3, C are three sets :	such	that $A \cup B = A$	UC ai	nd $A \cap B = A \cap$	C the	n		
	a)	A = B	b)	B = C	c)	A = C	d)	A = B = C		
34)	If Q	is the set of ration	nal n	umbers and F	o is th	e set of irratio	nal n	umbers, then		
	a)	$P \cap Q = \emptyset$	b)	P⊆Q	c)	Q⊆P	d)	$P - Q = \emptyset$		
35)	If A	and B are two fin	ite se	ets, then n(A)	+ n(I	3) is equal to				
	a)	n(A∪B)			b)	n(A∩B)				
	c)	$n(A \cup B) + n(A \cap$	B)		d)	n(A∪B) – n(.	a∩B)			
36)	If A	and B are finite se	ets a	nd A \subseteq B, then	n n(A	∪B) =				
	a)	n(A)	b)	n(B)	c)	0	d) I	None of these		

37)	If a set A contains 4 elements and a set B contains 8 elements, then the maximum number of elements in $A \cup B$ is										
	a) 4 b) 12	c)	8	d)	None of these						
38)	If a set A has 3 elements and B has 6 elements in $A \cup B$ is	ment	ts, then the min	nimui	m number of						
	a) 6 b) 3	c)	9	d)	None of these						
39)	For any two sets A and B, $A \times B = B \times A$ if	x A if and only if									
	a) A is a proper subset of B	b)	B is a proper	subs	et of A						
	c) $A = B$	d)	None of thes	e							
40)	If $\mathbb{N}_a = \{an : n \in \mathbb{N}\}$, where $\mathbb{N} = \{1, 2, 3,, n \in \mathbb{N}\}$,	}, then $\mathbb{N}_6 \cap \mathbb{N}_8$	=							
	a) \mathbb{N}_2 b) \mathbb{N}_{48}	c)	\mathbb{N}_8	d)	N24						
41)	For any three sets A, B, C, $A \times (B - C) =$										
	a) $(A \times B) \cup (A \times C)$	b)	$(A \times B) \cap (A \times B)$	(C)							
	c) $(A \times B) - (A \times C)$	d)	(A x C) - (A >	(B)							
42)	If $(x + 1, y - 3) = (3, 5)$, then $x + 2y =$										
	a) 2 b) 16	c)	18	d)	20						
43)	If $(a + b, a - b) = (2, 4)$, then $(a, b) =$										
	a) (3,-1) b) (3,1)	c)	(-3, 1)	d)	(-3, -1)						
44)	If $n(A) = 3$ and $n(B) = 7$, then $n(A \times B) =$	=									
	a) 10 b) 3 ⁷	c)	7 ³	d)	21						
45)	For any two sets A and B, a relation from	n A to	o B is a subset	of							
	a) A b) B	c)	A x B	d)	В×А						
46)	For any set A, the relation on A defined b	oy {(a, a): $a \in A$ } is	called	l the						
	a) Universal relation	b)	Empty relati	on							
	c) Equality relation	d)	None of thes	e							
47)	If $A = \{1, 2\}$ and $B = \{3, 4, 5\}$, then the number of $A = \{1, 2\}$ and $B = \{3, 4, 5\}$, then the number of $A = \{1, 2\}$ and $B = \{3, 4, 5\}$.	umbo	er of relation f	rom A	A to B is						
	a) 2 ⁵ b) 2 ⁶ c)) 2	2 ²	d)	2 ³						

48)	If n	(A) = 3 and n(B) =	= 5, 1	then n (A x l	B x A)) =					
	a)	45	b)	15	c)	18	d)	11			
49)	If A	is any set and B is	s the	empty set, t	hen A	A x B =					
	a)	А	b)	В	c)	Ø	d)	None of these			
50	If (2	2x, x + y) = (8, 6)	then	y =							
	a)	4	b)	2	c)	-2	d)	5			
51	A relation R from A to B is given by $R = \{(1, a), (1, b), (3, a), (3, b), (5, c)\}$. What is the minimum possible number of ordered pairs in A x B?										
	a)	6	b)	3	c)	12	d)	9			
52)	If R	is a relation from	a no	n-empty set	t A to	a non-empty se	t B, th	ien			
	a) F	$R = A \cap B$	b)	$\mathbf{R} = \mathbf{A} \cup \mathbf{B}$	c)	$R = A \times B$	d)	$R \subseteq A \times B$			
53)	Let R be the relation on $\mathbb{N} = \{1, 2, 3, \dots\}$ defined by xRy is and only if $x + 2y = 8$. The domain of R is										
	a)	{2, 4, 6}	b)	{2, 4, 6, 8}	c)	{2, 4, 6, 8, 10}	d)	{2, 4, 8}			
54)	Let	$A = \{a, b, c\} then$	the ra	ange of the r	relati	on R = {(a, b), (a	a, c), ((b, c)} defined on A is			
	a)	{a, b}	b)	{c}	c)	{a, b, c}	d)	{b, c}			
55)	Let A is	$A = \{1, 2, 3\}.$ The	n the	e domain of	the r	elation $R = \{(1, 1)\}$	1), (2	, 3), (2, 1)} defined on			
	a)	{1, 2,}	b)	{1, 3}	c)	{1, 2, 3}	d)	{1}			
56)	If A	is a finite set cont	ainir	ng 'n' distind	ct ele	ments, then the	numb	er of relations on A is			
	a)	2 ⁿ	b)	n ²	c)	2^{n^2}	d)	2n			
57)	Let R is	$A = \{1, 2, 3\} \text{ and } $	R = {	[(1, 1), (2, 2), (1,	2), (2, 1), (2, 3)	} be a	relation on A. Then			
	a)	Reflexive			b)	Symmetric					
	c)	Anti symmetric			d)	None of these					
58)	Let	$A = \{1, 2, 3\}, then$	the	relation R =	÷{(1,	1), (2, 2), (1, 3)}	on A	is			
	a)	Reflexive	b)	Transitive	e c)	Symmetric	d)	None of these			

59)	A re	elation R on a non-empty set A is ar	ı equ	ivaleı	nce relation if and only if it is
	a)	Reflexive		b)	Symmetric and transitive
	c)	Reflexive, symmetric and transiti	ve	d)	None of these
60)		$A = \{1, 2, 3, 4, 5, 6\}$, which of the valence relation on A?	ne fol	llowir	ng partitions of A correspond to an
	a)	[{1, 2, 3}, {3, 4, 5, 6}]	b)	[{1,2	2}, {4, 5, 6}]
	c)	$[\{1, 2\}, \{3, 4\}, \{2, 3, 5, 6\}]$	d)	[{1,	3}, {2, 4, 5}, {6}]
61)	Let	$A = \{1, 2, 3\}$, which of the following	g is n	ot an	equivalence relation on A?
	a)	{(1, 1), (2, 2), (3, 3)}		b)	{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
	c)	{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)]	}	d)	{(1, 2), (2, 3)}
62)	Wh	ich of the following is not an equiva	alenc	e rela	ation on the set of integer?
	a)	$xRy \Leftrightarrow x + y$ is an even integer		b)	$xRy \Leftrightarrow x < y$
	c)	xRy \Leftrightarrow x − y is an even integer		d)	$xRy \Leftrightarrow x = y$
63)		L be the set of all straight lines in that ated by the relation R if and only if '			
	a)	Reflexive		b)	Symmetric
	c)	Transitive		d)	None of these
64)	If f(f(x) = ax + b and g(x) = cx + d, then	(fog)	(x) -	(gof) (x) =
	a)	f(a) – g(c)		b)	f(c) + g(a)
	c)	f(d) – g(b)		d)	f(d) + g(b)
65)		W denote the set of words $\{(x, y) \in W \times W: \text{ the words 'x' and 'y'}\}$		0	n dictionary. Define \mathbb{R} on W by east one letter in common}. Then \mathbb{R} is
	a)	Reflexive, not symmetric and tran	nsitiv	ve.	
	b)	Not reflexive, symmetric and trar	nsitiv	ve.	

- c) Reflexive, symmetric and not transitive.
- d) Reflexive, symmetric and transitive.

66)	Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on A = {1, 2, 3, 4}, then R is										
	a) Not symmetrie	C	b)	Transiti	ve						
	c) A function		d)	Reflexive							
67)	Let f: $\mathbb{R} \rightarrow \mathbb{R}$ and g: \mathbb{R}	$A \to \mathbb{R}$ be defined by f(x)	$) = x^2$	and g(x)	and $g(x) = x+3$, then $(gof)(2) =$						
	a) 7	b) 25	c)	12	d)	2					
68)	25 (mod 7) =										
	a) 14	b) 7	c)	4	d)	25					
69)	If $f(x) = \frac{1}{x-2}$, then if	its domain is									
	a) R	b) ℝ – {1}	c)	{2}	d)	\mathbb{R} – {2}					
70)	If $A = \{a, b\}$ and $B =$	= {1, 2, 3}, then the nu	mber c	of function	s fron	n A to B is					
	a) 2 ³	b) 3 ²	c)	2 x 3	d)	2 + 3					
71)	Let f: $A \rightarrow B$, then fof	is defined when									
	a) A⊆B	b) $A \cup B = \mathbb{R}$	c)	A≠B	d)	$\mathbf{A} = \mathbf{B}$					
72)	Let f: $\mathbb{R} \rightarrow \mathbb{R}$ be defin	ed by $f(x) = 2x-3$. Then	n f ⁻¹ (1) is							
	a) 1	b) 2	c)	3	d)	5					
73)	-26(mod 7) =										
	a) 2	b) 7	c)	5	d)	5					
74)	Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defi	ined by $f(x) = x^2 - 3x$ i	$f x \ge 2$								
		= x + 2 if	x < 2								
	a) 25	b) 15	c)	10	d) -	10					
75)	If $f(x) = 2x + 3$ and	$g(x) = x^2 + 7$, then the	e value	es of 'x' for	whic	h g(f(x)) = 8 are					
	a) 1, 2	b) -1, 2	c)	-1, -2	d)	1, -2					
76)		en natural numbers les number of relations fr			s the s	set of Prime numbers					
	a) 2 ⁹	b) 9 ²	c)	32	d)	2 ⁹ – 1					

77)	Let $A = \{1, 2, 3\}$ and	$B = \{2, 3, 4\}, then wh$	ich of	the following is a function from A to B?
	a) {(1, 2), (1, 3), (2, 3), (3, 3)}	b)	{(1, 3), (2, 4)}
	c) {(1, 3), (2, 3), (3, 3)}	d)	{(1, 2), (2, 3), (3, 4), (3, 2)}
78)	The domain of the fu	nction $f = \{(1, 3), (3,$	5), (2,	, 6)} is
	a) {1, 2, 3}	b) {1, 2}	c)	$\{3, 5, 6\}$ d) $\{5, 6\}$
79)	If f = {(1, 4), (2, 5)	$(4, 8)$ and $g = \{(4, 8)$), (5, 7	'), (6, 9)}, then gof is
	a) Ø		b)	{(1, 8), (2, 7), (3, 9)}
	c) {(1,7), (2,8), (3, 9)}	d)	None of these
80)	Let $A = \{1, 2, 3, 4\} w$	hich of the following	functio	ons is a bijection from A to A?
	a) {(1, 2), (2, 3), ({(1, 2), (2, 2), (3, 2), (4, 2)}
	c) {(1, 2), (2, 2), (3, 3), (4, 3)}	d)	{(1, 4), (2, 3), (3, 3), (4, 2)}
81)	Let $A = [-1, 1]$ and f:	A→A be defined by $f($	x) = x	$ \mathbf{x} $. Then f is
	a) One-one but no	ot onto	b)	Onto but not one-one
	c) Both one-one a	nd onto	d)	None of these
82)	Let f: $\mathbb{R} \rightarrow \mathbb{R}$ be define	$f(x) = x^2 - 3x + 3x$	4. The	$en f^{-1}(2) = \dots$
	a) {1, 2}	b) (1, 2)	c)	[1, 2] d) None of these
83)	Let A be a set contain defined from A to A	-	ents. T	The number of functions that can be
	a) 2 ⁿ	b) n ⁿ	c)	n! d) n ²
84)	On the set ${\mathbb Z}$ of all int	tegers define f: $\mathbb{Z} \rightarrow \mathbb{Z}$ b	у	
		$F(x) = \frac{x}{2}$ if x is ev	ven	
		= 0 if x is or	dd	
	Then f is			
	a) Onto but not or	ne-one	b)	One-one and onto

85)	Let A be a set containing 'n' distinct elements. How many bijections from A to A can be defined?								
	a) n ²	b) n!	c)	n	d)	2n			
86)	If $f(x) = x - x^2$, then	f (a + 1) – f(a – 1), a e	$\in \mathbb{R}$ is						
	a) 4 – 2a	b) 2a + 4	c)	2a – 4	d)	2 – 4a			
87)	If $f(x) = \frac{1}{\sqrt{2x-4}}$, the	n its domain is							
	a) R - {2}	b) R	c)	(2,∞)	d)	[2,∞]			
88)	Range of the function	$n f(x) = \frac{1}{3x+2} is$							
	a) R	b) ℝ-{0}	c)	(0,∞)	d)	None of these			
89)	The domain of the fu	function $f(x) = \frac{1}{\sqrt{4-x^2}}$	is						
	a) {-2, 2}	b) [-2, 2]	c)	(-2, 2)	d)	(-∞, 2)∪(2, ∞)			
90)	Which of the followi	ng is a Polynomial fur	nction	?					
	a) $\frac{x^2-1}{x}$, $x\neq 0$		b) $x^3 + 3x^2 - 4x + \sqrt{2} x^{-2}, x \neq 0$						
	c) $\frac{3x^3+7x-1}{3}$		d)	$2x^2 + \sqrt{x}$	+1				
91)	Let f: $\mathbb{R} \rightarrow \mathbb{R}$ be define	ed by							
		$f(x) = 1$ if $x \in Q$							
		$= -1$ if $x \in \mathbb{R}$ -	Q, wh	ere Q is th	e set o	of rational numbers.			
	Then $f(\pi) - f\left(\frac{22}{7}\right)$ is e	equal to							
	a) 0	b) 2	c)	-2	d)	1			
92)	If for a function f(x), f(0)=	f(x + y) = f(x) + f(y)) for a	ll real num	ıber 'x	and 'y, then			
	a) 1	b) -1	c)	2	d)	0			

93)	If f($x) = x^2 + 1$, then ((fof)	(x) =				
	a)	x ⁴ + 1			b)	$x^4 + 2x^2 + 2$	2	
	c)	x ⁴ +x ² +1			d)	x ⁴ – 1		
94)	If f(x) = ax + b and g((x) =	cx +d, then f(g(x	x)) =	g(f(x)) if a	nd oi	nly if
	a)	f(a) = g(c)			b)	f(b) = g(b)))	
	c)	f(d) = g(b)			d)	f(c) = g(a))	
95)		function F is such $F(5) = \dots$	that	F(0) = 2, F(1) =	3 and	d F(n+2) =	2F(1	n) – F(n+1) for n≥0,
	a)	-7	b)	-3	c)	7	d)	13
96)	The	domain of the fur	nctio	$n f(x) = \sqrt{x - x }$	is			
	a)	{0}	b)	\mathbb{R}	c)	(-∞, 0]	d)	[0,∞)
97)	If f($x) = \log\left(\frac{1+x}{1-x}\right) ar$	nd g($\mathbf{x}) = \left(\frac{3\mathbf{x} + \mathbf{x}^3}{1 + 3\mathbf{x}^2}\right) th$	ien f(g(x)) =		
	a)	f(x)	b)	-f(x)	c)	3f(x)	d)	(f(x)) ³
98)	The	range of the func	tion	f(x) = x - 1 is				
	a)	R	b)	(0,∞)	c)	[0,∞)	d)	(-∞, 0)
99)	If f($x) = x^2 - 3x + 1$ and	d f(2	$(\alpha) = 2f(\alpha)$, then	n ∝ =			
	a)	3	b)	$\frac{1}{\sqrt{3}}$	c)	$\frac{1}{\sqrt{2}}$ or $\frac{-1}{\sqrt{2}}$	d)	None of these
100)	If f(\mathbf{x}) = 1 $-\frac{1}{\mathbf{x}}$, then	$f\left(\frac{1}{x}\right)$) =				
	a)	Х	b)	$\frac{1}{x} - 1$	c)	1 – x	d)	-X
101)	If f:	$\mathbb{R} \rightarrow \mathbb{R}$ is given by	f(x) =	$= \mathbf{x} $ and $\mathbf{A} = \{\mathbf{x}\}$	$\in \mathbb{R}$:	x>0}, then	f -1 (A) =
	a)	\mathbb{R}	b)	ℝ - {0}	c)	А	d)	Ø
102)	If f($x) = 2x - 3, x \le 2$						
		= x, x >	2, th	$en f(1) = \dots$				
	a)	2f(2)	b)	-f(2)	c)	f(2)	d)	$\frac{1}{2}f(2)$

Foundations of Mathematics

103)	If f:	If f: A \rightarrow B, then f ⁻¹ exists only when											
	a) c)	f is one-one f is both one-one	e and	l onto	b) d)	f is onto none of t	hese						
104)	Let	$A = \{a, b, c\}$ and f	= {(a	a, c), (b, a), (c, b)	} be a	function f	rom A	to A, then f ⁻¹ is					
	-	{(c, a), (a, b), (b, {(a, c), (b, a), (c,				{(a, a), (b None of t		(c, c)}					
105)	Let	f: $\mathbb{R} \rightarrow \mathbb{R}$ be given b	y f(x	x) = 2x + 3, then	f ⁻¹ is								
	a)	$\frac{x-3}{2}$	b)	$\frac{x+3}{2}$	c)	2x + 3	d)	None of these					
106	If f($x) = \frac{2x+1}{3x-2}$, then (fof) ((2) =									
	a)	1	b)	3	c)	4	d)	2					

ANSWER KEY

FOUNDATIONS OF MATHEMATICS (MODULE 1 & II)

1)	b	2)	С	3)	а	4)	b	5)	а	6)	C	7)	b
8)	b	9)	d	10)	С	11)	b	12)	С	13)	С	14)	а
15)	с	16)	b	17)	С	18)	а	19)	b	20)	d	21)	а
22)	с	23)	d	24)	d	25)	а	26)	С	27)	а	28)	С
29)	с	30)	d	31)	b	32)	с	33)	b	34)	а	35)	С
36)	b	37)	b	38)	а	39)	С	40)	d	41)	С	42)	С
43)	а	44)	d	45)	С	46)	С	47)	b	48)	а	49)	С
50)	b	51)	d	52)	d	53)	а	54)	d	55)	а	56)	С
57)	d	58)	b	59)	С	60)	d	61)	d	62)	b	63)	b
64)	С	65)	С	66)	а	67)	а	68)	С	69)	d	70)	b
71)	d	72)	b	73)	а	74)	С	75)	С	76)	а	77)	С
78)	а	79)	b	80)	а	81)	С	82)	а	83)	b	84)	а
85)	b	86)	d	87)	С	88)	b	89)	С	90)	С	91)	С
92)	d	93)	b	94)	С	95)	d	96)	d	97)	С	98)	С
99)	с	100)	С	101)	b	102)	b	103)	С	104)	а	105)	а
106)	d												

FOUNDATIONS OF MATHEMATICS (MODULE III & IV)

1.	Which of the following is a Proposition?	
	a. What time is it?	b. Read this carefully
	c. $x + 1 = 2$	d. $2 + 2 = 3$
2.	Which of the following is not a Proposition?	
	a. Toronto is the capital of India	b. $1 + 1 = 2$
	$\mathbf{c.} \mathbf{x} + \mathbf{y} = \mathbf{z}$	d. You pass the course
3.	Which of the following Proposition has truth va	alue T
	a. 2 + 3 = 5	b. $5 + 7 = 10$
	c. The moon is made of green cheese	d. 5 20
4.	Which of the following is a false Proposition.	
	a. 2 1	b. $2^2 + 3^2 = 13$
	c. $\frac{1}{0} =$	d. 3.14
5.	Let p, q be true Propositions, then which of the	following Compound Proposition has truth value F
	a. p ^ q	b. $p \lor q$
	c. $p \rightarrow q$	d. p \oplus q
6.	$p \rightarrow q$ is false when	
	a. p is true and q is true	b. p is true and q is false
	c. p is false and q is true	d. p is false and q is false
7.	What is the converse of $p \rightarrow q$	
	a. $p \rightarrow q$	b. $q \rightarrow p$
	$c. \neg p \rightarrow \neg q$	d. $\neg q \rightarrow \neg p$
8.	What is the inverse of $p \rightarrow q$	
	a. $p \rightarrow q$	b. $q \rightarrow p$
	c. $\neg p \rightarrow \neg q$	d. $\neg q \rightarrow \neg p$
9.	What is the contra positive of $p \rightarrow q$	
	a. $p \rightarrow q$	b. $q \rightarrow p$
	$c. \neg p \rightarrow \neg q$	d. $\neg q \rightarrow \neg p$
10.	p ^ q is true when	
	a. Both p and q are true	b. p is true and q is false
	c. p is false and q is true	d. both p and q are false

11. The length of the bit string 101010011 is		
a. 5	b. 4	
c. 9	d. 6	
12. Determine which of these conditional stateme	nts is false.	
a. If $1 + 1 = 2$ then $2 + 2 = 5$	b. If $1 + 1 = 3$ then $2 + 2 = 4$	
c. If $1 + 1 = 3$ then $2 + 2 = 5$	d. If monkeys can fly, then $1 + 1 = 3$	
13. Which of the following is a tautology		
a. $p \lor q$	b. $p \lor \neg p$	
c. $p \rightarrow \neg p$	d. $\neg p \rightarrow p$	
14. ¬ (p ^ q) =		
a. ¬p ^ ¬ q	b. $\neg p \rightarrow \neg p$	
c. $p \lor p$	d. $\neg p \lor \neg p$	
15. Which of the following is not logically equiva	lent to $p \rightarrow q$	
a. $p \rightarrow q$	b. $\neg p \lor q$	
c. $\neg q \rightarrow \neg p$	d. q $\rightarrow p$	
16. p ^ T =		
a. $p \rightarrow q$	b. $\neg p \lor q$	
c. $\neg q \rightarrow \neg p$	d. q $\rightarrow p$	
17. $p \lor T = \dots$		
a. T	b. F	
c. p	d. ¬p	
18. Let $Q(x,y)$ denote the statement " $x = y + z$ ".	Then Q(3,0) is	
a. $3 = 0$	b. $0 = 3 + 3$	
c. $3 = 0 + 3$	d. $3 = 3 + 0$	
19. Let $R(x,y,z)$ be "x+y=z". Then the truth values of $R(1,2,3)$ and $R(0,0,1)$ are respectively.		
a. T and T	b. T and F	
c. F and T	d. F and F	
20. Let $P(x)$ be "x>3". Then the truth values of $p(4)$ and $p(2)$ are respectively.		
a. T, F	b. T, T	
c. F, T	d. F, F	
21. Which of the following statement is true if the domain consists of all real numbers.		
a. $\exists x(x^3 = -1)$	b. $\exists x (x^2 < 0)$	
c. $\forall x \ (x^2 = 0)$	d. $\forall x (x^2 x)$	

22. Let Q(x) be the statement "x + 1 > 2x". If the domain consists of all integers, which of the following is false

a. Q (0)	b. $\exists x Q(x)$
c. $\forall x Q(x)$	d. Q(-1)
23. $\neg \forall x \ p(x) \equiv \dots$	
a. $\forall x p(x)$	b. $\forall x \neg p(x)$
$c. \exists x p(x)$	d. $\exists x \neg p(x)$
24. $\neg \exists x p(x) \equiv \dots$	
a. $\forall x \ p(x)$	b. $\forall x \neg p(x)$
$c. \exists x p(x)$	d. $\exists x \neg p(x)$
25. The rule of inference called simplification is	
a. $\frac{p}{p p \lambda q}$	b. $\frac{q}{\frac{1}{2}n^{2}q}$

a. $\frac{p}{p \circ q}$	b. $\frac{q}{\mathbf{p} \wedge q}^{\mathbf{p}}$	
$c. \frac{p \lor q}{\therefore q}$	d. $\frac{p \wedge q}{mp}$	
26. $\frac{p \circ q}{\frac{c_{\tau} p c_{\tau} r}{q \circ r}}$ is known as		
a. conjuction	b. disjunction	
c. Modus tollens	d. Resolution	
27. $\frac{p}{\therefore q} \rightarrow q$ is known as		
a. Modus tollens	b. Hypothetical syllogism	
c. Modus Ponens	d. Implication	
28. Which of the following is not a rule of inference		
a. Modus Ponens	b. Predicate	
c. Disjunctive Syllogism	d. Addition	
29. In Propositional logic, a sequence of Propositions is called		
a. Premise	b. conclusion	
c. argument	d. argument form	
30. $\frac{3x p(x)}{p(c)}$ Is known as		

a. Premise	b. conclusion
c. argument	d. argument form
Is known as	
a. Universal instantiation	b. universal generalisation
c. Existential instatiation	d. Existential generalisation
rote the book "The Laws of Thought"	
a. Aristotlec. George Boole	b. Euclid d. Euler
	Is known as a. Universal instantiation c. Existential instatiation rote the book "The Laws of Thought" a. Aristotle

32. Conjuction of p and q is denoted by

52. Conjuction of p and q is denoted by		
a. $p \lor q$	b. p ^ q	
c. p \rightarrow q	d. $p \leftrightarrow q$	
33. The disjunction of p and q is denoted by		
a. $p \lor q$	b. p ^ q	
c. p \oplus q	d. $p \rightarrow q$	
34. "p only if q" is denoted by		
a. $p \rightarrow q$	b. $q \rightarrow p$	
c. $p \leftrightarrow q$	d. p \oplus q	
35. Which of the following is not an expression for	$r p \rightarrow q$	
a. p is sufficient for q	b. q unless ¬ p	
c. q whenever p	d. p is necessary for q	
36. Which of the following is not an expression for	$p \rightarrow q$	
a. If p, q	b. q when p	
c. p follows from q	d. p implies q	
37. Which of the is not an expression for $p \leftrightarrow q$		
a. If p then q, and conversely	b. p iff q	
c. p is necessary and sufficient for q	d. p whenever q	
38. Which of the following logical operator takes p	precedence over the remaining	
a. ¬	b. ^	
C. ∨	$d. \rightarrow$	
39. The bitwise AND of 01 and 11 is		
a. 01	b. 11	
c. 10	d. 00	
40. The bitwise XOR of of the bitstrings 01 1011 0110 and 11 0001 1101 is		
a. 11 1011 1111	b. 01 0001 0100	
c. 10 1010 1011	d. 10 1000 1010	
41. The Compound Propositions p and q are called logically equivalent if $p \leftrightarrow q$		
a. a tatutology	b. a contradition	
c. a contingency	d. none of these	
42. $p \rightarrow q$ and are logically equivalent.		
a. $q \rightarrow p$	b. $\neg p \lor q$	
c. $\neg p \land q$	$d. \neg p \rightarrow \neg q$	

43. $p \lor (q \land r)$ and are logically equivalent.		
	a. $(p \lor r) \lor (q \lor r)$	b. $(p \lor q) \lor (p \lor r)$
	c. $(p \lor q) \lor (p \land r)$	d. $(p \lor q) \land (p \lor r)$
44. – (–	$p) \equiv p$. This law is known as	
	a. Absorption Law	b. Negation Law
	c. Double Negation Law	d. Identity Law
45. p∨q	$\equiv q \lor p$. This law is known as	
	a. Associative Law	b. Identity Law
	c. Absorption Law	d. Commutative Law
46. p∨(p	$p \land q$ = p. This law is known as	
	a. Associative Law	b. Identity Law
	c. Absorption Law	d. Idempotent Law
47. In the	statement "x is greater than 3" the part "i	s greater than 3" is known as
	a. Subject	b. Proposition
	c. Predicate	d. Logical Operator
48. The st	tatement " $p(x)$ for all values of x in the do	main" is
	a. $\forall x p(x)$	b. $\exists x p(x)$
	c. $\forall x \neg p(x)$	d. $\exists x \neg p(x)$
49. An el	ement for which p(x) is false is called a	of $\forall x \ p(x)$
	a. Predicate	b. Counter example
	c. domain	d. Universe of discourse
50. ∀x p(x) is true when	
	a. There is an x for which $p(x)$ is true	b. $p(x)$ is false for all x
	c. there is an x for which $p(x)$ is false	d. $p(x)$ is true for every x
51. Let $Q(x)$ be the statement "x < 2" which of the following is a counter example for $\forall x Q(x)$, where		
the domain is R.		
	a. 2 c1	b. 0
52 Lat a		d. 1.5
52. Let $p(x)$ be the statement " x^2 x" which of the following is not a counter example for $\forall x p(x)$ where the domain is P		
where the domain is R.		
	a. $\frac{1}{2}$	b. 2
	c. $\frac{3}{7}$	d. 0.17

53. $\exists x \ p(x)$ is false when

$55. \exists x p(x)$	() is fulse when	
	a. $P(x)$ is false for every x	b. p(x) is true for every x
	c. there is an x for which $p(x)$ is false	d. there is an x for which $p(x)$ is true
54. What	is the negation of the statement $\forall x(x^2 > x)$)
	a. $\forall x (x^2 < x)$	b. $\forall x \ (x^2 \le x)$
	c. $\exists x (x^2 > x)$	d. $\exists x \ (x^2 \le x)$
55. What	is the negation of the statement $\exists x(x^2 = x)$)
	a. $\exists x (x^2 \ 2)$	b. $\forall x (x^2 2)$
	c. $\exists x \ (x^2 > 2)$	d. $\forall x \ (x^2 = 2)$
56. Let p(2	x) be the statement " $x = x^2$ ". If the domain	n consists of the integers, which of the following
is true		
	a. P (-1)	b. $\forall x \ p(x)$
	c. $\exists x \ p(x)$	d. p(2)
57. Let Q((x) be " $x + 1 > 2x$ ". If the domain consist	s of the integers, which of the following is false.
	a. Q (0)	b. $\forall x \ Q(x)$
	c. $\exists x \ Q(x)$	d. Q(-1)
58. Which	of the following is true, if the domain co	nsists of all integer
	a. $\forall n \ (n = -n)$	b. $\exists n \ (n^2 < 0)$
	c. $\forall n \ (n2 > 0)$	d. $\forall n (n + 1 > n)$
59. Which	of the following is false, if the domain co	onsists of all real number.
	a. $\exists x (x^3 = -1)$	b. $\exists x (x^4 < x^2)$
	c. $\forall x ((-x)^2 = x^2)$	d. $\forall x \ (2x < x)$
60. Let p(2	x) be the statement "the word x contains t	he letter a" which of the following is false.
	a. P (orange)	b. p (true)
	c. p (false)	d. p (elephant)
61. The tautology $(p \land (p \rightarrow q)) \rightarrow q$ is the basis of the true inference called		
	a. Law of detachment	b. Implication
	c. Conjection	d. Resolution
62. The argument form with premises p_1 , p_2 ,, p_n and conclusion q is valid when		
(p ₁ ^ p	$p_2 \wedge \dots \wedge p_n \rightarrow q \text{ is } a \dots$	
	a. Contingency	b. Contradiction
	c. Tautology	d. Proposition

63. The tautology (($p \lor q$) ^ $\neg p$) q is the basis of the rule of inference called		
a. Modus tollens	b. Addition	
c. Hypothetical Syllogism	d. Disjunctive Syllogism	
64. The tautology $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is the basis	of the rule of inference called	
a. Modus tollens	b. Resolution	
c. Modus Ponens	d. Conjunction	
65. The name for the rule of inference $\frac{3x p(x)}{r_{i}p(c)}$ is		
a. Universal instantiation	b. Universal generalisation	
c. Existential instantiation	d. Existential generalisation	
66. The name for the rule of inference is $\frac{p(c) \text{ for an}}{m \Im x}$	$\frac{abitray C}{p(x)}$ is	
a. Universal instantiation	b. Universal generalisation	
c. Existential instantiation	d. Existential generalisation	
67. The name for the rule of inference is $\frac{3x}{mp(c) for s}$	<i>p(x)</i> ome element <i>c</i> is	
a. Universal instantiation	b. Universal generalisation	
c. Existential instantiation	d. Existential generalisation	
68. The name for the value of inference is $\frac{p(c) for a}{dt^3}$	$\frac{n \ abitray C}{x \ p(x)} $ is	
a. Universal instantiation	b. Universal generalisation	
c. Existential instantiation	d. Existential generalisation	
69. Law of detachment is another name for the rule	e of inference	
a. Modus Ponens	b. Modus tollens	
c. Addition	d. Resolution	
70. The final statement of the argument is called		
a. Premise	b. fallacu	
c. Conclusion	d. valid	
71. A statement that is being proposed to be a true statement usually on the basis of some partial		
evidence, a heuristic argument, or the intuition of an expert is known as		
a. Theorem	b. Proposition	
c. proof	d. Conjucture	
72. A theorem that can be established directly from a theorem that has been proved is known as		
a. Proposition	b. Corollary	
c. Lemma	d. Conjucture	

73. An integer a is a/an If there is an integer b such that $a = b^2$		
a. Perfect square	b. odd	
c. rational	d. positive	
74. Proof by contrapisition is a/an		
a. Direct proof	b. vacuous proof	
c. indirect proof	d. trivial proof	
75. A proof of $p \rightarrow q$ which uses the fact that q is	true is called	
a. Vacuous proof	b. trivial proof	
c. direct proof	d. Indirect proof	
76. A proof of $p \rightarrow q$ which uses the fact that p is	false is called	
a. Vacuous proof	b. trivial proof	
c. direct proof	d. Indirect proof	
77. Which of the following is not a true statement		
a. Theorem	b. Lemma	
c. Corollary	d. Conjecture	
78. We can prove that p is true if we can show that	$t \neg p \rightarrow (r \land \neg r)$ is true for some proposition r.	
Proofs of this type are called		
a. Vacuous proof	b. trivial proof	
c. proofs by contradiction	d. direct proof	
79. For any proposition r, $r^{\wedge} \neg r$ is a		
a. tautology	b. contradiction	
c. contingency	d. Lemma	
80. Proof by contradiction is a/an		
a. direct proof	b. Indirect proof	
c. Vacuous proof	d. trivial proof	
81. Some theorems can be proved by examining a relatively small number of examples. Such proofs		
are called		
a. direct proof	b. exhaustive proof	
c. trivial proof	d. Vacuous proof	
82. A proof of a proposition of the form $\exists x \ p(x)$ is called a/an		
a. exhaustive proof	b. trivial proof	
c. proof by cases	d. existence proof	

83. An existence proof of $\exists x p(x)$ given by finding an element a such that p(a) is true

a. exhaustive	b. non constructive
c. constructive	d. not valid
84. The author of the book "A mathematician's A	Apology" is
a. Hardy	b. Ramanujan
c. Boole	d. Cayley
85. What number is known as Ramaujan Numbe	er
a. 1279	b. 1927
c. 1297	d. 1729
86. The solutions of the equation $x^2 + y^2 = z^2$, where $z^2 = z^2$	here x, y ,z are integers are called
a. Pythagorean triples	b. Fermat triples
c. Perfect squares	d. Fermat squares
87. A variable that has a value 0 or 1 is called	
a. Real variable	b. complex variable
c. Boolean variable	d. constant
88. A proof that there is exactly one element sati	isfying a specified property
a. Counter example	b. Uniqueness proof
c. Exhaustive proof	d. trivial proof
c. Exhaustive proof	a. ar ar an proor
89. A proof that an element with a specified proj	*
*	*
89. A proof that an element with a specified prop	*
89. A proof that an element with a specified prop element is	perty exists that does not explicitly find such an
89. A proof that an element with a specified propertiesa. Constructive	perty exists that does not explicitly find such an b. Exhaustive d. trivial
89. A proof that an element with a specified propertiesa. Constructivec. non constructive	perty exists that does not explicitly find such an b. Exhaustive d. trivial
 89. A proof that an element with a specified properties a. Constructive c. non constructive 90. An invalid argument form often used incorrection 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is
 89. A proof that an element with a specified properties a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy to be true
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown a. Theorem 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy to be true b. conjucture d. fallacy
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown a. Theorem c. axiom 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy to be true b. conjucture d. fallacy
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown a. Theorem c. axiom 92. A proof that p→ q is true that proceeds by shown 	 perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy to be true b. conjucture d. fallacy nowing that q must be true when p is true
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown a. Theorem c. axiom 92. A proof that p→ q is true that proceeds by shall a. Vacuous Proof 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy to be true b. conjucture d. fallacy nowing that q must be true when p is true b. Trivial Proof d. Indirect Proof
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown a. Theorem c. axiom 92. A proof that p→ q is true that proceeds by shall a. Vacuous Proof c. Direct Proof 	perty exists that does not explicitly find such an b. Exhaustive d. trivial ectly as a rule of inference is b. Conjecture d. fallacy to be true b. conjucture d. fallacy nowing that q must be true when p is true b. Trivial Proof d. Indirect Proof
 89. A proof that an element with a specified propelement is a. Constructive c. non constructive 90. An invalid argument form often used incorrection a. Proof c. theorem 91. A mathematical assertion that can be shown a. Theorem c. axiom 92. A proof that p→ q is true that proceeds by shall a. Vacuous Proof c. Direct Proof 93. A number that can be expressed as the ratio of the properties of the proof 	 perty exists that does not explicitly find such an b. Exhaustive d. trivial b. Conjecture d. fallacy to be true b. conjucture d. fallacy nowing that q must be true when p is true b. Trivial Proof d. Indirect Proof of two integers p and q such that q 0

a. Trivial Proof	b. Direct Proof	
c. Proof by contra position	d. Proof by contradictio	
95. A statement that is assumed to be true and than can be used as a basis for proving theorems		
a. axiom	b. lemma	
c. corollary	d. conjecture	
96. A proof that p is true based on the truth of the conditional statement $\neg p \rightarrow q$, where q is a		
contradiction		
a. Trivial proof	b. Direct proof	
c. proof by contra position	d. proof by contradiction	
97. If x is a positive integer, then \sqrt{x} is always		
a. Positive integer	b. irrational	
c. real number	d. rational	
98. A statement in an argument, other that the final	lone	
a. premise	b. argument form	
c. conclusion	d. scope	
99. Reasoning where one or more steps are based on the truth of the statement being proved		
a. Direct proof	b. circular reasoning	
c. vacuous proof	d. logical reasoning	
100. A demonstration that a theorem is true		
a. axiom	b. fallacy	
c. rule of inference	d. proof	

ANSWER KEY

FOUNDATIONS OF MATHEMATICS (MODULE III & IV)

1. D	2. C	3. A	4. C	5. D	6. B	7.B
8. C	9. D	10. A	11. C	12. A	13. B	14.D
15.D	16.C	17.A	18.C	19.B	20.A	21.A
22.C	23.D	24.B	25.D	26.D	27.C	28.B
29.C	30.A	31.C	32.B	33.A	34.A	35.D
36.C	37.D	38.A	39.A	40.C	41.A	42.B
43.D	44.C	45.D	46.C	47.C	48.A	49.B
50.D	51.A	52.B	53.A	54.D	55.B	56.C
57.B	58.D	59.D	60.B	61.A	62.C	63.D
64.A	65.A	66.B	67.C	68.D	69.A	70.C
71.D	72.B	73.A	74.C	75.B	76.A	77.D
78.C	79.B	80.B	81.B	82.D	83.C	84.A
85.D	86.A	87.C	88.B	89.C	90.D	91.A
92.C	93.B	94.C	95.A	96.D	97.C	98.A
99.B	100.D					

© Reserved