
‘C’ PROGRAMMING FOR
MATHEMATICAL

COMPUTING

STUDY MATERIAL

B.SC. MATHEMATICS

VI SEMESTER

ELECTIVE COURSE

(2011 ADMISSION)

UNIVERSITY OF CALICUT
SCHOOL OF DISTANCE EDUCATION

THENJIPALAM, CALICUT UNIVERSITY P.O., MALAPPURAM, KERALA - 673 635

School of Distance Education

‘C’ Programming for Mathematical Computing Page 2

UNIVERSITY OF CALICUT
SCHOOL OF DISTANCE EDUCATION
Study Material
B.Sc.Mathematics

VI SEMESTER

ELECTIVE COURSE
C PROGRAMMING FOR MATHEMATICAL COMPUTING

Prepared by :

Dr.Valsamma K.M.
Associate Professor and Head,
Department of SAC,
Kerala Agriculture University,
KCAET, Tavanur, Malappuram.

Scrutinised by :
Dr. Anilkumar V.
Reader,
Department of Mathematics,
University of Calicut

Type settings and Lay out :
Computer Section, SDE

©
Reserved

School of Distance Education

‘C’ Programming for Mathematical Computing Page 3

COURSE INTRODUCTION
The objective of this course is to introduce the basic concepts of data structure and some applications

using the popular high level programming language C. Since data structure is an essential component

in the development of software, the intention is to acquaint the students with a wide range of topics

on this subject with appropriate example. In this course, we are discussing programming

fundamentals including the programming concepts like; variables, arrays, etc., and show how all

these programming concepts are used in the actual programming language called C. Being an

Elective course, of this B.Sc degree (Mathematics), it is designed to complement your knowledge

with C. language. The Topics of this course cover concepts on C. The course consists of Four

Modules and is organized in the following manner.

Module 1: Program Fundamentals, Algorithms and Flow charts & C Constants, variables

And data types

Module 2: Operators and Expressions and managing input / output operations.

Module 3: Decision Making & Branching & Decision Making and looping..

Module 4: Arrays and User defined Functions.

The first module gives a fleeting introduction to the theoretical aspects of, computer languages,

operating systems, compilation and, debugging of program and to the elementary concepts like

algorithms and flow charts including structure of a C program. Module 2 presents the essential

features of C programming language: Variables, constants, operator types, Mathematical functions

and managing of output operations. Module 3 focuses on three major decision making instructions in

C, the if statement, the if-else statement and nested if and switch statement. This module also

discusses the loop control instructions, the for, while , do- while ,break and continue statements. The

last Module 4 concentrates on the sub programs i.e., functions and structured data types like arrays in

detail. Concepts of arrays and user defined functions are also included.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 4

Module I :Introduction
Welcome to the fascinating world of computer programming. This module is primarily about the
implementation of computer programs using C programming language. No prior programming
experience is expected from your side except some familiarity with computer hardware and software
concepts. This is the first of the four modules you are going to study for the C course in your elective
course for B Sc degree. The advanced concepts will be introduced in the next modules of this course.
In this module, what is spotlight is only the fundamentals of C programming and all of them are
presented with easy to understand explanation . The module is divided into four units.

Unit 1 introduces the elementary concepts like computer languages, computer language
classification, language translators, High level languages and operating system. Apart from this, the
meaning of compilation of a program, program debugging, different types of errors during program
execution and program life cycle also come up for discussion.

Unit 2 presents the notion of Algorithms and flow charts, as a problem solving tool highlighting the
advantages and disadvantages in brief..

Unit 3 is an overview of C, the basic structure of a C program, the programming style and the steps
involved for executing a C program.

The last unit, Unit 4 enlarges on data types available in the language. Variables, declaration of
variables, constants, and symbolic constants are also discussed here.

Unit 1: Program Fundamentals

Structure

1.1 Computer languages

1.2 Classification of Computer languages

1.3 Language Translators in computer.

1.4 Higher level languages.

1.5 Operating System

1.6 Compilation of Program

1.7 Different types of errors

1.8 Debugging of programs

1.9 Rewriting and program maintenance

1.10 Program maintenance stage

1.11 Program life cycle

1.12 Summary

School of Distance Education

‘C’ Programming for Mathematical Computing Page 5

1.1 Computer languages.

Language is a vehicle for communication. Spoken or natural languages are used by people the world over to
express ideas / issue commands or to interact with others. Currently there are more than 6900 spoken
languages in the world we live. But, there is no common natural language that connects the user and the
computer system which both the user and computer can understand. Computer speaks only one language--
machine code consisting of just series of 1s and 0s. A computer language is needed because a computer works
only with the machine language consisting of bits and bytes. Therefore in order to interact with the machine, a
user needs to study a computer language which the computer understands. Programming languages, such as C
was invented because trying to write computer programs in machine code is tedious and sheer madness.
Programming languages allow programs to be written in a form which is far easier to read than a series of 1s
and 0s.

A programming language can be defined as any of various formal coded languages that programmers use
in program writing to write instructions to a computer in a manner understood by the computer to
perform the task which the programmer wants the computer to do . In this process, the most basic computer
language is obviously the most Low Level language and that is the machine language that uses binary
code consisting of '1' and '0' . With the help of this machine language a computer can run a program very
fast without using any translator or interpreter program . On the other hand , the high-level languages such as
C, or Java are much simpler and more 'English-like, but the only snag is that we need to use another
program, a compiler or an interpreter, to convert the high-level code into the machine code. More generally, a
language that is acceptable to a computer system is called a programming language and it is used by a
programmer to instruct a computer what he wants the computer to do. A complete specification for a
programming language includes a description of a machine or a processor for that language. Moreover, a
programming language involves a computer performing some kind of computation or algorithm and possibly
control external devices such as printers, disks etc. Computer languages are in general categorized into general
purpose and specific purpose languages.

Computer Languages

Based on application based on methodology

General purpose languages: procedural languages:

C, BASIC,PASCAL,ALGOL,etc C, BASIC,PASCAL,ALGOL ,etc

Specific purpose languages Non procedural languages

COBOL,LISP,PROLOG,ADA LISP,PROLOG C++,JAVA,etc

CORAL-66,etc

Fig 1.1 Computer Languages: Classification

School of Distance Education

‘C’ Programming for Mathematical Computing Page 6

1.2 Classification of Computer languages:

At present there are many computer languages, and nearly all of them have been evolving from
machine language into a more natural way of writing as manifested in the high level languages. While
Some languages have been adapted to the kind of application that they intended to solve, some other
languages are tailor made to the specific approach used in the design. We have been using the word
“generation “to indicate this evolution. High-level languages (HLL), belonging to the 3rd generation
such as Pascal, FORTRAN, Algol, COBOL, PL/I, Basic, and C. are also known as Procedural
languages. In procedural languages problem solving is a step by step logical process where the coded
program, called a source program, has to be translated through a compilation step. But in non-
procedural languages like LISP,PROLOG etc, belonging to 4th generation which are also known as
4GL the machine is instructed to obtain the results of the chosen problem without specifying
how to solve it. In other words , procedural languages is concerned with, HOW and WHAT, of a
process , whereas in non-procedural language it is specified what condition the answer should
satisfy without specifying HOW to obtain it . In the language hierarchy, higher level languages(HLL)
belonging to the 4th generation , are more English like and are much closer to human languages,
where problem solving is independent of machine code of a specific computer. Now C is being
increasingly used for the development of system programming applications. In general, High level
languages are far simpler to understand for the humans, than the assembly level language or machine
level language / language of computer (where the computer works in bits and bytes).

1.3 Language Translators in computer.
We know that a processor is a Microchip implanted in a CPU's hard drive that processes instructions
sent to it by the computer and software programs. Translator is a Programming language- processor
(assembler, compiler, or interpreter) that converts a computer program written in one language to
another. Thus a language translator can be defined as a program or application that translates between
high-level languages. It usually renders text or data format in one language into another. It is also
known as a language converter or a source to source translator. The 3 language translators that
translate the source programs (written in some high level language) into machine language (or
machine code) are: 1) assembler 2) compiler 3) interpreter. The function of translator is brought out
in fig.1.2

Source code

High level language

Machine language code

Translator
Target

Object

Machine language code

Compiler Interpreter Assembler

Fig 1.2 Function of a translator

School of Distance Education

‘C’ Programming for Mathematical Computing Page 7

Assembler is a program that takes basic computer instructions and coverts them into patterns of bits

to perform the basic operations.

A Compiler is a special computer program that translates code written in a high level language to a

lower level language, object / machine code by processing statements written in a particular

programming language. The most common purpose behind translating a source code is to create an

executable program (converting from a high level language into machine language). The task is

performed by compilers by scanning the entire program first and then translating it into machine

code which will be executed by the computer processor and the corresponding tasks are performed. In

fact compilers make the users free from the requirements of having to know the hardware details of

a computer system

An interpreter is a computer program that reads the source code of another computer program and

executes that program line by line. But Line by line interpretation entails slowness in running the

program and this considered a disadvantage. Each time when an interpreter gets a high level

language code to be executed, it converts this code into an intermediate code before converting it into

a machine code. Each part of the code is interpreted and then executed separately in a sequence and

when an error is found on a part of the code, it will stop the interpreter of the code without translating

the next set of codes. With all the slowness, implementing an interpreter for a language is

comparatively simpler than implementing a compiler for a given language in the system. Moreover,

the interpreter resides in the memory along with the program to be interpreted and controls program

execution

1.4 Higher level languages .
Higher Level Languages (HLL) are advanced programming languages that enables a programmer to

code programs which are more or less machine independent , in the sense the programmers do not

have to worry about the intricacies of the machine architecture. HLL uses familiar English like

syntax or any human language. The “Low" or "High" prefixed with the level of language indicates,

how "close" to the hardware, the programming language is. A CPU normally processes either 32 or

64-bit instructions. We can visualize this as 32 ‘1's and ‘0's in a row that the processor interprets and

executes. Writing this machine code of ‘1’s and 0’s directly into the machine would be the 'lowest-
level' closest to the hardware.

In a low level language we have to care about actual memory locations, whereas in a high-level we

just create variables and let the OS handle memory. In fact, HLL requires a compiler to be present

on the operating system, that executes the code. The main advantage of HLL is that they are easy to

work with and use and endowed with, less errors, better documentation, low program cost and save a

lot of run time. Generally, HLL uses English-like statements and symbols to create sequences of

School of Distance Education

‘C’ Programming for Mathematical Computing Page 8

computer instructions and identify memory locations, rather than using the machine-specific

individual instruction codes and numerical addresses employed by machine language. But only that,

HLL must be translated into its equivalent machine code before the execution of the program , using

compilers. Note that , each. Computer requires separate compiler for each HLL it supports. The OS in

turn request service from underlying system resources.

1.5 Operating System

Operating system(OS) is the first thing loaded on to the computer by a boot program and it is a

system software that helps the user in interacting with the resources and executing the user

applications. That means, it is a software program that enables the computer hardware to

communicate and operate with the computer software. It also manages the other computer system

resources that might be shared by different users in multiuser environments and resides in the

memory just like user programs. Popular operating systems include Linux, Windows 2000, Os/400,

AIX etc., and they acts like an interface between user and computer systems. The operating system

uses the Basic Input Output System(BIOS) and provides a platform for the user to interact with the

computer system. The BIOS is a first software run by the computer, when the system is turned On.

This software is usually stored in the Read Only Memory (ROM), located on the motherboard of a

computer. The main function of BIOS is to check all the hardware components attached to the

computer and to load part of the OS or other system programs to RAM.

1.6 Compilation of Program

Compilation is the act of transforming the user-friendly source code written in High Level

Language into the machine readable version of '1' and '0' that a CPU can understand and

execute. A Source code must go through several steps before it can become an executable program.

The first step in this direction is to run the source code through a compiler, that translates the high-

level language instructions into machine readable object code which is actually an intermediary form

of the machine language .The next step in executing the program is passing the object code

through a linker for linking with libraries. Usually program instructions in their original form are

created by the utility program called the editor which is intended to provide a paper- pencil

-eraser environment on computer towards developing the source code. Since object code is not

directly executable, it needs to be linked to the object file available with libraries and / or other

object files or other object programs that the source code has used. The linker comes in here.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 9

A linker link together a bunch of object files into a binary executable file , This includes the object

files created from the source code files as well as object files that have been pre compiled and

collected into library files and these files have names ending in .a. when the source code has errors

the user again takes the help of the editor and corrects the errors. A syntax error free source code is

then compiled into an object code. This executable code is run and the results are studied . if the

results are not acceptable, the entire process is repeated .This is explained in Table 1.1 below.

.Table : 1.1 Execution of a C Program

An editor is a utility program or software that appears much like a word processor, and is used to

edit the source code of any program. The user makes use of an editor to type in the source code and

stores it in a file suppose that the file name is test.c The character c is the default extension for the

source code file. The extension o in UNIX and obj in DOS are used to indicate object code files. At

the end of compilation two files are present on the disk namel test.c and test.o. This object program

file is linked with system library and the other object programs to produce an executable code. The

disk now contains three files test.c, test.o, a.out. By just typing a.out one can run programs

STEP BY STEP EXECUTION OF C PROGRAM
STEP-1 : EDITING
 The first step is writing C program using Text editor like Borland

C,C++,Note Pad++
 Saving the program in .C extension
 Saved file in .C extension is called Source Program
STEP-2 : COMPILING
 Inputting C source code with [.C] extension to produce machine

instruction
 Error free Source code gets converted into object code [.obj]
CHECKING ERRORS
 During step 2 compilers check for errors ,re edits & again check for

errors. Error free Program gets liked with libraries.
LINKING LIBRARIES
 Program linked with “included header files”(a source code file that is

merged into another by preprocessor)

 Linking with other libraries executed by linker

ERROR CHECKING
 Run time errors checked

School of Distance Education

‘C’ Programming for Mathematical Computing Page 10

1.7 Different types of errors

Errors are very common when writing computer programs. If we want to execute a source code file,

different stages like compilation linking and execution are required. A user can expect the errors

indicated by the different modules running on the computer system., namely compiler linker and

loader. There are the following types of Programming errors:

 Run Time Errors

 Compile Errors :syntax and semantic errors

 Logical errors

RUN TIME ERRORS:

It is an error that that occurs during the execution of a program. In programming , errors are also

known as bugs and run time errors indicate bugs in the program or problems like insufficient

memory or a segmentation fault caused by trying to access a memory location to that is not allowed

to access Runtime errors may crash your program when you run it. Runtime errors are usually caused

when a program with no syntax errors, directs the computer to perform an operation like dividing a

number by zero or when the computer is instructed to find the square root of a negative integer or to

find logarithm of a negative number or when there is lack of free memory space. Occurrence of these

errors may stop program execution. Runtime errors are usually more difficult to find and fix than

syntax errors.

COMPILE ERRORS:

Compile errors are those errors that occur at the time of compilation of the program. C

compile errors may be further classified as: (i) syntax error (ii) Semantic error .

(i)Syntax errors :

Whether it is a natural language or programming language, there are a set of rules in sentence -

building which govern the word order and this is called syntax. In the English language a sentence

is built as per the rule of subject –verb- object agreement and violation of this rule is

regarded as a syntax error. Likewise in C programming there are a set of rules for writing program

statements, the violation which constitutes a syntax error. Syntax error occurs when the code is

written in a manner not permitted by the rules of the program language. These errors are easily

traceable at the compilation time. Error messages and flagged lines are displayed by the compiler.

In Visual studio by Microsoft which supports C programming language, the error messages are made

to appear in the Output window. These messages will tell the location of a syntax error (line number

and file) and a short description of what the compiler thinks the error is. Some examples of syntax

error are given below:-

School of Distance Education

‘C’ Programming for Mathematical Computing Page 11

 Missing semicolon (;) at the end of statement.

 Missing any of delimiters i.e { or }
 Incorrect spelling of any keyword.

 Using variable without declaration etc.

Syntax errors are the easiest to find and fix. Over the years, compiler developers have worked hard to
make compilers smarter so that they can catch errors at compile time that might otherwise turn out to
be runtime errors.

(ii) Semantic Errors.

The errors that occur in the logic of a program is called semantic error. It is always a violation
of the rules of meaning of a natural language or programming language . When it occurs it
leads to incorrect output. It can even cause the program to hang or crash. Compared with the syntax
error, it is a more subtle type of error in that it cannot be easily traced. A semantic error occurs
when the syntax of your code is correct, but the semantics or meaning are not what was intended.
Since the syntax rules are obeyed , semantic errors are not recognized either by the compiler or
interpreter, because Compilers and interpreters concern themselves only with the structure of
language , not the meaning. Due to this error, the program may terminate suddenly or enter into an
indefinite loop. The error diagnostic is produced by some run time systems. when such errors are
fixed and corrected the correct results are produced

LOGICAL ERRORS

Logic errors are the errors in the output of the program and they occur when a programmer
implements the algorithm for solving a problem incorrectly. A statement with logical error may
produce unexpected and wrong results in the program. Common examples are:

 Multiplying when you should be dividing

 Adding when you should be subtracting

 Opening and using data from the wrong file

Logical errors cannot be detected by the compiler, and thus, programmers have to check the entire
coding of a c program line by line.

1.8 Debugging of programs

Debugging means removing bugs from a program . A bug is an unexpected and undesirable
behaviour by a program. In computers, debugging is the process of locating and fixing bugs (errors)
in computer program code. The first step in removing the bug is identifying it. Some bugs are quite
obvious, as when the program crashes unexpectedly. Others are obscure, as when the program
produces output which is incorrect .Debugging must necessarily answer two questions : "What did
the program do?" and "What did we expect the program to do?" The aim is to determine precisely

School of Distance Education

‘C’ Programming for Mathematical Computing Page 12

the behaviour of the program to let us infer why it is not running the desirable way we wanted it to
run . To debug a program is to isolate the source of the problem, and then fix it. Debugging is a
necessary process in any new software or hardware development process, whether it is a
commercial product or a personal application program. Because most computer programs and many
programmed hardware devices contain thousands of lines of code, almost any new product is likely to
contain a few bugs. Invariably, the bugs in the functions that get most use are found and fixed first.

The first step in fixing a bug is to replicate it. This means recreating the undesirable behaviour under
controlled conditions. The aim is to find by way of precise steps, the presence of the bug. In
many cases this method is straightforward. We can run the program with an input to see if the bug
occurs. Debugging tools (called debuggers) help identify coding errors at various development
stages. Some programming language packages include a facility for checking the code for errors as it
is being written. Compilers can be configured to produce debug information at compile time, so that
this information can be used by the debugger program to view source code as we debug. Debugging
is often supported by a software tool in most of the IDE. Using such tools the user can investigate the
program behavior by introducing break points in the program. At every break points the system.
Suspends execution so as to facilitate the checking of intermediate results. One can even modify the
values of the program variables when the break point is reached. After debugging these break point
are to be removed so that the program can be subjected to normal compilation and later execution.

1.9 Rewriting and program maintenance

During debugging the user or programmer sometimes makes a large amount of refinements
/alterations, and addition thus making the program appear all together like a patch work. The user
will be in a fix to decide whether he may go ahead with repairing or whether it would be more
useful and wiser to rewrite the program, as the total rewriting will not be as difficult as correcting
the original program, since everything become clear by the time the whole program is corrected. It
would be advisable to rewrite a clear version of the program and debug it rather than debugging a
hopelessly repaired program. In such situations rewriting becomes more preferable than debugging .

1.10 Program maintenance stage

Updating programs or adapting to reflect changes in tune with the requirement of the new
operating environments is called Program maintenance. In addition, it is the updating of application
programs in order to meet changing information requirements, such as adding new functions and
changing data formats. It also includes fixing bugs and adapting the software to new hardware
devices. When a real world program is tackled, the program may change with time. The program
developed should be able to absorb these changes without the compulsion of having to rewrite
programs. This incorporation of changes in the program to satisfy the requirements is called program
maintenance. There may be fresh errors introduced in the program at the correction stage. This
activity is also covered under program maintaenance.The documentation of the program helps in its
maintenance later

School of Distance Education

‘C’ Programming for Mathematical Computing Page 13

1.11 Program life cycle

A computer program envisages the development of a solution to an identified problem, and the

setting up of a related series of instructions which, when directed through the computer hardware,

will produce the desired results. First ,the problem of the end user needs to be defined so that the

correct solution to solve it can be drawn up to decide what real world problem is to be solved and

how a program can do this. Once a program is written, it is correct if it does what it is supposed to do.

The programming development life cycle includes seven distinct stages : define, outline, develop,

test, code, run, document and maintain.

This sequence must be strictly followed in order to get a good and efficient program. Problem

definition originates from the user. Writing the application Program includes considerations like

choosing the program language. In the first stage, the program developers must obtain the program

requirements from the users and document the requirements. This may require sufficient dialogue or

meetings between the end user or customer .Inputs, outputs and the processes must be known clearly.

when the problem is unambiguously defined, nearly 30 % of the programming work is considered to

be over.

Solution outlining stage

After understanding the requirements of the end user , the next step is to outline a strategy for

solving the defined problem. This involves through system analyses and design of the entire program.

This can involve looking at the requirements, flow of data, number of processes and sub processes,

the best , the worst and average solutions,, etc. Amongst all the stages, this stage gives emphasis on

how to try to sort out the problem on the computer system.

Algorithm and flowchart writing stage

After a programmer understands and analyzes a problem, he must come up with a solution—an

algorithm. WE know that an algorithm is a step-by-step procedure for solving a problem in a finite

amount of time with a finite amount of data. After outlining the solutions, the next step involves

developing a detailed logic plan using tools such as algorithm and flow charts. Normally, a top

down approach is used, and depending upon the need, either the algorithm for the sub program are

written afresh, or the existing proven algorithms are chosen. Moreover, to help write the algorithms

the programmers use other tools like flow charts which are pictorial image of the steps of an

algorithm. Flow charts are a better depiction or documentation tool than an algorithm. Majority of

programmers use both-the flow chart first and then the algorithm. That is, after creating the Flow

chart, one writes an algorithm using the pseudo code.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 14

Language choice stage

The choice of programming language is an important design consideration since it plays a significant
role in reducing the total development time . The major factor in selecting a language is the language
suitability to solve the particular classes of problems for which it is intended, and the type of the
actual user (i.e. user level of professionalism).

At this stage, we translate the design into the application. That is, algorithm must be converted int o a
program. Looking at the requirements of the problem, the facilities and the constraints of the
language are studied. An appropriate language based on the available facilities, is chosen for
implementation of the solution. The choice of language is considered as an important stage in
problem solving.

Coding stage

After a program is designed, it is to be implemented. This is the stage where the algorithm is
converted into a program by using selected language statements. A programming code is the
program instructions written in programming language in their original form .The code that a
programmer writes is called source code. After it has been compiled, it is called object code. Code
that is ready to run is called executable code or machine code. Coding is one step in problem solving.
Care must be taken so that the term programming should not be confused with coding. More over
one should not code until the algorithm is well defined, and must be cautious in using the constructs
of the language. At this stage, errors can come into play into the solution to a problem due to
improper coding.

Testing stage

This is an important stage, as the acceptance of the program depends on testing and subsequent
validation. As the program is being coded, and completed it must be tested out to see if it is running
properly and it produces the required output with appropriate input data. The input and output must
conform to the requirements That is, to make sure that the algorithm of the program does what it
should be intended to do, whether the program fits as expected into the intended application
environment. There are different methods of testing like black box, white box and Grey Box method
of testing. The technique of testing without having any knowledge of the interior workings of the
application is Black Box testing. White box testing is the detailed investigation of internal logic and
structure of the code. White box testing is also called glass testing or open box testing. In order to
perform white box testing on an application, the tester needs to possess knowledge of the internal
working of the code. Grey Box testing is a technique to test the application with limited knowledge of
the internal workings of an application. The tester needs to have a look inside the source code and
find out which unit/chunk of the code is behaving inappropriately. The program will be tested for all
possible input, without which it is not possible to declare that it works satisfactorily. Once testing
leads to satisfactory results, the program is considered to be working correctly and is accepted.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 15

Documentation stage
Documentation is sometimes integrated with all the stages and it is as important as the other stages.
This involves the writing of small notes or memos to explain a particular portion of code , how it
works, the way it performs the task, what each constant does, what is used to denote a variable, the
inputs and outputs expected etc. By adding notes and memos alongside the programming, a developer
can create a piece-by-piece instruction manual and description of how the application works.
Documentation should also include a list of any known bugs and errors and the potential locations
from where they could originate. Sufficient documentation helps others to modify and understand the
program easily. This is the stage where one adds, English texts, called comments, to the program. It is
always better to document the program during the development stage itself. Documentation can be
either internal or external. Internal documentation is used by other programmers to help them know
why you did something in a certain way or tell them how you wrote a program. External
documentation on the other hand, include user manuals, FAQ’s on a web, help areas, and anything
that is not the actual code. That is, Original specification becomes the basis for external
documentation, where as internal documentation explains how the program works.
Program Maintenance Stage:
In the Program maintenance phase programs are updated to correct to faults, improve functionality and to
make changes in its execution environment. The IEEE Computer Society defines maintainability as the ease
with which programs can be maintained, enhanced, adapted, or corrected to satisfy specified requirements It
is the largest phase of the program life cycle .To maintain is to make sure that the program keeps running as
it should. Usually, after the programs are being developed and documented, it is placed into operation. As
users use the program, during their operation, either ,a program may fail to perform its objective or it must
be necessary to add new functionality to a program to fix the errors or to update the program. That is,
changing the program design, coding and updating are parts of the program maintenance stage. However,
one can continue to fix and update the program until it reaches a point where the program has become no
longer useful or too old. At that time, maintenance stops and the program development life cycle is started
all over again.
1.12 Summary:

1. A computer language is a programming language designed for use on a specific class of
computers. Programming languages are mainly of two types: High level and low level
programming languages.

2. A translator is a computer program, that translates a program written in a given programming
language into a functionally similar program in another language without losing the essence of
the program. That is, If the computer program translates a HLL in to another HLL, then it is
called a translator. On the other hand, if the program translated assembly language to
machine code then it is called an assembler.

3. An operating system, is a software that supports a computer’s basic functions, such as task
scheduling, execution of applications and controlling computer peripherals.

4. Debugging is the methodical process of identifying and removing errors or defects in a
computer program by looking at lines of code one by one to see if they have been written
correctly and the logic is correct.

5. Program development life cycle, consists of different stages such as problem definition,
outlining the solution, algorithm and flow chart development, choice of language, coding
testing and documentation. This sequence must be strictly followed in order to get a good and
efficient program.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 16

Unit 2: Algorithms and Flow Charts
Structure

2.1 Introduction

2.1 Algorithm and its uses

2.3 Flow Charts and their Uses

2.4 Advantages and draw backs of Flow Chart.

2.5 Summary

2.1 Introduction:

To make a computer do anything, we may have to write a computer program. Again, to write a

computer program, we may have to tell the computer, step by step, exactly what we want it to do.

Here, we also get to decide how the computer is going to do it and with this presupposition we

employ a finite step- by- step formula for problem solving. All that the computer does is

"executing " the program, following each step mechanically, to accomplish the end goal .Thus an

algorithm can also be viewed as a deterministic automaton for accomplishing a goal which, given

an initial state, will terminate in a defined end-state. In programming algorithm provides the logic;

data provide the values. Put together we get a Program which can be broken down as : Program =

Algorithm + Data Structures . One of the principal challenges in programming is to create an elegant

algorithm with fewer steps.

Without algorithm development, programming activity is considered to be incomplete. The software

developer puts the body in the form of a systematic body of steps, which is then converted into a

flowchart and later into a program

2.2 Algorithm and its uses

The dictionary meaning of the word algorithm is a process or set of rules used for calculation. In

computer science the word algorithm has a historical interpretation. The word is thought to have

been derived from the name of the 9th century Persian mathematician abu jafar mobammed ibn musa

al-khowarzsmi. Al- khowasmi wrote a book called kitab al jabr walmukhwala which literally means

“rules of restoration and reduction” . Historians of mathematics found this to be the true origin of the

word algorithm

An algorithm is a precise set of rules or a precise specification of a sequence of instructions to be

followed in solving problems using a computer. Each specification or instruction tells the computer

what task is to be performed. One such specification is given in example below.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 17

Example 2.1

Recipe for making Cake

Ingredients

Bengal gram flour 2 cup, sugar 2cups, ghee, 2cup, milk 1 liter, essence 6 drops, water ½ cup.

Method

Step 1 : warm up ghee. Add Bengal gram flour and fry it on slow fire for 3 minutes.

Step 2: Warm milk and add essence.

Step 3: Take ½ cup water and add 2 cups of sugar. Stir it till sugar t dissolves. Then boil it until it

appears too sticky.

Step 4: Add the prepared syrup and stir it.

Step 5: Add fried Bengal gram to the syrup and stir it continuously to about 20 minutes.

Step 6: Pour the resulting mixture in a plate and allow to condense.

Step 7: After 15 minutes cut it into 20 pieces..

Result

20 pieces of cake.

In this example, the following points deserves worth noting.

1. The instructions are precise and the number of actions to be carried out are very few.

2. By taking proper permutation and combination of this set of actions we can facilitate the easy

production of a cake.

The set of instruction for solving this problem is similar to algorithms , with the exception that, they

do not possess all the necessary attributes of algorithms. An algorithm defined as a finite set of

specifications does need the following five attributes.

1. Inputs-The inputs are to be given at the beginning, before the algorithm starts and they are to be

processed by the algorithm.

2. The sequence of instructions leading to specific action in the algorithm must be precise(well

ordered).

3. Each instruction must be sufficiently basic, so that it can be carried out in a finite time

(effectiveness).

4. The number of repetitions to carry out a group of instruction must be finite(finiteness).

5. An algorithm must have one or more output.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 18

Based on these five attributes , we can say that the above example does not qualify itself as an
algorithm. The following is an example which illustrates how an algorithm is written to convert
temperature in degree Celsius to degree Fahrenheit.

Example 2 : Converting degree Celsius to degree Fahrenheit.

Input : Temperature in degree Celsius.

Output: Temperature in degree Fahrenheit.

1. Start
2. Read temp in Celsius
3. Multiply this value by 1.8 and add 32.
4. Assign this value as degree Fahrenheit.
5. Display the result.
6. Stop.

As was discussed, this algorithm has a name , an input, an output and a body comprising
instructions that begin with start and end with stop. Between this two keywords, this algorithm
contains one or more steps, denoting the operations to be performed. In fact, algorithms are essential
to the way computers process data. Because an algorithm is a list of precise steps, the order of
computation is always critical to the functioning of the algorithm. Instructions are usually listed
explicitly and are described as starting from the top- and down to the bottom. In general, an algorithm
is a step by step formalization of a mapping function to map input set onto an output.

Algorithms are well-ordered
Since an algorithm is a collection of operations or instructions, we must know the correct order in
which the instructions are executed. If the order is unclear, we may be uncertain which instruction
should be performed next. This characteristic is especially important for computers. A computer can
only execute an algorithm if it knows the exact order of steps to perform.

Algorithms have unambiguous operations
Each operation in an algorithm must be sufficiently clear so that it does not need to be simplified..
Basic operations used for writing algorithms are known as primitive operations or primitives. When
an algorithm is written in computer primitives, then the algorithm is unambiguous and the computer
can execute it.

Algorithms have effectively computable operations
Each operation in an algorithm must be durable, that is, the operation must be something that is
possible to do. For computers, many mathematical operations such as division by zero or finding the
square root of a negative number are also impossible. These operations are not effectively computable
so they cannot be used in writing algorithms.

Algorithms produce a result
In our simple definition of an algorithm, we stated that an algorithm is a set of instructions for solving
a problem. Unless an algorithm produces some result, we can never be certain whether our solution is
correct. Only algorithms which produce results can be verified as either right or wrong.

Algorithms halt in a finite amount of time

School of Distance Education

‘C’ Programming for Mathematical Computing Page 19

Algorithms should be composed of a finite number of operations and they should complete their
execution in a finite amount of time. Every algorithm must reach some operation that tells it to stop.
In the above eg, it is evident that the algorithm has a start and terminal point. Between these two key
words , every algorithm contains one or more steps indicating the operations to be performed. To
express algorithms one uses, structured English, pseudo programming languages and other methods
.It is very convenient to express algorithm pictorially.

2.3 Flow Charts and their Uses
The flow chart is an important tool aiding development of a program.. It is usual practice to introduce
another intermediate step prior to the preparation of a computer program. This step is called flow
chart development. A flow chart is a pictorial or graphical representation of the steps necessary to
solve a problem, perform a task, complete a process or illustrate the components of a system using
certain prescribed symbols to show the sequence of operations to be performed, so as to arrive at a
solution. That is, a flow chart illustrates the iterative and sequential steps pictorially. It helps the user
to identify more easily the block of codes, choices and paths of execution as compared to the
algorithms This is one of the major advantages of using flow charts. Table 2.1 shows the common
symbols used in flow charts. The use of symbols is illustrated in the following example.

Table 2.1 : Symbols used in Flow charts

Symbol meaning Explanation

Start/stop start and end commands.

Processing operations are written within this symbol

Input/output reading and writing operations are written within

this symbol

decision Control operations are indicated within this symbol.

Connector one part of the flow chart is connected to another

using this symbol

School of Distance Education

‘C’ Programming for Mathematical Computing Page 20

arrow Flow of control

Group instruction Groups of steps or instructions

Sub routines/ sub routine or an activity carried out as part of a

procedure function.

Example 2.2 :

The Flow chart in Fig 2.3 shows, how the mathematical expression are completed with discrete steps.

Each step evaluates an expression and finally produces the result in degree Fahrenheit.

stop

Read C

F= C×1.8

F= F+ 32

Write C and F

start

Fig. 2.3 Flow chart for converting degree centigrade into Fahrenheit

School of Distance Education

‘C’ Programming for Mathematical Computing Page 21

2.4 Advantages and draw backs of Flow Chart.

The use of flow charts allows us to draw a picture of the way a process actually works so that we can

understand the existing process and develop ideas about how to improve it. Using a flow chart has a

variety of benefits:

1. Effective analysis of the program

2. Focus in logic

3. Better way of communication: communicating the logic of a system to all concerned.

4. Proper documentation and debugging.

5. Efficient coding: conditional statements are easy to analyze.

6. Compact representation and efficient program maintenance

The major draw backs being:

1. Complex logic.

2. If alterations are needed we have to redraw the flow chart completely.

3. Reproduction: Since flow chart symbols cannot be typed, reproduction of flow chart creates

problems.

4. For long flows, tracking of flow of control creates errors therby causing errors in problem

solving.

2.5 Summary:

1. An algorithm is a precise set of rules / precise specification of a sequence of instructions to

be

followed in solving problems using a computer.

2. The important features of an algorithm Are: (1.) definiteness, (2). Effectiveness,

(3).Finiteness, (4). Input, and (5) output.
3. A flow chart is a pictorial or graphical representation of the steps necessary to solve a

problem,

School of Distance Education

‘C’ Programming for Mathematical Computing Page 22

Unit 3: Overview of C
Structure
3.1. History of C

3.2. Importance of C

3.3 Sample Programs

3.4 Basic Structure Of C Programs

3.5 Programming style

3.6 Executing A C Program

3.7 Unix System

3.8 MS- DOS System

3.9 Summary

3.1. History of C

C is a structured general purpose machine Independent high level programming language
developed by Dennis Ritchie at AT & T’s Bell Labs of USA in the mid 1970s for the Unix based
operating system. Many of the important concepts of C are borrowed from the language BCPL
(Basic Combined Programming Language), developed by Martin Richards in 1967. Although
originally designed as a systems programming language, C has proved to be a powerful and flexible
language that is used for a variety of applications for nearly every available platform. The merit of C
lay in the fact that it is easier to read, more flexible and more efficient at using memory. It is
particularly popular for personal computer programmers because it requires less memory than other
languages. C is the archetype or original model for many modern languages as when we find
Language constructs in C, such as "if" statements, "for" and "while" loops, and types of variables, can
be found in many later languages. Today, there are very few platforms that do not have a C compiler

In the late, seventies C began to replace the more familiar languages of that time like, ALGOL,
PL/I, etc. The drawback of the B language was that it did not know data-types. Both BCPL and B are
“ type less” system programming languages. By Contrast, C Provides a variety of data types with
powerful features. The fundamental data types are integers, characters and floating point numbers of
various sizes. In addition there is a hierarchy of derived data types created with arrays, pointers,
structures and union.

Since C was developed along with the UNIX operating system, it is has close association with
UNIX. Major parts of the popular operating systems like windows, Linux and Unix are coded in C.
This is because when it comes to performance nothing beats C. Although C is technically a high-
level language, it is one of the "lowest-level" high-level programming languages in the sense; it is
much closer to assembly language than are most other high-level languages. This closeness to the
underlying machine language allows C programmers to write very efficient code. More over if one is

School of Distance Education

‘C’ Programming for Mathematical Computing Page 23

to extend the operating system to work with new devices one needs to write device driver programs.
These programmes are exclusively written in C.

For many years, C was the reference manual, but eventually with the appearance of many C
compilers coupled with the wide popularity of UNIX operating system, it gained wide popularity
among computer professionals. Today, C is the language of choice while building a variety of
hardware and operating system platforms.

The American National Standards Institute (ANSI) constituted a committee in 1983, to provide an
updated definition of C. The resulting definition “ANSI C “was completed in late 1988, and modern
compilers are already supporting most of the features of this standard .The standard is based on the
original reference Manual in the first edition, the classic book “The C Programming Language” ,
with little or no changes on the original design of the C language . They ensured that old programs
still worked with the new standard, failing that, the compiler would produce warnings of new
behavior.

One of the significant contributions of the standard is the definition of a new syntax for the defining
and declaration of the function. This extra information makes it easier for compilers to detect errors
caused by mismatched arguments. A second significant contribution of the standard is the definition
of a library to accompany C. These library functions specifies functions for accessing the operating
system, formatted input and output, memory allocation, string manipulation, and the like. A
collection of standard headers provides uniform.

3.2. Importance of C

C is an immensely popular language widely used and well understood. Some of the versatile features
of C language are: reliability, portability, flexibility, interactivity, modularity and finally efficiency
and effectiveness. It is a great tool for expressing programming ideas in a way it is easily understood,
regardless of the language users are most familiar with. It is in fact the original or archetypal
building block for many other currently known languages and it is very close to assembly language. C
is a robust language whose rich set of built in functions, and operators can be used to write any
complex programs. In C large programs are divided into small programs called functions and data
moves freely around the systems from one function to another. Moreover, the C compiler combines
the capabilities of an assembly language with the attributes of a high level language and therefore it is
useful for writing both system software and business packages without worrying about the hardware
platforms where they will be implemented..The great thing about C is that it can be used to write
high performance code for both application and system software. Further it can interact with
hardware at quite low level. In fact, many of the compilers available in market are written in C. It is
the language used for developing system applications that forms major portion of operating systems
such as Windows, UNIX and Linux. C is increasingly being used in Database systems, Graphics,
Spread sheets, word processors, Compilers /Assemblers, Network drivers and interpreters.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 24

The variety of data types and powerful operators available in C makes C programs very efficient and
fast. In C there are only 32 key words and its strength lies in its built-in functions. Some standard
functions are available which can be used for developing programs. C Being highly portable,
programs written for one computer can be made to run on another system with little or no
modification.

C is at once one of the pillars of modern information technology (IT) and computer science (CS). C
is a high level language that lets us to write very low level stuff like device drivers that runs as fast as
assembly written programs. C's power and fast program execution come from its ability to access low
level commands, similar to assembly language, but with high level syntax. It allows low level access
to information and commands while still retaining the portability and syntax of a high level language.
In this process C imposes few constraints on the programmer. Further it is tailor- made for structured
programming, thus requiring the user to think a problem in terms of function modules or blocks. A
collection of these modules make a program debugging and testing easier..Thus, C meets the
requirements, where speed, space and portability are important.

Another prime feature of C is its ability to extend itself. A program in C is basically a collection of
functions that are supported by the C library. We can add our own functions to the C library .With
the availability of large number of functions , the programming burden becomes simple. C being
simple and easy to understand, most of the operating systems and game software are written in C .

Before discussing some distinct features of C, we shall look at some sample programs in C, and as
we proceed, can learn more about the language.

3.3 Sample Programs

Printing A Message: Sample program 1

The only way to learn a new programming language is by writing programs in it. Let us begin by
looking at the construction of a very simple program.

The following is the output of the above program code when it is executed:

hello, fine

Fig. 3.1 The first C program to print a single line of text

main()

{

/* ……Printing begins…….*/

Printf(“ hello, fine ”);

/* ……Printing ends…….*/

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 25

In the above C program, the code begins executing at the beginning of main. main() is a special

function used by the C systems to tell the computer where the program begins. This means that every

program must have a main somewhere. In this example, main is defined to be a function that expects

no arguments, which is indicated by the empty list (). All the statements that belong to main() are

enclosed within a pair of braces { } as indicated above. The opening brace “{“ indicates the

beginning of the function main and the closing brace “}“ marks the end of the program. All the

statements between these two braces form the function body. The function body contains a set of

instructions to perform the given task.

In our example, the function body contains three statements out of which only the printf line is an

executable statement. A function is called by naming it, followed by parenthesized list of arguments,

so this calls the function printf with the argument “ hello, fine ”. printf is a library function that

prints output , in this case the string of characters (String constant or character string) between quotes.

The two lines

/* ……Printing begins…….*/

And

/* ……Printing ends…….*/

Are comment lines which in this program tells what the program does. Any characters between /*

and .*/ are ignored by the compiler (comments are solely given for the understanding of the

programmer or the fellow programmers); they may be used freely to make a program easier to

understand . Any number of comments can be written at any place in the program. The normal

language rules do not apply to text written with in /* and .*/ . Thus we can type this text in small

case, capital, or a combination. Moreover, comment can be split over more than one line, as in,

/* printing

begins.*/

Such a comment is often called a multi-line comment. Comments cannot be nested. For example,

/* Printing begins /*Printing ends.*/*/

Is invalid and therefore results in an error.

Let us come back to the printf function, the only executable statement of the program .

printf(“ hello, fine ”);

The above quotation can be printed in two lines, by adding another printf function, as in,

printf(“hello,\n”);

printf(“fine”);

School of Distance Education

‘C’ Programming for Mathematical Computing Page 26

The information contained between the parentheses is called the augment (which are simply strings
of character to be printed out) of the function. The argument of the first printf contains a combination
of two characters \ and n at the end of the string. The combination sequence” \n “ is called newline
and it takes the character to the next line. Therefore, you will get the output split over two lines. \n is
one of the several Escape Sequence (similar in concept to the carriage return key on a type writer,
which when printed advances the output to the left margin on the next line) available in C. if you try
something like

printf(“hello, fine

”);

The C compiler will produce an error message.

No space is allowed between \ and n. printf never supplies a new line automatically, so several
function calls may be used to build up an output line in stages, as in,

.

To produce identical output. Here \n represents only a single character. An escape sequence like \n
provides a general and extensible mechanism for representing hard to type or invisible characters. It is
also possible to produce multi line output by one printf statement with the use of newline character at
appropriate places, as in,

printf (“hello\n….fine,\n……I\n……..am ok!”);

Where the output is

hello

…..fine,

……….I

……….am ok !

main()

{

/* ……printing begins…….*/

printf(“ hello,”);

printf(“ fine,”);

printf(“ \n”);

/* ……printing ends…….*/

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 27

The inclusion of the preprocessor directive # include < stdio.h > at the beginning of all programs

that use any input/output library functions should not be insisted for functions like, printf and scanf,
Printf is a pre defined standard C function (predefined in the sense that it is function that has already

been written, compiled, and linked together with the program at the time of linking).

Note that the print line ends with a semi colon. Thus the mark ; acts as a statement terminator.

That is, every C statement must end with a ; mark. In C , everything is written in lowercase letters.

However, uppercase letters are used for symbolic names representing constants. we may also use

uppercase letters in output strings like “HELLO” and “FINE”.

The General format of simple C programs is shown below.

Function Name

Beginning of program

Program statements

End of program

SAMPLE PROGRAM 2: Adding Two Numbers

Here is a simple program which demonstrates the use of new ideas, including comments, declaration,

variables, and arithmetic expressions.

main()

{

…..

……

…..

}
Simple C program Format

The main Function
The main () is a function and is part of every program. There are different forms of main statement in C. viz.,

main ()

int main ()

main (void)

void main (void)

int main (void)

The empty pair of parenthesis indicates that the function has no arguments This may be explicitly indicated by

using the keyword void inside the parenthesis. Just like the way functions in a calculator returns a value,
functions in C also return a value to the operating system. That is, It is also possible to specify the keyword int or
void before the word main. Some compilers permit us to return nothing or no information to the operating

system from main (). In such a case we should precede it with the key word void. The key word void means
that the function does not return any value to the operating system and int means that the function s returns an

integer value to operating system. When int is specified, the last statement in the program must be “return 0”.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 28

Addition of Two numbers: Sample program 2

Consider another program, which performs addition on two numbers. This program explains the need

for the use of declaration of variables, and use of operators.

On execution of this program we will get the following output:

10

50.10

The first line of the program is a comment line. Comment line in the beginning give information

such as name of the program, author, date etc. To indicate line numbers comment characters can also

be used. in other lines. The words num and amount are variable names used to store numeric data.

The numeric data may be either in real or integer form. In C, all variables must be declared before

they are used, usually at the beginning of the function before any executable statement. The type

declaration statement is written at the beginning of main () function. In lines 4 and 5, the

declarations

int num;

float amount;

/* addition of two numbers */

main ()

{

int num;

float amount;

num = 10;

amount = 20.25+29.85;

printf (“ % d\n”,num);

printf (“%5.2f”,amount);

}

/Program to add two numbers:/

School of Distance Education

‘C’ Programming for Mathematical Computing Page 29

tells the compiler that num is an integer (int) and amount is a floating (float) point (numbers with

fractional part) numbers. All declaration statements ends with a semicolon. The words such as int
and float are called keywords and cannot be used as variable names .The range of both int and float
depends on the machine you are using; 16- bit ints, which lie between -32768 and +32768 , are

common, as are 32-bit ints. A float number is typically 32-bit quantity, with at least six significant

digits and magnitude generally between about 10-38 and 10+38. While declaring the type of variable

one can also initialize it as shown in line 7 and 9.That is , the statements

num = 10;

amount = 20.25+29.85;

are called the assignment statement. Every assignment statement must have a semicolon at the end.

The order in which we define the variables is sometimes important sometimes and sometimes not.

For example,

int i =10, j =25;

is same as

int j= 25, i=10;

However,

float a= 1.5, b = a + 3.2;

Is alright. But

float b= a+3.2, a = 1.5 ;

Is not, because we are trying to use a even before defining it.

Moreover, the following statements would work

int a,b,c,d

a = b = c = d = 10;

However the following statement would not work

Int a= b= c= d =10;

The next statement of the program is an output statement that prints the value of number. The

print statement

printf (“ % d\n”, num);

School of Distance Education

‘C’ Programming for Mathematical Computing Page 30

contains two arguments..The first argument “%d’ tells the compiler that the value of the second

argument num should be printed as a decimal integer. These arguments are separated by comma.
The newline character “\n “ causes the next output to appear on a new line.

The last statement of the program

printf (“%5.2f”, amount);

print out the value of amount in floating point format. The format specification “%5.2f “ tells the

compiler that the output must be floating type , with five places in all and two places to the right of

the decimal point.

Calculation of Interest: Sample Program 3

C supports the basic four arithmetic operators (-, +, * . /) along with various others. The use of

such operators along with other variable declarations, the while loop construct and # define

preprocessor directive are illustrated in the program below. The program calculates the value of

money at the end of each year of investment, assuming the interest rate at 11 percent with an initial

investment of 50 000 for 10 years .In this program, the variable value represents the value of money

at the end of the year and the amount represents the value of the money at the start of the year. The

statement

amount = value ;

makes the value at the end of the current year as the value at the beginning of the next year .

The preprocessor compiler directive #define, defines a symbolic constant. Whenever a symbolic

name is encountered, the compiler automatically substitutes the value associated with the name. If

you want to change the value you have to simply change the definition. #define line should not end

with a semicolon and are usually written in upper case letters(so that they can be readily distinguished

from the lower case variable names), usually placed at the beginning before the main () function.

They are not declared in the declaration section. The declaration section of the program declares year
as integer and amount ,value and rate as floating point numbers. When two or more variables are

declared in one statement, they are separated by commas. It is also possible to declare the floating

point variables as multiple statements as in,

float amount;

float value;

float rate;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 31
Fig.3.5 The Investment Program

/* ………………………… INVESTMENT PROBLEM ………………….. */

define PERIOD 10

#define PRINCIPAL 50000.00

/* ………………………… MAIN PROGRAM BEGINS ………………….. */

main ()

{ /* ……………………DECLARATION STATEMENTS …………….. */

int year;

float amount, value, rate;

/* ………………………… ASSIGNMENT STATEMENTS …………….. */

amount = PRINCIPAL ;

rate = 0.11;

year = 0;

/* …………… ……… COMPUTATION STATEMENTS… ………….. */

/* …………… COMPUTATION USING while LOOP ………….. */

While (year < = PERIOD)

{

printf (“ % 2d % 8.2 f \n” , year, amount);

value = amount + rate * amount;

year = year +1;

amount = value;

}

/* ……….. ………………… while LOOP ENDS… ………….. */

}

/* …………… ……… PROGRAM ENDS … ………….. */

School of Distance Education

‘C’ Programming for Mathematical Computing Page 32

In the while loop all computation and printing are accomplished. The body of a while loop can
be one or more statements enclosed in braces . The parenthesis after the while contain a condition that
is tested. So long as this condition remains true all , all statements within body of the while loop keep
getting executed repeatedly. When the condition becomes false , the control passes to the first
statement that follows the body of the while loop..In this case as long as the value of the year is less
than or equal to the PERIOD, the four statements grouped by braces that follows the while are
executed. The loop ends when year becomes greater than PERIOD.

Sample Program 4: Use of Sub routines:
A very simple program that explains the use of mul () function is shown below. It uses a user

defined

//A program using user defined function//

/* ………………………… PROGRAM USING FUNCTION ………………….. */

int mul (int a, int b); /* DECLARATION….. */

/* ………………………… MAIN PROGRAM STARTS………………….. */

main ()

{

int a, b,c;

a =7;

b =10;

c = mul (a,b);

printf (“multiplication of %d and % d is % d”, a,b,c);

}

/* ………………………… MAIN PROGRAM ENDS

MUL FUNCTION STARTS………………….. */

int mul (int x, int y)

int p;

{

p = x * y;

return (p);

}

/* MUL () FUNCTION ENDS . */

School of Distance Education

‘C’ Programming for Mathematical Computing Page 33

function equivalent to subroutine in FORTRAN or Sub program in BASIC. The Execution of the
program will print the output

Multiplication of 7 and 10 is 70
The mul () function multiplies the value of variables x and y and the result is returned to the main

() function when it is called in the statement

c = mul (a,b);
The mul () function has two arguments x and y (declared as integers) and when called the values of

a and b are passed onto x and y respectively. This example also shows a bit more of how printf
works.

Sample Program 5: Use of Math Functions:
There are many occasions where we often use standard mathematical functions like cos, sin, exp,

etc.

Figure 3.1 Use of Cosine Function

/* … PROGRAM USING COSINE FUNCTION …………….. */

include < math.h >

define PI 3.1416

define MAX 180

main ()

{

int angle;

float x,y;

angle = 0;

Printf (“Angle Cos(angle) \n\n “);

While (angle < = MAX)

{

x = (PI/MAX) * angle;

y = cos (x);

printf (“% 15 d % 13.4 f\ n “, angle, y);

angle = angle +10;

}

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 34

The standard mathematical functions are defined and kept as a part of C math library for use in
programs. The use of any of these mathematical functions in the program can be accomplished by
means of # include instruction in the program. The #include directive tells the preprocessor to treat
the contents of a specified file as if those contents had appeared in the source program at the point
where the directive appears Like # define, it is also a compiler directive and tells the compiler to link
the specified mathematical functions from the library. The instruction is of the form

include < math.h >

math.h is the file name containing the required information. Program code,(Figure 3.1) explains the
use of cosine function. Another # include instruction that is often used is

include <stdio.h>

<stdio.h> refers to the standard I/O header file containing standard Input output functions. That is, it
adds the contents of the file named stdio.h to the source program and the ankle brackets cause the
preprocessor to search the directories specified by the Include environment variable for stdio.h, after
searching directories specified by the / I compiler option. For example, to use the function printf() in
a program, the line

#include <stdio.h>

Should be at the beginning of the source file, because the definition for printf() is found in the file
stdio.h.

As explained earlier, C programs are divided into modules or functions. To use any of the
standard functions, the appropriate header file should be included...Header files contain definitions of
functions and variables which can be incorporated into any C program by using the pre-processor
#include statement. This is done at the beginning of the C source file . To access the functions stored
in the C library, it is necessary to tell the compiler about the files to be accessed. This is achieved by
the use of pre processor directive

#include <filename>

Placed at the beginning of the program. Note here that filename is the name of the library file that
contains the required function definition.

3.4 Basic Structure Of C Programs
The programs in C so far discussed illustrates that it can be viewed as a group of building blocks

called functions. A function is a segment that groups a number of program statements to perform
specific task. To write a c program , we must first create functions and then put them together.

The different sections of a C program as shown in figure 3.2..The documentation section consists
of a set of comment lines giving the name of a program, author, date and other details, which the
programmer would like to use later .The link section provides instructions to the compiler to link
functions from the system library. All symbolic constants are defined in the definition section. Global

School of Distance Education

‘C’ Programming for Mathematical Computing Page 35

variables (variables that are used in more than one function) and all the user defined functions are
declared in the global declaration section that is out side of all the functions.

Every C program must have one main () function section that contains two parts, the declaration and

executable part, appearing between the opening and closing braces. In the declaration part all those

variables used in the executable part are declared..There is at least one statement in the executable

part. The program execution begins at the opening brace and ends at the closing brace which marks

the logical end of the program. Every statements in the declaration and executable parts end with a

semi colon (;).\

The sub program section contains all the user defined functions that are called in the main function.

User defined functions are generally placed immediately after the main function, although they may

appear in any order. All sections , except the main function may be absent when they are not required.

Documentation Section

Link Section

Definition Section

Global Declaration Section

main () Function section

{

Declaration Part

Execution Part

}

Sub Program section

Function 1

Function 2

…….. (User Defined functions)

Function n

Fig.3.2 An over view of C program

School of Distance Education

‘C’ Programming for Mathematical Computing Page 36

3.5 Programming Style
Programming style is a set of rules or guidelines used when writing the source code for a computer

program. It is often claimed that following a particular programming style will help programmers to read and
understand source code conforming to the style, and help to avoid introducing errors.

C has no specific rules for the position at which a statement is to be written. That’s why it is often called a
free –form language. First of all, all statements are entered in small case letters. Upper case letters are used
only for symbolic constants. The statements in the program must appear in the same order in which we wish to
be executed.; unless of course the logic of the problem demands a deliberate “jump”, which is out of sequence.
These statements are terminated with a semi-colon (;), and are collected in sections known as functions. By
convention, a statement should be kept on its own line. Blank spaces may be inserted between two words to
improve the readability of the statement. However , no blank spaces are allowed with in a variable, constant or
key word.

Since C is a free-form language, we can group statements together on one line. The statements

a = b;

x = y-1;

z = a-1;

can be written on one line as

a = b; x = y-1; z = a-1;

The program

main ()

{

Print f (“hello”);

}

May be written in one line like

main () { Print f (“hello”)};
However, this style makes the program more difficult to understand. Rather than putting everything on one line, it is

much more readable to break up long lines so that each statement and declaration goes on its own line.

Comments in code can be useful and they provide the easiest way to set off specific parts of code (and their purpose);
as well as providing a visual "split" between various parts of your code. Having good comments throughout your code
will make it much easier to remember what specific parts of your code do. Care should be taken not to over emphasize
generous use of comments inside the code. For debugging as well as testing of the code Judiciously inserted comments is
very helpful and it improves the code readability as well as the understandability of the code logic.

3.6 Executing A C Program

C program Execution involves the following steps

1. Creating the program
2. Compiling the program
3. Linking the program with functions that are needed from the C library
4. Executing the program.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 37

Although these steps remain the same irrespective of the operating system, system commands for implementing the
steps and conventions for naming the files may differ on different systems. An operating system is a program that
controls the entire operations of a computer system. All I/O operations are channeled through the operating system. It is
an interface between the hard ware and the user. The most popular ones today are UNIX and MS-DOS .Figure 3.10
illustrates the steps involved in the execution of C program.

3.7Unix System: Creating the program

Once you have written the program you need to type it and instruct the machine to execute it. Once we

Syntax Errors Yes

NO Object code

Data Error logic logic error
And data errors?

No Errors

System Ready

Enter program

Edit source program

Compile source
program

Link to system Library

Execute object code

Corrected output

Stop

Program code

C Compiler

System library

Input data

Fig.3.10 Process of compiling and running in C

School of Distance Education

‘C’ Programming for Mathematical Computing Page 38

load the UNIX OS in to the memory , the computer is ready to receive the program. The program

must be entered into a file. The file name can consists of ,letters, digits and special characters

followed by a dot and a letter c.

For eg,

hello.c

The file is created with the help of another program called text editor., either ed or vi. The command

for calling the editor and creating the file is

ed filename

if the file existed before , it is loaded up. If not the file has to be created so that it is ready to receive

the new program. Any corrections to the program are done under the editor. when the editing is over

it is saved on the disk .It can the be referenced at any time later by its file name. The program that is

entered into the file is known as source program .A source program is a program coded in a

languages other than machine language, ad it is translated into machine language before being

executed.

Compiling and Linking

Once you have written the program you need to type it and instruct the machine to execute it. To

type the C program you need another program called Editor. Once the program has been typed it

needs to be converted to machine language (0s and 1s) before the machine can execute it. To carry

out this conversion we need another program called compiler. Assume that the source program has

been created in a file named kmv.c The compilation command to achieve this task under UNIX is

cc kmv.c

The source program instructions are now translated into a form that is suitable for execution by the

compiler. The translation is done after examining each instruction for its correctness. If everything is

alright, the compilation proceeds silently and the translated program is stored in another file with the

name kmv.o. This program is called the object code.

Linking is the process of putting together other programs files and functions that are required by

the program. Under UNIX, the linking is automatically done when the cc command is used. Errors, if

any should be should be corrected in the source program with the help of editor and the compilation

is done again..The compiled and link program is called the executable object code and is stored

automatically in another file named a.out.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 39

Executing The Program
On compiling the program its machine language equivalent is stored as an EXE file which is an

executable file. The command a.out would load the executable object code into the computer
memory and execute the instructions .During execution, the program may request for some data to be
entered through the keyboard.

Here are the steps that you need to follow to compile and execute your C program using Turbo C
or C++.

1. start the compiler at C > prompt. The compiler (TC.EXE is usually present in C:\TC\BIN
directory).

2. Select New from File menu
3. Type the program.

4. Save the program using F2 under a proper name(say prog.c)

5. Use Ctrl +F9 to compile and execute the program

6 Use Alt +F5 to view the output.

Creating your own Executable File
Note while linking, the linker always assign the same name a.out. while Compiling a new program ,
this file will be over written by the executable object code of the new program .To prevent this from
happening , we should rename the file immediately using the command

mv a.out name

Or

use the cc command option

cc-o name source-file

This cc command option will store the executable object code in the file name and prevent the old
file a.out from being destroyed..

To compile and link multiple source program files, we must append all the filenames to the cc
command.

Cc filename-1.c…… filename-n.c

These files will be separately compiled into object files called

filename-i.o
and then linked to produce an executable program file a.out . Also it is possible to compile each file
separately and link them later .The commands,

c c - c mod1.c

c c - c mod2.c

School of Distance Education

‘C’ Programming for Mathematical Computing Page 40

will compile the source files mod1.c and mod2.c into object files mod1.o and mod2.o. They can be
linked together by the command

c c mod1.o mod2.o

Further, the source and object files can be combined as

C c mod1.c mod2.o

Here only mod1.c is compiled and then linked with the object file mod2.o. This approach helps in
situations when one of the source files need to be changed and recompiled or an existing object file is
to be used along with the program to be compiled.

3.8 MS- DOS System

In MS-DOS system, the program is created by any word processing software in non document
mode and should end with the characters ” .c. “. For example, program.c ,pay.c , etc. Then the
command

MSC pay.c

Would load the program stored in the file pay.c and generate the object code. This code is stored in
another file under the name pay.obj. The linking is done by the command

LINK pay.obj

Which generates the executable code. with the file name pay.exe. Now the command would execute
the program and give the results.

3.9 Summary

1. Every C program needs a main() function.
2. The execution of a function begins at the opening brace of the function and ends at the

corresponding closing brace.
3. C programs are written in lowercase letters. Upper case letters are used for symbolic and

output strings.
4. Every program statement must end with a semicolon.
5. All variables must be declared for their types before they are used in the program.
6. Include header files using # include directive for reference to special names and functions

that it does not define. They should not end with a semicolon. The # sign must appear in the
first column of the line.

7. When braces are used to group statements, the opening brace must have a corresponding
closing brace,

8. A comment can be inserted anywhere to increase readability and understandability of the
program. Comments help the users in testing and debugging. Care must be taken to match the
symbols /* and */

School of Distance Education

‘C’ Programming for Mathematical Computing Page 41

Unit 4:Constants Variables and Data Types
Structure

4.1 Introduction

4.2 The C Character Set

4.3 C Tokens

4.4 Key Words and Identifiers

4.5 Constants

4.6 Variables

4.7 Data Types

4.8 Declaration of Variables

4.9 Declaration of Storage Class

4.10Assigning Values To Variables

4.11Defining Symbolic Constants

4.12Declaring a Variable as Constant

4.13Declaring a Variable as Volatile

4.14 Summary

4.1 Introduction

To communicate with a computer we have to speak a language which the computer understands

since a computer speaks in bits bytes. . This means that, English or for that matter any other natural

language by them cannot be used to perform the task of communication with computer. For this

we have to have a language that is close to human language and far removed from machine

language. A programming language is a methodical/systematic language designed to communicate

instruction to a machine, especially to a computer and it can be used to create programs that control

the behavior of a machine . However, learning C as a programming language is very much like

learning English language. Learning English language begins with learning first of all the alphabets,

then learning how to combine these alphabets to form words, combining words to form

sentences, and finally learning to combine sentences to form paragraphs. On the same analogy ,

Learning C is not different. Instead of straight away learning how to write programs, we must

incrementally learn (1) what alphabets, numbers, and special symbols are used in C, (2) how using

these alphabets, numbers and special symbols, constants, variables and keywords are constructed,

and (3) finally how these are combined to form an instruction and how groups of instructions are

combined in accordance with “ rules for sentence building” or syntax to form a program. The steps
in learning C language is depicted below in the Figure 4.1 ,

School of Distance Education

‘C’ Programming for Mathematical Computing Page 42

As in any language, C language has its own vocabulary and grammar (or syntax rules) and each

program instruction must conform precisely to the syntax of the language. In this chapter we will

discuss the concepts of constants, variables and their types.

4.2 The C Character Set

A C character set denotes any valid alphabet, digit or special symbol, to represent an information.

The set of characters that can be used to write a source program is called source character set and the

set of characters available during program execution is called execution character set. Very often, in

most implementations of C, both character sets are taken as identical. Generally, a character data

type holds a single character(or one byte), enclosed with in single quotes, to represent a character

constant. For e.g., the expressions ‘a’ , ‘b’,and ‘0’ represent character constants. Remember that “a”
is used to represent a string of characters(or sequence of characters enclosed with in double quotes)

and is different from ‘a’. Further, ‘\n’ is used to represent a new line character, that is used to move
the cursor to a new line on the screen. Figure 4.2 shows the entire character set (i.e., the valid

alphabets, numbers, special characters and white spaces) allowed in C. The compiler ignores white

spaces unless they are part of a string constant. White spaces may be used to separate words, and are

prohibited between characters of key words and identifiers.

Trigraph Characters

Some characters from the C character set are not available in all environments, because keyboard

may not have keys to cover the entire characters set of the language. A Trigraph, is a three character

replacement for a special character in the C character set. ANSI C introduces the concept of

“Trigraph” Sequences to provide a way to enter certain characters that are not available on some

keyboards. Actually, each Trigraph sequence contains three characters (i.e., two question marks

followed by another character) as in Figure 4.3. i.e., Each trigraph sequence is introduced by two

question marks followed by a third character that indicates the character to be represented. For eg., ,

if a key board does not support square brackets , we can still use them in a program using the

Trigraphs ?? (and ??).

Figure 4.1: Steps in Learning C Language

ProgramsInstructions

Alphabets

Digits

Special Symbols

Constants

Variables

Key words

School of Distance Education

‘C’ Programming for Mathematical Computing Page 43

4.3 C Tokens

A token is a source program text that the compiler does not break down into atomic units. They are

the basic building blocks/elements of the C language, constructed together to make a C program.

That is, each and every smallest individual units in a C program are called Tokens. The Tokens in C

language include:

Figure 4.2 : The C Character Set

Alphabets Upper case letters A,B,……., Z

Lower case letters a,b,…… .., z

Digits All decimal digits 0,1,2,…….9

Special Characters ; semicolon , comma & ampersand . period

* asterisk + plus sign ‘ apostrophe ? question

mark

< opening bracket > closing bracket ^ caret ~ tilde

or less than sign or greater than sign

! exclamation mark | vertical bar (left parenthesis

) right parenthesis \ backlash [left bracket

] right bracket $ dollar sign } right brace

_ under score { left brace = equal sign

% percent sign # number sign / slash

@ commercial at - hyphen or minus “ quotation mark

sign

White Spaces

Blank spaces

Horizontal Tab

Carriage Return

New Line

Form Feed

School of Distance Education

‘C’ Programming for Mathematical Computing Page 44

1. Key words (eg: float, double etc.,)

2. Constants (eg: 100, -10.0 etc.,)

3. Strings (eg: “ABC”, “month” etc.,)
4. Operators (eg: +, - etc.,)

5. Identifiers (eg: main, total etc.,)

6. Special Symbols (eg: [],() etc.,)

C Programs are written using these tokens and the syntax of the language.

4.4 Key Words and Identifiers

Every C word fall under two categories, viz,. either a key word or an Identifier. C Key words
(also called Reserved words) are the words that convey a special meaning to the C Compiler. They

are the system defined identifiers that do have a fixed meaning (i.e., it does not change) and cannot

be used as variable names. They are the basic building blocks for program statements and are written

in lowercase letters. C language supports 32 (Thirty Two) keywords and are listed in Figure

4.4.below.

Fig. 4.3 ANSI C Trigraph Sequences

Trigraph Sequence Translation

??= # number sign

??([left bracket

??)] right bracket

??< { left brace

?? > } right brace

??! | vertical bar

??/ \ back slash

??| ^ caret

??~ ~ tilde

School of Distance Education

‘C’ Programming for Mathematical Computing Page 45

auto float double long

short signed unsigned const

goto else switch break

if do while for

typedef extern static struct

default enum return sizeof

register union int case

void char continue volatile

An Identifier refers to the names of variables (i.e., the one which changes during program
execution), names of functions, arrays, and structures. They are user defined names consisting of a
combinations of alphabets, digits with a letter as the first character and underscore. The under score
symbol is treated as a letter in the C character set and it helps in the readability of long variable
names. That is, they are the names given to C entities such as , variables, types, functions, structures
and labels in the program. However, the lengths of identifiers in C, vary from one implementation to
another. In general, Identifier are created to give a unique name to C entities so as to identify it
during the execution of the program. For example: int apple; Here apple is an identifier which denote
a variable of integer type. In fact, Keywords (either C or Microsoft) are not used as
identifiers.(i.e., they are reserved for special use). Identifiers are in general, used to name
constants, functions, files and the like, apart from variables.
Rules for Identifiers

1. The first character must be an alphabet(uppercase or lowercase) or an under score.
2. All succeeding characters must be letters or digits.
3. Key words should not be used as identifiers.
4. Name of identifier is case sensitive i.e. num and Num are two different variables.
5. Identifier name cannot be exactly same as constant name which have been declared in the header

file of C and you have included that header file.
6. Name of identifier cannot be exactly same as of name of function with in the scope of the function.
7. Name of function cannot be global identifier.
8. No two successive underscores are allowed.
9. Only first 31 characters are significant.
10. No special characters or punctuation symbols are used except the under score.

Figure 4.4 Key words in C

School of Distance Education

‘C’ Programming for Mathematical Computing Page 46

4.5 Constants

A constant in C refers to a piece of data that does not change throughout the execution of the

program. That is, Constants in C are expressions with a fixed value that are not changed during the

execution of the program and are declared with the define keyword .In general, C constants can be

divided into two major categories

1. Primary constants

2. Secondary constants.

These constants are further categorized as shown in Figure 4.5.

At this stage, we would restrict our discussion to only primary constants(or basic constants)

namely, Integer, Real and Character constants. Let use details of each of these constants..

Integer Constants

Integer constants are the numeric constants (Constants associated with number) without any

fractional or exponential part. Integer constants take one of the following forms:

1. A decimal integer. , e.g., 1 , 134, 10005 (Decimal integers are a set of digits, 0 through 9,

preceded by an optional – or + sign). Embedded spaces, commas, and non digit characters

are not allowed between digits.

2. An Octal integer constant (base 8), e.g., 0 1 , 134, 0303242 . An octal constant is introduced

Fig. 4.5 Types of C Constants

C Constants

Primary Constants Secondary Constants

Numeric Constant Character Constant Array

Pointer

Structure

Union

Enum. etc

Integer

Constant

Real

Constant

Single
Character

Constant

String

Constant

School of Distance Education

‘C’ Programming for Mathematical Computing Page 47

by a leading 0 and digits, the digits are 0 through 7 .

3. A Hexa decimal (base 16) Number. e.g., 1 , 0x1, 0X186A2. A hex constant is preceded by a

leading 0X or 0x and the digits are 0 through 9 followed by A through F (Note that upper and

lower case Letters are allowed) .

4. A character Constant.

Integer constants can also be suffixed with an identifier U (or u) or L (or l), which is used to

indicate that the constant is unsigned or long, respectively. For e.g., 567U or 567u These suffixes

may be combined as in .e.g., 989712343UL or 989712343ul . The largest integer value that can be

stored is machine dependent. It is 32767 on 16-bit and 2147483647 on 32-bit machines. For

constructing the integer constants, certain rules have been laid down. These rules are as under:

Rules for constructing Integer constants

1.An integer constant must have at least one digit

2.It must not have a decimal point.

3.It can be either + ve or - ve.(If no sign precedes, it is assumed to be + ve.).

4. No Commas or Blanks are allowed within an integer constant.

5. The allowable range is between -32768 to 32767(For 16 bit compiler).

Real Constant

Certain quantities that vary continuously, such as prices, distances, temps, and so on, are

represented by numbers containing fractional parts like 10.246. Such numbers are called Real or
Floating point constants. That is, a real constant is one of :

 A fractional constant followed by an optional exponent

 A digit sequence followed by an exponent.

In either case followed by an optional of f, l (for single precision) , F. L(For double Precision),

where:

 An optional digit sequence followed by a decimal point followed by a digit sequence.

 A digit sequence followed by a decimal point.

Further, an exponent is one of :

 E or e followed by an optional + or – followed by a digit sequence (A digit sequence

is an arbitrary combination of one or more digits).

School of Distance Education

‘C’ Programming for Mathematical Computing Page 48

Floating point constants are normally represented as double precision quantities. Following rules

must be observed while constructing real constants in fractional form:

1. A real constant must have at least one digit

2. It must have a decimal point

3. It could be either positive or negative

4. If no sign precedes an integer constant, it is assumed to be positive.

5. No commas or blanks are allowed within the real constant.

The exponential form of representation of real constants is usually used if the value of the

constant is either too small or too large . In this form of representation, the real constant is

represented in two parts. The part appearing before ‘e’ is called mantissa, whereas the part
following ‘e’ is called exponent. Thus 0.000213 is represented in exponential form as 2.13e-4 . The

General form is

mantissa e exponent

Following rules must be observed while constructing real constants expressed in exponential form:

1. The mantissa and exponential part should be separated by a letter e or E.

2. The mantissa part may have + ve or –ve sign.(default sign is positive).

3. The exponent must have at least one digit , which must be a +ve or _ve integer. Default sign is

+ve.

4 .Range of real constants expressed in exponential form is -3.4e38 to 3.4e38.

Character Constant

Character constants are the constant which use single quotation around characters. example, `b`,

`k`, `l` etc. In general, A character constant is a single alphabet, a single digit, or a single special

symbol enclosed with in single quotes(or inverted commas). For both the inverted commas(single

quotes) should point to the left. For example, `C` is a valid character constant while ‘ C‘ is not. In
C, characters are small integers, so you can use a character constant anywhere you can use an integer

constant and vice versa. More over, the maximum length of a character constant can be 1 character.

String Constants

It is a collection of characters enclosed in double quotes. It may contain letters, digits, special

characters and blank space. Examples are:

“Hello!” “How Are You “ “ ? “ “X ”

School of Distance Education

‘C’ Programming for Mathematical Computing Page 49

Note that a character constant (e.g., ‘X’) is not equal to the single character string constant(e.g.,
“X”) . Further, a single character string constant does not have an equivalent integer value while a
character constant has an integer value. More over, character strings are often used in programs to

build meaningful programs. Moreover, the entity having two consecutive double quotes without any

characters in between them, i.e., “ “, is called a null string. Here, the quotes acts as delimiters and
are not part of the string.

Backlash character constants

Sometimes, it is necessary to use newline(enter), tab, quotation mark etc. in the program which

either cannot be typed or has special meaning in C programming. Such characters with special

meaning should be preceded by a backlash symbol to make use of special function of them.. The

backlash (\) causes “escape” from the normal way the characters are interpreted by the compiler.
Each backlash character constant represents one character, although they consist of two characters.

These character combinations are called escape sequences. Given below (Table 4.1)is the list of

special characters and their purpose .

4.6 Variables

Every language should support the basic data objects namely, variables and constants. Variables
are memory location in computers memory to store data. To indicate the memory location, each

variable should be given a unique name called identifier. Variable names are just the symbolic

representation of a memory location. These memory locations can contain integer, real or character

constants. Unlike constants that remain unchanged during the execution of program , a variable may

take different values at different times during execution. Examples of variable names are : sum,

count, bike, interest etc. A variable name can be chosen by the programmer in a meaningful manner

so as to reflect its function. Variables are to be declared before using it in the program.

Rules for writing Variable names in C

1. Variable names can be composed of letters(upper & lower case) , digits, and underscore. There

is no rule for the length of a variable. A variable name is any combination of 1 to 31 alphabets.

2. The first letter of a variable should be either a letter or an under score. Note that upper and

lower case are significant

3. No commas or blanks are allowed with in a variable name.

4. No special symbol other than underscore can be used in the variable name.

5. It should not be a key word.

6. White spaces are not allowed.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 50

Constant Meaning

‘\a’ audible alarm

‘\b’ back space

‘\f’ form feed

‘\n’ new line

‘\r’ carriage return

‘\t’ horizontal Tab

‘\v’ vertical tab

‘\”’ double quote

‘\’’ single quote

‘\?’ question mark

‘\\’ backlash

‘\0’ null

Table 4.1

4.7 Data Types.

Like other computer languages, C supports data types namely, of integer, character and of float
type. In C, all variables must be declared before they are used, usually at the beginning of the

function before an executable statements. A declaration announces the properties of variables; it

consists of a type name and a list of variables such as

int Celsius;

int count;

The type int means that the variables listed are integers. ANSI C supports three classes of data

types:

1. Primary data types

2. Derived data Types

3. User defined data Types.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 51

All C Compilers support five fundamental data types, namely integer(int) , character(char), Floating

point(float), double precision floating point(double) and void. Extended data types like long int
,long double are also in use in C. Figure 4.6 gives an overview of primary data types in C.

Integer Types

This data type allows a variable to store numeric values. int keyword is used to refer integer data

type. The. integers are whole numbers with a range of values supported by a particular machine

(that is, the storage size of int data type is 2 or 4 or 8 byte. It varies with the processor in the CPU

that we use). Generally, the C integer types were intended to allow code to be portable among

machines with different inherent data sizes (word sizes), so each type may have different ranges on

different machines. The problem with this is that a program often needs to be written for a particular

PRIMARY DATA TYPES

Integral Type

Integer Character

signed unsigned

int unsigned int

short int unsigned short

long int unsigned long int

Char

Signed char

Unsigned char

Floating point type

void
float double long double

Fig. 4.6 Primary data types in C

School of Distance Education

‘C’ Programming for Mathematical Computing Page 52

range of integers, and sometimes must be written for a particular size of storage, regardless of what

machine the program runs on. In fact, integers occupy one word of storage, and since the word size

of machines vary, the size of integer that can be stored depends on the computer. For a 16 bit word

length, the size of the integer value is limited to the range -2 15 to 2 15-1. A signed integer uses one bit

for sign and 15 bits for the magnitude of the number.

In order to provide control over the range of numbers and storage space, the C language defines

several integer data types: integer, short integer, long integer, and character, all both in signed
and unsigned varieties. For eg., Short int represents fairly small integer values and requires half

the amount of storage space as a regular int number uses. Unlike signed integers, unsigned integers

use all the bits for the magnitude of the number and are always positive. To increase the range of

values we declare long and unsigned integers

Floating point types

C uses the key word float to define floating point numbers . Floating point numbers are stored in

32-bit, with six digits precision. Key word double is used to define big floating point numbers. It

reserves twice the storage for the number. A double data type number uses 64 bits giving a precision

of 14 digits. On PC’s this is likely to be 8 bytes. The double type represents the same data type that

float represents, but with a greater precision. To extend the precision further, the key word long
double with 80 bits are used.

Void types

Void is an empty data type normally used as a return type in C to declare that no value will be

returned by the function. It can also play the role of generic type, meaning that it can represent any of

the other standard types.

Character type

A single character of the character set of C, can be defined as a character (or char) type data .

Key word char is used for declaring the variable of character type. Usually, a character enclosed

between a pair of single quotes denotes a character constant. The size of char is 1 byte(or 8 bits of

internal storage)..The qualifier signed or unsigned may explicitly applied to char.

4.8 Declaration of Variables

In order to use a variable in C, we must first declare it before they are used in the program.

Declaration does two things:

1. It tells the compiler what the variable name (type name) is

2. It specifies what type of data (or properties) the variable will hold

School of Distance Education

‘C’ Programming for Mathematical Computing Page 53

The type declaration statement is written at the beginning of main () function.

Primary type instruction

A variable can be used to hold a value of any data type in a memory location. After assigning

variable names, we have to declare them. The syntax for declaring a variable is:

data-type v1,v2,….vn;

Here v1,v2,….vn are the variable names and are separated by commas A declaration statement must

end with a semicolon. For example,

int num, sum;

int code;

double ratio;

are valid declarations. Here, Keywords int and double are used to represent integer and real type data

respectively. When qualifier is applied to the data type then it changes its size (The size qualifiers are

:short and long) or its sign (sign qualifiers are: signed and unsigned). While using qualifiers like,

short, long, unsigned without specifying the basic data type , the C compiler will treat the data type

as int . Moreover, if we want to declare a character variable as unsigned, then we must do so by

using both the terms like unsigned char

User Defined Declaration

In C language, a user can define an identifier that represents an existing data type. The user

defined data type identifier can later be used to declare variables. The General syntax is:

typedef type identifier;

Here type represents existing data type and “identifier” refers to the row name given to the data type.

Example:

typedef int amount;

typedef float sum;

Here amount symbolizes int and sum symbolizes float. They can be later used to declare variables

as follows:

amount dep1,dept2;

sum section1[20],section2[20];

Therefore dept1 and dept2 are indirectly declared as integer data type and section1 and section 2 are

indirectly float data type.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 54

Another user defined data type is enumerated data type provided by ANSI C standard which is

defined as follows:.

enum identifier { value1,value2,…..valuen};

The “identifier “ here , is a user- defined enumerated data type which can be used to declare

variables that can have one of the values enclosed with in the braces . After the definition we can

declare variables to be of this ‘new’ type as below.

enum identifier v1,v2,…..vn;

The enumerated variables v1,v2,…vn can have only one of the values value1, value2 ….. value n.

Th assignments of the following type:

v1 = value3;

v5 = value1;

are valid.

For example:

enum day { Monday, Tuesday,…….,Sunday};

enum day week_ st,week_end;

week_ st = Monday;

week_end = Friday;

If (week_st = = Tuesday)

week_end = Saturday;

The C compiler automatically assign integer digits beginning with 0 to all the enumeration constants.

That is, the enumeration constant value 1 is assigned 0, value 2 is assigned 1, and so on. The

automatic assignment can be overridden if we assign enumeration constant values explicitly as;

enum day { Monday = 1 , Tuesday,…….,Sunday};

Here Monday is assigned the value 1.The remaining constants are assigned values that increase

successively by 1.

The definition and declaration of enumerated variables can be combined in one statement as in :

enum day { Monday, Tuesday,…….,Sunday} week _st, week_end;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 55

4.9 Declaration of Storage Class

C has a concept of “storage class” that defines the scope and life time of variables and/ or functions
within a program. Storage class specifier helps to specify the type of storage used for data objects,

C program uses the following storage classes specifiers:

 auto

 register

 static

 extern

In a declaration only one storage class specifiers is permitted, as there is only one way of storing

things and if the storage class specifiers in a declaration is omitted then a default is chosen,

depending on whether the declaration is made outside or inside the function. For external

declarations the default storage class specifiers will be extern and for internal declaration it will be

auto. It is the default storage class for all local variables. The variables with local life time are

allocated new storage each time execution control passes to the block in which they are defined.

When execution returns, the variables no longer have meaningful values,.

register is used to define local variable (or used for variables that need quick access-such as

counters) that should be stored in a register instead of RAM. The variable declared as register is

stored in the CPU register, the default value of that variable is the garbage value.. That is, the

variable has a maximum size equal to the register size (usually one word) and cannot have unary ‘&’
operator applied to it (as it does not have a memory location).The scope of the variable is local to the

block in which it is defined (or it contains) and the variable is alive till the control remains with in

the block in which the variable is defined..

static is the default storage class for global variables. The variable that is declared as static is

stored in the memory, default value of which is zero. Life of variable persist between different

function calls. The static storage class provides a life time over the entire duration of program and

are not available to the linker. Therefore, another compilation unit can contain an identical declaration

that refers to different object. A static object can be declared anywhere (or it does not have to be at

the beginning of the block). static variables may be initialized in their declarations; the initializes

must be constant expressions, and it is done only once at compile time when memory is allocated for

the static variable. Further, the scope of the static automatic variables is identical to that of automatic

variables; however the storage allocated becomes permanent for the duration of the program.

The extern storage class is used to give reference of a global variable or function in another file,

that is visible to all program files. It is the default class for objects with file scope .The variable

School of Distance Education

‘C’ Programming for Mathematical Computing Page 56

declared as extern is stored in the memory, the default value of that variable is being zero. Variable is

alive as long as the program’s execution does not come to an end . External variable can be declared
outside all the functions or inside functions using ‘extern’ keywords. External variables may be
declared outside any function block in a source code file the same way another variable is declared,

by specifying the type and name(extern keyword may be omitted).Typically, when declared at the

beginning of the source file, the extern key word is omitted. When you use extern the variable

cannot be initialized as all it does is point the variable name at a storage location that has been

previously defined. If the program is in several source files and the variable is defined in several files,

collect extern declarations of variables and functions in separate header file then included by using #

include when you have multiple files and you define a global variable function which will be used in

another files also then extern will be used in another file to reference of defined variable or function.

The extern class specifies the same storage duration as static objects, but the object of function is

not hidden from the linker .Using the extern key word in a declaration, results in external linkage and

results in static duration of the object Memory for such variables is allocated when the program

begins execution, and remains allocated until the program terminates. The storage class is another

qualifier(like long and unsigned) that can be used in the variable declaration as given below:

auto int count;

register char ch;

static int y;

extern long sum;

The extern and static class variables are automatically initialized to zero. Auto variables , on the

other hand contain undefined (or garbage)values unless they are initialized explicitly.

4.10 Assigning Values To Variables

Variables are used in program statements. Any variable used in the program must be declared

before using it in any statement. In fact, the type declaration statement is written at the beginning of

main() function. While all the variables are declared for their type, the variables that are used in

expressions (on the right side of equal sign) must be assigned values before they are encountered in

the program. First we will discuss the subtle variations of the type declarations as:

(a) While declaring the type variable we can also initialize it as:

int i = 5, j = 15;

float a = 1.2, b = 1.99;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 57

(b) The order in which we define variable is sometimes important and sometimes not.

For e.g., int i = 10, j = 12; . is same as

int j= 12, i = 10.

However, float a= 1.5, b= a +3.2; is alright

But float b = a+ 3.2 ,a = 1.5 is not,

Because, here we are trying to use a even before defining it.

(c) The following statements work better

int a,b,c,d;

a = b = c = d = 10;

However the following statement would not work

int a = b = c = d = 10, an instance of using b (to assign to a) before defining it.

The Assignment statement

We can assign values to the variables using the assignment operator = as follows:

variable_name = constant;

Multiple assignments in one line are permitted in C. For eg.,

initial _value= 0; final value = 10; is a valid statement.

It is also possible to assign a value to variable at the time the variable is declared. This takes the

following form:

data-type variable_name = constant;

More than one variable can be initialized in a single statement as:

a= b = c = 2;

x = y = z = MIN;

Note here that, MIN is a symbolic constant defined at the beginning.

Reading Data from Key board

There is a function in C, called the scanf function, which allows the programmer to accept input

from the key board(or pass data to our C program). That is, Once executed our program will wait

for the user inputs , once it came across any scanf function during program execution. It is a general

input function available in C and is very similar in concept to the printf function. That is, printf and

School of Distance Education

‘C’ Programming for Mathematical Computing Page 58

scanf are two standard C programming language functions for console input and output. scanf
works much like an INPUT statement in BASIC language. The syntax of scanf function is:

scanf(“format string”, &argument list);

The format string must be a text enclosed in double quotes and it contains the format of data

being received for connecting it into internal representation in memory. e.g., integer (%d), float

(%f), character (%c), or string (%s). The argument list contains a list of variables each preceded by

the address list and separated by comma. The number of argument is not fixed. However

corresponding to each argument there should be a format specifier. Inside the format string the

number of argument should tally with the number of format specifier. For eg., if i is an integer and j

a floating point number , to input these two numbers we may use scanf(“%d %f”, &i, &j);. The

& symbol before each variable name is an operator that specify the variable name’s address. We
must always use this address. Let us look at an eg’.,

scanf(“%d”, &number);

when this statement is encountered by the computer, the execution stops and waits for the value

of the variable number to be typed in. Since the control string “%d” specifies that it is an integer to
be read from the terminal , we have to type in the value in the integer form. Once the number is

typed in and the return key is pressed, the computer then proceeds to the next statement. The

required header for the scanf function is # include < stdio.h >.

4.11 .Defining Symbolic Constants

A symbolic constant is a name that substitute for a sequence of characters (characters may be a

numeric constant, a character constant, or a string corresponding to a character sequence) that cannot

be changed..When the program is compiled, each occurrence of a symbolic constant is replaced by

its corresponding character sequence compiled. They are usually defined at the beginning of the

program. The symbolic constants may then appear later in the program in place of the numeric

constants, character constants, etc, that the symbolic constants represent. The syntax of the Symbolic

constant is:

#define symbolic- name value of constant

For example, consider a C program with the following symbolic constant definitions:

#define PI 3.141593

#define TRUE 1

#define FALSE 0

School of Distance Education

‘C’ Programming for Mathematical Computing Page 59

define PI 3.141593 defines a symbolic constant PI whose value is 3.141593.When the program is

preprocessed, all the occurrences of the symbolic constant pi are replaced with the replacement text

3.141593. Here the preprocessor statements begin with # symbol. and are not end with a semi colon.

By convention preprocessor constants are written in UPPER CASE. Further during run time, the

value of a symbolic constant does not change. Symbolic names are sometimes called constant

identifiers. Since symbolic names are constants, they do not appear in declarations.

Rules for Symbolic Constants

1. Symbolic names have the same form as variable names written in UPPER CASE.

2. No blank space between ‘#’ and the word define.

3. ‘#’ must be the first character in the line.

4. A blank space is required between #define and symbolic name and between symbolic name and
the constant.

5. #define (#define is a preprocessor compiler directive) statements do not end with a semi colon.

6. After definition, the symbolic name should not be assigned any other value within the program by
using an assignment statement.

7. symbolic names are not declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the program.

4.12 Declaring a Variable as Constant

In environments that support C, we may like the value of certain variables to remain constant

during Program execution. We can achieve this by declaring the variable with the qualifier const at

initialization as in e.g.,

const int class_size = 20;

The const is a new data type qualifier defined by ANSI C. This tells the compiler that the value of

the int variable class_size must not be modified by the program. However, it can be used on the

RHS of an assignment statement like any other variable.

4.13 Declaring a Variable as Volatile

Although we have phrased the discussion in terms of declaring a variable as constant , by far the

most frequent use of another qualifier volatile, that could be used to tell explicitly the compiler that

a variables value may be changed at any time by any external source is imminent. For example:

volatile int date;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 60

This means that the value of date may be altered by some external factors even if it does not appear

on the LHS of an assignment statement. When we declare a variable as volatile, the compiler will

examine the value of the variable each time it is encountered to see whether any external alteration

has changed the value.

If we wish that the value of a variable must not be modified by the program while it may be

altered by some other process, then we may declare it as both const and volatile as :

volatile const int date = 12 ;

4.14 Summary

1. The three primary constants and variable types in C are int, float and character.

2. A variable name can be of maximum 31 character.

3. Do not use a key word as a variable name.

4. Each variable used must be declared for its type at the beginning of the program or function.

5. Each variable must be initialized before they are used in the program.

6. Integer constants, by default, assume int types. To make the numbers long or unsigned , append

L or U to them.

7. Floating point default to double To make them to denote float or long double , append letters F

or L to the numbers.

8. Do not use l for long.

9. Use single quote for character constants and double quotes for string constants.

10. Do not combine declarations with executable statements.

11. A variable can be made constant either by using #define at the beginning of program or by

declaring it with the qualifier const at the time of initialization.

12. ‘#’ must be the first character in the line

13. No blank space between ‘#’ and the word define is allowed.

14. A variable defined before the main function is available to all the functions in the functions in

the program.

15. A variable defined inside a function is local to that function and not available to other functions.

16. Input/output in C can be achieved using scanf () and printf() functions.

17. No blank space are allowed within a variable, constant or keyword.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 61

Module II:Introduction
This is the second module of the four modules for the C programming language course in your B Sc

Programme. Programming a computer at once means preparing a set of instructions for it to follow. These
instructions invariably has to be written in one of the several high level languages, such as C, C++ etc. or
in a low level language such as the assembly language . Eventually these instructions get translated to
produce machine language program. Since it is the translated version of a program that is actually getting
executed, at this level it does not matter in what language the source program may have written in. But
some languages are more suited to particular applications than others: For example, C offers a mix of all
the advantages of the high level languages, plus many of the desirable features which assembly alone can
provide. It has a wealth of operators and library of built in functions that pave the way for easy
programming. In this module you will find a quick introduction to many of the operators & functions in C
managing of input and output operations. The Module consists of two units in total viz,

Unit 1: Operators and Expressions.

Unit 2: Managing Input And Output Operations.

This module starts with unit 1, in which various built –in operators are discussed in great length. Unit 2, is
devoted to Managing I/O operations in C.

Unit 1:Operators And Expressions
Structure
1.1 Introduction:

1..2 Arithmetic Operators

1.3 Relational Operators

1.4 Logical Operators.

1. 5 Assignment Operators.

1.6 Increment and Decrement operators.

1.7 Conditional Operator

1.8 Bitwise Operators

1.9 Special Operators

1.10 Arithmetic Expressions

1.11 Evaluation of Expression

1.12. Precedence of Arithmetic Operators

1.13 Some computational problems

1.14 Type conversion in expressions

1.15 Operator Precedence and associativity

1.16 Mathematical Functions

1.17 Summary

School of Distance Education

‘C’ Programming for Mathematical Computing Page 62

1.1 Introduction:
C language has a wide range of built –in operators to perform various operations. The symbols which are

used to perform logical and mathematical operations in a C program are called operators. These C operators
are used to join individual constants and variables to frame expressions. Moreover, operators, functions,
constants and variables are combined to shape expressions. That is, operators are used with operands to build
expressions. For example , the following is an expression containing two operands and one operator ‘ +’ (an
operator to perform addition).

8 + 5

whose value is 13. The value can be any type other than void. C offers the following operator Groups.

 Arithmetic

 Assignment

 Logical/relational

 Incremental and decrement operators

 Conditional

 Special Operators

 Bit wise operators.

1..2 Arithmetic Operators

The C arithmetic operators are the +, -, /, * and the modulo operator % . These C arithmetic operators are
used to carry out mathematical calculations like addition, multiplication, division and modulus in c programs.
Unlike /, which returns quotient, the % returns the reminder, the integer division truncates any fractional part.
That is, the expression

x % y

produces the remainder when x is divided by y, and thus is zero when y divides x exactly. Note that the
operator ‘ % ‘ cannot be applied on floating point or double type data. Further, C does not have an operator
for exponentiation. The operators in C with their meaning are listed in Table 5.1 below.

Integer Arithmetic

When both the operands in a single arithmetic expression are integers, the expression is called an integer
expression, and the operation is called integer arithmetic. Integer arithmetic always yields an integer value. For
example, for integer operands such as a and b with assigned values respectively, 15 and 5, we have:

a + b = 20

a - b = 10

a * b = 75

a / b = 3

a % b = 0

School of Distance Education

‘C’ Programming for Mathematical Computing Page 63

During integer division , if both operands are of the same sign, the result is truncated to zero. If one of

them is negative, the direction of truncation is machine dependant. .That is , 6/7 = 0 and -6/-7 = 0 but -6/7

may be zero or -1(that is , machine dependent).

Similarly, during modulo operation, the sign of the result is sign of the first operand., as in:

-16 % 3 = - 1

-16 % -3 = - 1

16 % - 3 = 1

Operator Meaning

+ Addition(unary plus)

- Subtraction(Unary minus)

* Multiplication

/ Division

% Modulo division (reminder after division)

Table 5.1 Arithmetic Operators

The Precedence to the operations associated with the operators are listed as:

Operator type Precedence priority

Unary Minus 1 Highest

*, / , % 2 Second

+, - 3 Third

That is, when an expression is given for evaluation, they are evaluated from Left to Right, based on the

precedence associated with the operators. On the other hand, if the precedence’s associated with the operators

are to be overridden, it is necessary to use parenthesis in the expression. However, the expression within the

parenthesis is evaluated on the basis of the precedence rule , with parentheses again evaluated from left to

right. For expressions with nested parentheses, we evaluate the innermost one first, then the one immediately

outside and so on.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 64

Real Arithmetic

The C language contains the basic real arithmetic operators. An arithmetic operation involving only real

operands is called real arithmetic. A real operand may accept values either in decimal or exponential form. An

arithmetic operation between an integer and integer gives an integer result, while , the result of applying

the real operators to real is another real. For floating point values, it is rounded to the number of significant

digits permissible, and the final value is an approximation of the corrected result. For example, if operands x,

y ,z are floats, then we will have,

x = 6.0/ 7.0 = 0.857143

y = 1.0/ 3.0 = 0.333333

z = -2.0 /3.0 = -0. 666667.

The operator % cannot be used with real operands

Mixed Mode Arithmetic

If operands in an expression contains both integer and real constants or variables then it is a mixed mode

arithmetic expression. That is, When one of the operands is real, an operation between an integer and real

always gives a real result. In this operation, the integer is first promoted to a real one and then operation is

performed. The expression thus obtained is called a Mixed mode arithmetic expression. For e.g., 25/ 10.0 =

2.5 while, 25/10= 2.

1.3 Relational Operators

Relational operators are used to check relationship between two operands. If the relation is true, it returns

value 1 and if the relation is false, it returns value zero. The relational operators are

>, > = , < , < =

They all have the same precedence. C offers six relational operators in all. These operators and their

meanings are listed in Table 5.2.

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

= = is equal to

!= is not equal to

Table 5.2 Relational Operators.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 65

A simple relational expression contains only one relational operator . When arithmetic operations are used

on either side of a relational operator, arithmetic expressions will be evaluated first and then the results are

compared. Relational operators have lower precedence than arithmetic operators and are used in decision

making and loops(i.e., in statements like If and while) in C programming..The Syntax Is:

ae-1 relational operator ae-2

with ae-1 and ae-2 representing arithmetic expressions.

For e.g., 4.6 < = 10 TRUE

4.6 < - 10 FALSE

x+y = y+z TRUE only if sum of values of x and y are equal to the sum of values of y and z

Relational operator complements

Among the six relational operators, each one is complement of another operator. They are as:

 > is complement of < =

 < is complement of > =

 = = is complement of ! =

We can simplify an expression involving the not and less than operators using the complements as :

! (x < y) simplified to x > = y

! (x > y) simplified to x < = y

! (x ! = y) simplified to x= = y

! (x < = y) simplified to x > y

! (x > = y) simplified to x < y

! (x = = y) simplified to x !> = y

1.4 Logical Operators.

Logical operators are used to combine expressions containing relational operators. These operators perform

logical operations on the given expressions .In C there are 3 logical operators (Table 5.3) and are:

Operator Meaning of operator

&& logical AND

| | logical OR

! logical NOT

. Table 5.3

School of Distance Education

‘C’ Programming for Mathematical Computing Page 66

Logical operators perform logical-AND (&&) and logical –OR (| |) operations. Its Syntax is:

logical-AND-expression:

inclusive-OR- expression

logical –AND- expression & & inclusive- OR- expression

logical-OR-expression:

logical –AND- expression

logical -OR- expression | | logical - AND- expression

some example of usage of logical expression is:

1. If (age > 60 & & salary < 300 000)

2.If (number < 0 | | number > 1000) .

Logical operators & & and | | are used when we want to test more than one condition and to make decisions.

They do not perform the usual arithmetic conversions. Instead, they evaluate each operand in terms of its

equivalence to 0.The result of logical operation is either 0 or 1 and is of int type. The operands of logical-

AND and logical-OR are evaluated from left to right. If the value of the first operand is sufficient to determine

the result of the operation, the second operand is not evaluated . The C logical operators are described in Table

5.4 belo

Operator Description

&& If both operand are non zero logical AND produces the value 1.If either

operand is equal to zero, the result is zero and if the first operand is equal to

zero, the second operand is not evaluated.

| | The logical-OR performs an inclusive - OR operation on its operands. The

result is 0 if both operands have 0 values. If either operands has a non zero

value, the second operand is not evaluated.

Table 5.4

While using compound expressions, care should be taken in using the precedence of relational and logical

operators. The relative precedence are listed as:

! Highest

> > = < < =

= = ! =

& &

| | Lowest.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 67

1. 5 Assignment Operators.
The assignment operators perform an arithmetic operation on the 1value and assign the result to the

1value.The usual assignment operator is the ‘=’ ,. In addition, C has a set of less frequent shorthand

assignment operators of the form (+ +, - =, * =, / =, % =). The syntax s;

v op = exp;

where v is a variable, exp is an expression and op is a C binary arithmetic operator.(or short hand binary

operator). For e.g., consider the statement x + = y +1 ; this is same as x= x+(y+1). Here the operator + =

means add ‘ y + 1 to x ‘ (or increment x by y + 1) . Some of the commonly used short hand assignment

operators with their description is shown in Table 5.6. In all expressions involving these operators, the type of

an assignment expression is the type of its left operand, and the value is the value after the assignment.

Statement with simple assignment
operator

Statement with assignment operator

a = a + 1

a = a - 1

a = a* (n+1)

a = a/(n+1)

a = a % b

a + = 1

a - = 1

a* = n+1

a / = n+1

a % = b

Table 5.6. Short hand assignment operators

1.6 Increment and Decrement operators.
C provides two operators ++ and - - called increment and decrement operators and these operators are

useful in controlling the loops through an index variable. The + + operator adds 1 to its operand while the
decrement operator - - subtracts 1. Both of these operators are unary operators. (That is, used on single
operand. ++ adds 1 to operand and - - subtracts 1 to operand respectively). For example:

Let a = 3 and b = 7

a ++ ; becomes 4 and a - - becomes 6

The unusual aspect is that ++ and - - may be used either as prefix (before the variable as in ++a) or post
fix (after the variable as in a ++) . In both case effect is to increment a. But the expression ++a increments a
before its value is used, while a ++ increments a after its value has been used. This means that in a context
where the value is being used, not just the effect, + + a and a++ are different. For e.g., in the assignment
statement x = i ++, if i =5, then x = i++ sets x= 5 , but x = ++ i sets x to 6. In both case i becomes 6. The
increment and decrement operators can only be applied to variables, an expression like (i +j) ++ is illegal. In
general, a prefix operator first adds 1 to the operand and then the result is assigned to the variable on the left.
On the other hand, a post fix operator first assigns the value to the variable on left and then increments the
operand.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 68

Similar is the case, when we use ++ or - - in subscripted variable. That is, the statement

a[i++] = 5;

Is equivalent to

a[i] =5;

i = i+1;

Rules for increment (++) and decrement (- -) operators.

1.They are unary operators and require variable as their operands.

2.A postfix ++ or - - operator used with a variable in an expression, the expression is evaluated first

using the original value of the variable and then the variable is incremented(or decremented by one).

3 When prefix ++ or - - is used in an expression, the variable is incremented (or decremented) first and

then the expression is evaluated using the new value of the variable.

4.The precedence and associativity of ++ and - - operators are the same as those of unary + and

unary -

1.7 Conditional Operator

Conditional operator (? :) is a ternary operator (that demands three operands) consisting of symbols ” ?” and

“: “ and are used for decision making in C. The operator works by evaluating test expression, returning a
value if that expression is TRUE and different one if the expression is evaluated as FALSE. The general syntax

is:

identifier = (test expression) ? expression1 : expression2;

This is an expression, not a statement, so it represents a value. If the condition (or test expression) is true , it

evaluates and returns expression1, otherwise it evaluates and returns expression2 .Conditional operator can be

used as a short hand for some if-else statements. For example, consider the statements,

a = 10;

b = 20;

x = (a > b) ? a : b;

Here in this example, x will be assigned the value of b. This can be achieved using the if…..else statement as

follows:

If (a > b)

x = a ;

else

x = b;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 69

.1.8 Bitwise Operators

Bit wise operations in C are carried out by using operations on bits(or lowest form of data that can be

accessed in digital hardware) at individual level. That means , Bit wise operators are used to perform bit

operations on given two variables. Four commonly used bit wise operators in C are ~ , & ,| , and ^. Generally,

Bitwise operators manipulate the value of individual bits(i.e., 1 or 0). Further, to understand “<< “and “>>” ,
there are two shift operators which are used to shift the position of a bit (or a set of bits) to another location,

in a multi-bit value. Moreover, these operators work only on a limited number of types: int and char. That

means, they may not be applied to data types : float and double. Bit wise operators supported by C are listed

in the following Table 5.7.

Operator Description of the operator

& Binary AND operator copies a bit to the result if it exists in both operands(or

Bitwise AND)

| Binary OR operator copies a bit if it exists in either operand(or Bitwise Inclusive

OR).

^ Binary XOR operator copies the bit if it is set in one operand but not both (or

Bitwise Exclusive OR).

~ Binary Ones complement operator is unary and it has the effect of flipping bits(or

Bitwise ones complement).

<< Binary left shift operator(or bitwise left shift). The left operands value is moved

left by the number of bits specified by the right operand.

>> Binary right shift operator (or bitwise right shift). The left operands value is

moved right by the number of bits specified by the right operand

1.9 Special Operators

C language provides a number of special operators which have no counter parts in other languages. These

operators include comma operator, sizeof operator, pointer operators(& and *) and member selection

operator (. and -- >) . Pointer operators will be discussed while introducing pointers and member selection

operators will be discussed with structures and union. The comma and sizeof operators are discussed in this

section.

Table 5.7 Bit wise operators

School of Distance Education

‘C’ Programming for Mathematical Computing Page 70

The Comma Operator

This operator is used to link the related expressions together. A coma -linked list of expressions are

evaluated left to right and the value of right most expression is the value of the combined expression. For

example, the statement

int x, y,z;

z = (x =10, y = 20, x * y);

Here the 1st statement will create three integer type variables : x, y,z . In the 2nd statement, R.H.S will be

evaluated first. As a result, 10 will be stored in variable x, then 20 will be stored in variable y and then values

in x and y will be multiplied, result of which will be stored in the variable z as 200 at the end of the

execution. Since comma operator has the lowest precedence of all operators, the use of parentheses are

necessary.

The size of Operator

The sizeof operator works on variables, constants and even on data types. It returns the number of bytes, the

operand occupies in the memory. It is a compile time operator and when used with an operand, it returns the

number of bytes occupied by its operand on that particular machine.

Examples include:

m = sizeof (sum);

n = sizeof(long int);

o = sizeof (235L) ;

The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes are not

known to the programmer and is also used during program execution, for dynamic memory space

allocation of variables.

1.10 Arithmetic Expressions

Arithmetic expressions have numbers and variables combined with the regular numeric operators (+ , - , *, /

) , as per syntax of the language and simplify to a single number .Some of the examples of C expressions are

(table 5.8) given below:

Algebraic Expression C Expression

a×b-c a*b-c

ab/c a*b/c

ax2+bx+c a*x*x+b*x+c

Table 5.8 C Expressions

School of Distance Education

‘C’ Programming for Mathematical Computing Page 71

1.11 Evaluation of Expression

Every expression is formed out of operands and operators. Expressions in C, are evaluated using an

assignment statement of the form:

variable = expression;

Usually when a statement is encountered, the expression (on the RHS) is first evaluated and the result

obtained thus, is used to replaces the previous value of the variable on the LHS. All variables used in the

expression must be assigned values before evaluation is attempted. An example of a valid evaluation

expression is;

x = a* b-c;

Remember that blank space around an operator is optional and adds only to improve the readability..

1.12. Precedence of Arithmetic Operators

The two distinct priority levels of arithmetic operators in C are:

* / % High priority

+ - Low priority

An arithmetic operation without parentheses will be evaluated from left to right, using the rules of operator

precedence. The basic evaluation procedure involves two left to right pass through the expression..During the

1st pass, high priority operators (if any) are applied. and during the 2nd pass low priority operators, if any , are

applied as they are encountered. For example, consider the statement,

x = a-b/3 + c*2-1

when a= 9, b=12, and c =3 , the statement becomes

x = 9- 12/3 + 3*2 -1

1st pass

Step 1: x = 9- 4 + 3*2 -1

Step 2: x = 9-4+6-1

Second pass

Step 3: 5+6-1

Step 4: 11-1

Step 5: 10

However, one can change the order if evaluation, by introducing parentheses into the expression. The

same above expression in parentheses reads as:

x = 9- 12/(3 + 3)*(2 -1)

School of Distance Education

‘C’ Programming for Mathematical Computing Page 72

Whenever parentheses are used, the expression contained in the left most set is evaluated first and the

expression on the right most the last. The steps are as follows:

First pass:

Step 1: 9-12/6*(2-1)

Step 2: 9-12/6*1

Second Pass

Step 3: 9-2*1

Step 4: 9-2

Third pass

Step 5: 7

Though the procedure here, involves three left to right passes, number of evaluation steps is equal to the

number of arithmetic operators. That is, the number of evaluation steps is same (equal to 5) for evaluation

without and with parentheses

It may happen that parentheses may be nested, in which case evaluation will proceed outward from the inner

most set of parentheses as in eg;, x = 9- (12/(3 + 3)*2) -1 = 4 .

Rules for evaluation of Expression

1. The arithmetic expressions are evaluated from left to right using the rules of precedence.

2. When parentheses are used , the expression with in the parentheses assume highest priority

3. First parenthesized sub expressions from left to right are evaluated.

4. The precedence rule is applied in determining the order of application of operators in evaluating sub

expressions.

5. The associativity rule is applied when two or more operators of the same precedence level appear in a

sub expression.

6. If parentheses are nested, the evaluation begins at the inner most sub expression

1.13 Some computational problems

On most computers, any attempt to divide a number by zero will result in an abnormal termination of the

program. In such instances, care should be taken to test the denominator that is likely to assume zero value so

that the division by zero error may be avoided. Further, one must specify the correct type of operands and it

should be of the correct range, so that any error due to over flow / under flow may be eliminated.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 73

1.14 Type conversion in expressions

C lets mixing of constants and variables of different types in an expression. It automatically, converts any

intermediate values to the proper type so that expressions can be evaluated without loosing any significance.

This automatic conversion is called implicit type conversion. If the operands are of different types, the lower

type is automatically converted to the higher type before the operation proceeds. The result is of higher type.

The sequence of rules to be followed while evaluating an expression are given below.

Rules for evaluating expressions

All short and char are automatically converted to int: then

1. If one of the operand is long double, the other will be converted to long double and the result will be long
double.

2. else, if one of the operands is double, the other will be converted to double and the result will be double.

3. else, if the operand is float, the other will be converted to float and the result will be float;
4. else if one of the operand is unsigned long int, the other will be converted to unsigned long int and the

result will be unsigned long int.
5. else, if one of the operands is long int and the other is unsigned int, then

(a) If unsigned int can be converted to long int, the unsigned int operand will be converted as such and the

result will be long int;
(b)else, both operands will be converted to unsigned long int and the result will be unsigned long int;
6. else, one of the operands is long int, the other will be converted to long int and the result will be long int;
7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the result will

be unsigned int.

Explicit conversion

Explicit conversion is used to tell the compiler to treat a variable as of a different type in a specific context.

The compiler will automatically change one type of data in to another (or locally convert) to make it sense.

For instance, if you assign an integer value to a floating point variable, the compiler will insert code to

convert the int to a float. The general syntax is:

(type-name)expression

Where type-name is one of the standard C data types. The expression may be a constant, variable or an
expression. Casting allows you to make this type conversion explicit, or to force it when it would not normally
happen. To perform casting, put the desired type including modifiers like unsigned inside parentheses to the
left of the variable or constant you want to cast. For Example

float a = 5.25;

int b = (int)a; /*Explicit casting from float to int */

The value of b here is 5.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 74

1.15 Operator Precedence and associativity

Two operator characteristics (or precedence and associatively of operators) determines how operators group

with operators. Precedence is the priority for grouping different types of operators with their operands.

Associativity is the left to right or right to left order for grouping operand to operators that have the same

precedence. An operator’s precedence is meaningful only if other operators with higher to lower precedence
are present. Expressions with higher-precedence operators are evaluated first. The grouping of operands can be

forced by using parentheses Operators that have the same rank have the same precedence.

For example, in the following statements, the value of 1 is assigned to both a and b because of the right-to-
left associativity of the = operator. The value of c is assigned to b first, and then the value of b is assigned to
a.

b = 2;

c = 1;

a = b = c;

Because the order of sub expression evaluation is not specified, you can explicitly force the grouping of
operands with operators by using parentheses.

In the expression

a + b * c / d

the * and / operations are performed before + because of precedence. b is multiplied by c before it is divided

by d because of associativity. Table 5.8 gives a complete list of C operators, their precedence levels , and their

rules of association.

Operator Description Associativity

()

[]

Function call

Array element reference

Left to right

Right to Left

+ Unary plus Right to left

- Unary minus

++ increment

- - decrement

! Logical negation

~ Ones complement

* Pointer reference

& address

Sizeof

(type)

Size of an object

Type cast

* multiplication Left to right

/ division

% Modulo

School of Distance Education

‘C’ Programming for Mathematical Computing Page 75

+ addition Left to right

- subtraction

<< Left shift Left to right

>> Right shift

< Less than Left to right

< = Less than or equal

> Greater than

> = Greater than or equal to

= = equality Left to right

! = In equality

& Bitwise AND Left to right

^ Bitwise XOr Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

| | Logical Or Left to right

?: Conditional expression Right to left

= Assignment operators Right to left

* = /= % =

+ = - = & =

^ = | =

< < = > > =

, Comma operator Left to right

Table 5.8 Precedence and Associativity of operators

1.16 Mathematical Functions
Mathematical functions such as cos, sqrt,log etc are frequently used in the analysis of real life problems. Most

C compilers support these basic type functions. To use any of these functions in a program, we should include
the line

include stdio.h.

In the beginning of the program. Table 5.9 shows some standard mathematical functions

1.17 Summary:
1. An operator in C is used with operands to build functions.
2. Each expression in C should end with a semicolon.
3.Associativity is applied when more than one operator of the same precedence are used in an expression.
4. All mathematical functions implement double type parameters and return double type values.
5. On either side of binary operator, always use spaces to increase readability.
6.Care should be taken to increment/decrement operators to floating point variables.
7.Assignment =. Operator should not be confused with equality operator = = .

School of Distance Education

‘C’ Programming for Mathematical Computing Page 76

Function Meaning of function

Trigonometric

acos(x) arc cosine of x

asin(x) arc sine of x

atan(x) arc tangent of x

atan2(x,y) arctangent of x/y.

cos(x) cosine of x

sin(x) sine of x.

tan(x) tangent of x.

Hyperbolic

cosh(x) hyperbolic cosine of x.

sinh(x) hyperbolic sine of x.

tanh(x) hyperbolic tangent of x.

Other functions

exp(x) e to the power of x.

fabs(x) absolute value of x.

floor(x) x rounded down to the nearest integer.

fmod(x,y) remainder of x/y.

log(x) natural log of x, x>0.

pow(x,y) x to the power y.

sqrt(x) square root of x, x > = 0.

Fig 5.9 Mathematical Functions

School of Distance Education

‘C’ Programming for Mathematical Computing Page 77

Unit 2:Managing Input and output Operations
Structure

2.1 Introduction

2.2 Reading a Character

2.3 Writing a Character

2.4 Formatted Input

2.5 Formatted output

2.6 Summary

2.1 Introduction

In order to learn a program effectively in C language, one should know, how to manage input and output

of data to and from the screen and the key board. Most programs take some data as input and display the

processed data, often as results, on a suitable medium. The two methods so far used, for providing data to

program variables, rely on : (1) Assigning values to variables through assignment statements and (2) using the

input function scanf (to read data from a key board). For getting the output results, usually the printf function

that sends results out to a terminal, is used.

The Input and output operations are convenient for program that interact with the user, takes input from the

user and print the message. Unlike, other higher level languages, C does not provide any input-output (I/O)

statements as part of its syntax. Instead , a set of library functions provided by the operating system for input

and output operations are borrowed and used by C. The standard library for I/O operations used in C is stdlib.

That is , Standard input (or stdin) is a data stream used to receive input from user / collects characters typed

at the keyboard and stdout, is the data stream for sending output to a device such as monitor etc., . In

otherwords, to include input and output functionality in C programs, the stdio header is needed. Each program

that uses a standard I/O function must contain the statement

include < stdio.h >

at the beginning. This instruction tells the compiler, ‘to search for a file named stdio.h and place its contents

at the appropriate place in the program . Indeed, the contents of the header file become part of the source code
when it is compiled. In fact, this statement can be avoided in situations, where the functions printf and scanf
have been defined as part of the C language. Here, in this chapter, a brief introduction of some common I/O

function that can be used in many machines without much change is discussed.

2.2 Reading a Character

The simplest of all I/O operations is reading a character from the standard input unit(or key board) and

writing it to the standard output unit(or the screen). The most basic way of reading input is by calling the

function getchar. The C library function getchar gets a character from stdin, regardless of what it is, and

School of Distance Education

‘C’ Programming for Mathematical Computing Page 78

returns it to the program. That is, it is used to get a character from console, and echoes to the screen. It is the

most basic input function in C, included in the stdio.h header file. The getchar takes the following form:

variable_name = getchar();

Variable name is a valid C name that has been declared as of char type. When this statement is

encountered, the computer waits until a key is pressed and then assigns this character as a value to getchar
function. Since getchar is used on the RHS of an assignment statement, the character value of getchar is in

turn assigned to the variable name on the left. For example,

char = name;

name = getchar ();

Will assign the character “a” to the variable name when we press the key a on the keyboard. Since getchar is a

function, it requires a set of parentheses as shown. The use of getchar function is illustrated in the program

(Table 6.1) below..

Program Output

#include <stdio.h>

#include<conio.h>

int main()

{

char a;

clrscr();

printf(“Enter a character\n”);

a=getchar();

printf(“The character entered is %c

\n”,a);

getchar();

return 0;

}

Enter a character

b

The character entered is b

Table 6.1: use of getchar function

School of Distance Education

‘C’ Programming for Mathematical Computing Page 79

The getchar function may be called successively to read the characters contained in a line of text..The

following program me segment , for example, reads characters from key board one after another until the

‘return key’ is pressed

call character;

character = ‘ ‘;

while (character ! = ‘\n’)

{

character = getchar ();

}

The getchar returns the character it reads, or, if there are no more characters accessible, it will return the

special value EOF (“end of file”) .That is, The getchar function accepts any character keyed in, This includes

TAB and RETURN . In other words, when we enter single character input, the newline character is waiting in

the input queue after getchar() returns. A dummy getchar or fflush function (to flush out unwanted

function) may be used to get away the unwanted new line character , when we use getchar in a loop

interactively. However, getc is used to accept a character from standard input.

2.3 Writing a Character

Often there do occur circumstances, where we want to solve computational problems and to display the

characters therein on the console. The two special functions in C, that is designed to handle the output of

character to monitor is putch and putchar . That is, Like getchar, there is an analogous companion C library

function putchar that writes a single character to the standard output stream, (or console), specified by the

argument char to stdout(i.e., it is same as calling putc(c,stdout). The putchar function displays a single

character on the screen. The syntax is:

putchar (variable_name);

where variable_name is a type char variable containing a character. For e.g., the statement

answer = ‘N’

putchar (answer);

will display the character N on the screen. The statement

putchar (‘\n’);

School of Distance Education

‘C’ Programming for Mathematical Computing Page 80

would cause the cursor on the screen to move to the beginning of the next line. The following example

(Fig.6.1) explains the use of putchar() function. Putch() function, on the other hand is useful in writing the

output, character by character, on the display.

The puts Function

The puts function stands for put string (or a bit of text) to the screen and this function works inside the main

function. That means, the function puts() writes str to stdout, then writes a new line character. The general

form of the function is:

int puts (char A []);

A puts() function automatically appends a new line character at the end of any text it display and it uses a

character array as parameter which is displayed on the screen. The puts() function performs a function that is

similar to printf() with a %s conversion specifier (or formatted text display). However, putc is used for

sending a single character to standard output.

2.4 Formatted Input
The standard formatted input function in C is scanf (that supply input in a fixed format) and is the input

analog of printf, providing many of the conversion facilities in the opposite direction.. The scanf contains two
important things –the format string and the address list and it reads characters from the input file and
converts them to internal form.. That is, scanf reads characters from the standard input, interprets them
according to the specifications in format, and stores the results through the remaining arguments. Very often,
This is the function used to read an input from the command line. The general format of an input statement
is:

include <stdio.h>

int main ()

{

char ch ;

for (ch = ‘A’; ch < = ‘Z’ ; ch++) {

putchar (ch);

}

return (0);

}

Output

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Fig.6.1 Program to read and write all the letters in English alphabet

School of Distance Education

‘C’ Programming for Mathematical Computing Page 81

scanf(“ format string”, arg1,arg2,……, arg n);

Here the format string gives information to the computer on the type of data stored in the list of arguments

arg1, arg2,….arg n and in how many columns (or address of locations) they are found. That is, format
string specifies, how each input is read(.i.e., as a decimal integer, a decimal float, a character, a string and

so on in matching arguments). The argument must be a pointer to a data type that is being read. In fact,

format string and arguments are separated by commas.

scanf stops when it exhausts its format string, or when some input fails to match the control specification.

It returns as its value the number of successfully matched and assigned input items. This can be used to

decide how many items were found. On end of file, EOF is returned; note that this is different ' from 0,

which means that the next input character does not match the first specification in the format string. The

next call to scanf resumes searching immediately after the last character already converted. The format

string usually contains conversion specifications, which are used to control conversion of input. The format

string may contain:

 Blanks or tabs, which are ignored.

 Ordinary characters (not %), which are expected to match the next non-white

space

 character of the input stream.

 Conversion specifications, consisting of the character %, an optional assignment

suppression

 character *, an optional number specifying a maximum field width, an optional h, 1, or L

indicating the width of the target, and a conversion character

A conversion specification directs the conversion of the next input field. Normally the result is placed in

the variable pointed to by the corresponding argument. If assignment suppression is indicated by the *

character, however, the input field is skipped; no assignment is made. An input field is defined as a string of

non-white space characters; it extends either to the next white space character or until the field width, if

specified, is exhausted. This implies that scanf will read across line boundaries to find its input, since

newlines are white space

Inputting Integer l numbers

The field specification for reading an integer number is

% w sd

The percentage sign (%) indicates that a conversion specification follows.. w is an integer number specifying

the field width of the number to be read and d the data type. For example, in the statement

scanf(“%3d %5d”, &num1,&num2);

the two variables in which numbers are to be stored are num1 and num2 and are of integer type. The input data

items must be separated by spaces, tabs or new lines. A sample data line may thus be;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 82

500 31246

The value 500 is assigned to num1 and 31246 to num2. Observe that the symbol & (ampersand) should

precede each variable name, that is used to indicate the address of the variable name.

The scanf statement causes data to be read from one or more lines till numbers are stored in all the specified

variable names. Also no blanks are permitted between characters in the format-string. The data type character

d may be preceded by l to read long integers and h to read short integers.

Inputting real numbers

The scanf reads real numbers using the specification %f for both decimal and exponential notation. The

input field specification may be separated by any arbitrary blank spaces. If the number to be read is of double

type, then

Program Output

main()

{

float x,y;

double p,q;

printf(“values for x and y is :\n”);

scanf(“%f %e” , &x ,&y);

printf(“\n”);

printf(“x= %f\n y= %f\n\n”, x, y);

printf(“values of p and q is: ”);

scanf(“%lf %lf ”, &p, &q);

printf(“\n\np = % .12lf \np = %.12e”, p, q);

}

values for x and y is : 12.3456 17.5e-2

x=12.345600

y=0.175000

values of p and q is :4.142857142857

18.5678901234567890

p= 4.142857142857

q= 1.8567890123456e+001

Table 6.2 : Reading of real numbers.

the specification should be %lf. Consider the statement

scanf(“%f %f %f”, &p,&q, ,&r) ;

with the data line

462.85 41.23E-1 543

School of Distance Education

‘C’ Programming for Mathematical Computing Page 83

It will assign the value 462.85 to p, 41.23E-1 to q and 543.0 to r. T he program (Table 6.2) below shows

how to read real numbers in both decimal and exponential notation

Inputting character strings

A scanf function can input strings containing more than one character. The syntax is:

%ws or %wc

The corresponding arguments should be a pointer to character array. When the argument is a pointer to a char

variable, then %c may be used to read a single character. Some scanf versions support the following string

conversion specification.:

% [characters]

% [^ characters]

The specification % [characters] imply that only the characters within brackets are permissible in the input

string. Any encounter of other string characters, will terminate the string. The specification % [^characters]
does exactly the reverse. That is , characters after the ^ are not permitted in the input string, The reading of the

string will be terminated at the encounter of one of these characters.

Reading Mixed data types

scanf can be used to input data containing mixed mode type. When one attempts to read an item that does not

match the type , the scanf function does not read any further and immediately returns the value read. For e.g.,

scanf(“%d %c %f”, c %s “ , &count, &code, &ratio, &name) ;

will read the data line

15 p 1.453 coffee

Correctly and assign values in the order in which they appear.

Rules for scanf

 Each variable to be read need a filed specification and a variable address of proper type.

 For any non -white space character used in the format string there must be a matching character in

the user input.

 Ending the format string with white space will result in error.

 The scanf reads until:

1. A whitespace character is found in the numeric specification or

2. Maximum number of characters have been read

3. An error is detected.

4 .The EOF is reached

School of Distance Education

‘C’ Programming for Mathematical Computing Page 84

2.5 Formatted output

Formatted output refers to an output data that has been arranged in a particular format, using certain

features, that are effectively exploited to control the alignment and spacing of print-outs on the terminals.. The

main output routine is printf , which writes a formatted string to the stdout stream. The printf() function is

used to print the character, string, float, integer, octal and hexa decimal values on to the output screen and it

returns the number of characters that was written if an error occurs, it will return a negative value. The

required header for the printf function is:

#include <stdio.h>

The general form of printf statement is :

printf (“ control string”’ arg1,arg2,…., arg n);

Control string consists of three types:

1.character that will be printed on the screen as they appear.

2.format specification

3.escape sequence characters like, \n,\t, and \n.

The control string specifies the number of arguments (or variables whose values are formatted and printed

according to the specification of control string) that follow with their types. The arguments should match in

number, order and type with the format specification. A simple format specification is as:

% w. p type-specifier

Where w , is an integer specifying the total number of columns for output value and p is another integer that

specifies the total number of digits to the right of the decimal point or the number of characters to be printed

from a string.

Printf formatting is controlled by ‘format identifiers’ which in the simplest form are listed below:

%d % i decimal signed integer.

% o octal integer

%x % X Hex integer

%u unsigned integer

% c character

%s string

%f double

%e %E double

%p pointer

%n number of characters written by this printf, no argument expected

%% % .No argument expected.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 85

Output of Integer Numbers
The format specification for printing an integer number is:

% w d

Where w specifies the minimum field width for the output and d , the value to be printed as an integer.

However, if a number (right justified in the given field width with leading blanks) is greater than the specified

field width, it will be printed in full, over riding the minimum specification. It is possible to force the printing

to be left- justified by placing a minus sign directly after the % character. More over, it is possible to pad with

zeros the leading blanks by placing a zero before the field width specifier. Here, The minus (-) and zero (0) are

named as flags. For printing short integers we may specify hd . And for printing long integers the specifier ld
is used in place of d in the format specifier. Some examples of different format are:

Format output

Printf(%d”’, 1076)

Printf(%6d”’, 1076)

Printf(%-6d”’, 1076)

Printf(%06d”’, 1076)

Output of Real Numbers:

Using the following form specification, the output of a real number may be displayed in decimal form:

% w.p f

The integer w indicates the number of positions that are to be used for the display of the value and the integer p

represents the number of digits to be displayed after the decimal point. That is, the values when displayed, is

rounded to p decimal places with right justification in the field of w columns, with leading trails and blanks.

The default precision is actually 6 decimal places. The negative numbers will be printed with the minus sign

and of the form [-] mmm-nnn.

A real number can be displayed in exponential form using the specification:

% w. p e

The display is of the form

[-] m.nnnne[±]xx

Where the length of the string n ‘s is specified by the precision p with the default precision being 6..Moreover,

the field width w should satisfy the condition

1 0 7 6

1 0 7 6

1 0 7 6

0 0 1 0 7 6

School of Distance Education

‘C’ Programming for Mathematical Computing Page 86

w ≥ p +7

and will be rounded off and printed right justified in the field of w columns. Further, padding the leading

blanks with zeros and printing with left justification using flags 0 or – before the field specifier is also

possible. Following are some examples:

Format output

Printf(“%5.3f”,x)

Printf(%5.2f”’,x)

Printf(%-5.2f”’,x)

Printf(% -8.2e”’,x)

For dynamic format specification during run time (i.e., with field width and precision given as arguments

for w and p) we have the special field specification:

printf(“%*.*f” , width, precision, number);

For e.g.,

printf(‘%*.*f”, 7,2, number);

Is equivalent to

printf(‘%7.2f”, number);

Printing of a single character

A single character can be displayed in the keyboard at the desired position , right justified in the field of w

column (with default value for w being 1) using the format

% wc

Printing of strings

The format specification for outputting strings is similar to that of real numbers.. The format being:

% w. ps

With w the field width for display and p indicates that only first p characters of the string are to be displayed

with right justification..Some examples are:

9 . 8 7 6
6

9 . 7 6

9 . 7 6

9 . 7 6 e + 0 1

School of Distance Education

‘C’ Programming for Mathematical Computing Page 87

Table showing specification and out put

%s (specification) output

N E W D E L H I 1 1 0 0 0 1

%20s(specification) output

N E W D E L H I 1 1 0 0 0 1

% 20.10s(specification) output

N E W D E L H I

%.5s(specification) output

N E W D

%-20.10s(specification) output

N E W D E L H I

%5s(specification) output

N E W D E L H I 1 1 0 0 1

Mixed data output

Mixed data types in one printf statement is permitted in C. For e.g.,

printf(“%d % f % s %c ,a,b,c,d); is a valid one.

code Meaning

School of Distance Education

‘C’ Programming for Mathematical Computing Page 88

%c

%d

%e

%f

%g

%i

% o

%s

%u

%x

Print a single character

Print a decimal number

Print a floating point number in exponent form

Print a floating point number Without

exponent form

Print a floating point number Either e-

type

or f-

type

Print a signed decimal integer

Print an octal integer without leading zero.

Print a string

Print an unsigned decimal integer

Print a hexagonal integer, without leading 0.s

Table 6.1 printf format codes

Remember that, the format specification should match the variables in number, order and type. Table 6.1

below shows commonly used printf format codes

The letters used as prefix for certain conversion characters are:

h short integer

l long or double

L for long double .

2.6 Summary

1. While using getchar, clear all unwanted characters on the console.

2. While using I/O functions always use the header < stdio.h >.

3. For functions that use character handling use the header< ctype.h>

4. For any variable to be read or printed, the proper field specification is to be done.

5. Always enclose format control strings in double quotes.

6. While using scanf the address specifier & ampersand is to be used.

7 Single character constants are to be enclosed in single quotes.

8. Avoid white space at the end of format string and use comma after he format string in scanf statements.

9. Do not use commas in the format string of a scanf statement.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 89

Module III: Introduction
This module is designed as an introduction to control structures: branching and looping. Programming

languages by default execute in sequence, line by line. This is very useful since in this mode of execution, it

is done in an orderly manner . But if we need to make decisions and evaluate some input and decide which

path to take depending on that input then we use Control Structures. Control Structures allow

programmers, to change that default sequential execution. In most Programming Languages such as C,

PHP, C++, C#, Java, JavaScript, and others, we have Control Structures. The first Control Structure we are

going to talk about is the “if” and “if … else”. What this structure does is to evaluate the condition of the
“if” statement and determine if it’s true or false; then if it’s true executes the statements inside the “if”
body, otherwise executes statements in the else body or continues executing the rest of the program.

Actually, the flow of control in a computer program may be altered in two ways. One involves alternate

paths provided by if…else or switch statements; the other is through the repetitive execution of a set of

instructions. The first mechanism is called branching, the second called looping. Branching is deciding

what actions to take and looping is deciding how many times to take a certain action. In the first unit of the

module, you are guided through the structure of the various branching constructs like, if…else, else…if,
switch etc., with sample programs. The next unit is a tour through the control structure through looping:

viz, while, do…while, for(,,) loop ,and continue statement.

Unit 1:Decision Making And Branching
Structure

1.1 Introduction

1.2 Decision Making with if statement

1.3 The Simple If Statement

1.4 The IF…..ELSE Statement

1.5 Nested If-else statements

1.6 The else -If Ladder

1.7 The Switch Statement

1.8 The ?: Operator

1.9 The GOTO statement

1.10 Summary:

School of Distance Education

‘C’ Programming for Mathematical Computing Page 90

1.1 Introduction.

Decision making is one of the most important concepts in C programming. That is, the programs

should be able to make logical decisions based on the conditions they are in. C language has three

major decision making instructions- the if statement, the if else statement, and the switch statement.

These statements ‘control’ the flow of program execution (or they specify the order in which
computations are performed), and are known as control statements. Here we will learn each of these,

and discuss their features, capabilities and applications in more detail.

1.2 Decision Making with if statement

The key word, if statement, is a conditional branching statement. It, instructs the compiler that, what

follows is a decision control instruction. That is, it allows the program to select an action (i.e., a

condition is evaluated, and if it is true the statement is executed, and, the program skips past it if it is

found false) based upon the user’s input. The condition following the keyword if is always enclosed

within a pair of parenthesis. It takes the form:

If (test expression)

A decision control instruction can be implemented in C using (1) The simple if statement, (2) The if –
else statement (3) nested if-else statement and (4) else if ladder.

1.3 The Simple If Statement

The general form of if statement looks as:

if (test expression)

{

statement block;

}

statement –x;

Here the expression can be any valid expression including a relational expression. We can even use
arithmetic expressions in the if statement. In fact a compound statement composed of several
statements enclosed with in braces (braces are used to group declarations and statements together into
a compound statement or block), can replace the single statement. Remember, there is no semicolon
after the right brace that ends a block. If the test expression evaluates to true, then the compound
statement is executed. Otherwise the control jumps to the statement following the right brace ignoring
the compound statement.. Please do remember that in C, a non zero value is considered to be true,
where as a zero is considered to be false. Here is a simple program (Figure 7.1) using simple if
statement:

School of Distance Education

‘C’ Programming for Mathematical Computing Page 91

/* Demonstration of if statement*/

include < stdio.h >

include < conio.h>

int main ()

{

int number;

clrscr ();

printf (“ enter a number\n”);

scanf(“ %d”, &number);

If (number > 0)

printf(“ The given number is positive\n”);

getch();

return 0;

}

output

enter a number

5

The given number is positive

r

Fig.7.1 program for illustration of simple if statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 92

On execution of this program, if you type a number greater than zero, you will get a message on the

If logical

expression

screen through printf(). If you type some other number(i.e., a number less than 0, the program

does not do anything. The Flow chart given in Fig. 7.2 help you understand the flow of control in

simple if statement.

1.4 The IF…..ELSE Statement.

The if statement by itself will execute a group of statements or a single statement, when the

expression following it evaluates to true and it does nothing when it evaluates to false .In fact, the if
–else statement is an extension of the simple if statement and is used to express decisions. It permits

the programmer to write a single comparison, and then execute one of the two statements depending

on whether the test expression (in parentheses) is true or false. That is, the if…else statement is used,

the intention of the programmer is to execute the group of statements denoted as true (.i.e., the

true block of statements immediately following the if statements), or else the test expression

statements denoted as false are executed..In either case, either a true or a false block of

codes/statements, are executed not both .In both cases, control is transferred to the subsequent

statement-x. This is interpreted in the flow chart of Fig.7.3.

True

{ statement 1;

….

statement n;}

statement-x

False

next Statement

Fig.7.2 Flow chart I illustrating simple If conditional statement

entry

School of Distance Education

‘C’ Programming for Mathematical Computing Page 93

Test expression ?

Example 7.1: A program to check whether the number is odd or even?

entry

Fig.7.3 Flow chart I illustrating simple If –else conditional statement

statement-x

False

{ statement 1;

….

statement n;}

{ statement 1;

….

statement n;}

True

include < stdio.h >

int main () {

int number;

printf(“ Enter a number.\n”);

scanf(“%d”, &number);

if ((number % 2) = = 0)

printf(“%d is even,” , number);

else

printf(“%d is odd..” , number);

return 0;

}

Output

Enter a number

22

22 is even.

Fig.7.4 A program to illustrate the If ….else statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 94

There are a few points that deserve worth mentioning:

1.The group of statements after the if up to and not including the else is the ‘ if block’. Similarly, the
statements after the else form the ‘else block’.

2.The statements in the if and those in the else block have been indented to the right.

3. As with the if statement, the default scope of else is also the statement immediately after the else.
In order to override this default scope, a pair of braces must be used.

1.5 Nested If-else statements.

The if….else statement can be used in nested form when a serious decision are involved. In nested if
..else construct, we write an entire if-else construct with in either the body of the if statement or the
body of an else statement. The logic of execution is shown in Fig.7.5.The syntax is:

if (test condition-1)

{

if (test condition-2);

{

statement-1;

}

else

{

statement-2;

}

}

else

{

statement-3;

}

statement-x;

Here, if the test expression -1 is false, the statement -3 will be executed; otherwise control of the
program jumps to perform the second test condition. If the condition- 2 is true, the statement-1 will be
evaluated, otherwise the statement-2 will be evaluated and then the control is transferred to the
statement-x.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 95

Test condition-1

?

Test condition-2

?

Example 7.2: A program to check whether the two numbers is <, than or > than or equal.

trueFalse

entry

Fig.7.3 Flow chart I illustrating nested If –else statement

statement-x

true
False

statement-1
statement-2statement-3

Next statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 96

1.6 The else -If Ladder

Another way of describing the nested if-else is the else-if ladder, where, every else is associated

with an if statement. That is, else-if, is a combination of if and else. Like else, it extends an if
statement to execute a different statement in case the original if expression is evaluated as False.

The syntax is:

include < stdio.h >

int main () {

int num1, num2;

printf(“ Enter two integers.”,\n);

scanf(“%d %d”; & num1, &num2);

if (num1= = num2)

printf(result: %d=%d”, num1,num2);

else

if(num1> num2)

printf(“result:%d > %d”, num1,num2);

else

print(“result: %d >%d “,num2,num1);

return 0;

}

Output

Enter two integers

4

2

Result:4>2

Fig.7.7: program illustrating nested if -else

School of Distance Education

‘C’ Programming for Mathematical Computing Page 97

If (condition-1)

statement-1;

else-if (condition-2)

statement-2;

else-if (condition-3)

statement-3;

else-if (condition-n)

statement-n;

else

default-statement;

statement-x;

This construct is called the else-if ladder and is useful where two or more alternatives are

available for selection. In else-if ladder various conditions are evaluated one by one starting from top

to bottom, on reaching a condition evaluating to TRUE the statement group associated with it are

executed and skip other statements. If none of the expressions is evaluated to true, then the

statement or group of statements associated with the final else is executed. In this construct nesting is

allowed only in the else part . In fact, In else……if ladder, we do not have to pair if statements with

else statements. That is, there is no need to remember the number of braces opened as in nested

if….else. Moreover, else….if ladder produces the same effect as nested if-else with the benefit that it

is easy to code. The flow chart corresponding to else-if ladder is shown in fig.7.8

In this construct, the conditions are checked, starting from the top of the else-if ladder, moving

downwards. That is, firstly, condition-1 is checked, and if it is true, statement-1 is executed and

control is transferred to statement-x. On the other hand, If condition-1 is false, condition-2 is checked

and if true, statement -2 is executed and control is transferred to statement-x skipping the rest of the

ladder .When all the n conditions are false, then the final default-statement is executed followed by

the execution of statement-x. The following program(Fig.7.9) explains the else-if construct.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 98

True False

Fig.7.8 Flow chart I illustrating else- If ladder

statement-x

FalseTrue

Default statement

statement-2

statement-1

Statement-n

entry

Condition -1

Condition -n

Condition -2

Condition -3

False

False

True

True
statement-3

Next statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 99

Rules for Indentation.

The sections of this page cover the guidelines of acceptable code indentation. Indentation is important

for clarity and sticking to standard. The guidelines that are to be followed while using indentation ,

for control statements are listed below:

1. Indent statements that are dependent on the previous statements; provide at least three spaces of

indentation.

2.Align vertically else clause with their matching if clause.

3.Use braces on separate lines to identify a block of elements.

4.Indent the statements in the block by at least three spaces to the right of the braces.

5.Align the opening and closing braces.

6. Indent the nested statements as per the above rules.

7. Code only one statement/clause on each line.

#include < stdio.h>

#include <conio.h >

void main ()

{

int num;

clrscr();

printf(“enter a number.\n”);

scanf(“%d”, &num);

If(num = =0)

Printf(“Given number is Zero.\n”);

else if (number > 0)

printf(“Given number is positive.\n”);

else

printf(“Given number is negative.\n”);

getch ();

}

Output

Enter a number.

5

Given number is positive.

Fig.7.9. program for else if ladder demonstration.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 100

1.7 The Switch Statement

The switch statement is much like a nested if statement and it allows us to make a decision from a

number of choices. In fact, it is a powerful decision making statement that allows a variable to be

tested for equality against a list of values. The condition of a switch statement is a value. The case
says that if it has the value of whatever is after that case then do whatever follows the colon. That

is,.each value is called a case, and the variable being switched on is checked for each switch case.

More correctly, a switch-case default (since these keywords go together to make up the control

statement) accepts single input from the user and based on that input executes a particular block of

statements. The break is used to break out of the case statements, and is usually surrounded by

braces, which it is in. The syntax is:

switch (integer expression)

{

case value-1;

block-1

break;

case value-2;

block-2

break;

…………

………….

default:

default-block

break;

}

statement-x;

The integer expression following the key word switch is any C expression that yields an integer

value. It could be an integer constant or an expression that evaluates to an integer. The keyword case
is followed by an integer or a character constant. Each constant in each case must be different from

all the others. When the switch is executed, the value of the expression is compared against the

values value-1,value-2,…When a match is found, the program executes the statements following that
case, and all subsequent case and default statements as well .If no match is found, with any of the

School of Distance Education

‘C’ Programming for Mathematical Computing Page 101

case statements, only the statements following the default are executed. Moreover, the switch
statement transfers control to a statement within its body. Control passes to the statement whose

case constant-expression matches the value of switch (expression). Further, execution of the

statement body begins at the selected statement and proceeds until the end of the body or until a break

statement transfers control out of the body. A default is optional. When present, it will be executed if

the value of the expression does not match any of these case values .if not present, no action takes

place if all matches fail and the control goes to the statement-x.

The selection process of switch statement is explained by the following flow diagram (Fig.7.10).

(No match)default

entry

Fig.7.10 Flow chart I illustrating switch statement

statement-x

Expression= value -1

Block-2

Switch
expression

block-1

Default block

Expression= value -2

School of Distance Education

‘C’ Programming for Mathematical Computing Page 102

The following program explain how this control structure works. Here is a program (Fig.7.11)using

switch statement:

#include <stdio.h>

int main ()

{

char grade = ‘B’;

switch (grade)

{

case ‘A’ :

Printf(“very good!\n”);

Break;

case ‘B’:

case’C’ :

Printf(“good\n”);

Break;

case ‘D’:

Printf(“passed\n”);

Break;

case ‘F’:

Printf(“pl try again\n”);

Break;

default :

Printf(“grade invalid\n”);

}

Printf(“grade is %c\n”, grade);

Return 0;

}

Fig. 7.11 : An example showing switch statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 103

This program on execution gives the following output:

Output

Good

Your grade is B.

Rules for using switch case :

1.The expression used in a switch statement must be an integral or enumerated type.

2.With in a switch statement one can have any number of case statements, with each case followed

by the

value to be compared to and a colon.

3.case label must be unique , and must be constants or constant expressions. case labels must end

with

semicolon

4.case label must of integral type and should not be of floating point type.

5.When the variable being switched on is equal to a case, the statements following that case will

execute

until a break statement is reached.

6.switch case should have at most one default label and can be placed anywhere in the switch,
usually

placed at the end . default label is optional. No break is needed in the default case.

7.break statements takes control out of the switch (or switch terminates and the flow of control

jumps to

the next line following switch statement) and it is possible to share two or more case statement to

have one break statement.

8.Nesting(switch within switch) is permitted for switch statement.

9.It is not necessary that every case needs a break statement. If no break appears, the flow of control

will

fall through to subsequent cases until a break is reached.

10 relational operators are not allowed in switch case statement .

School of Distance Education

‘C’ Programming for Mathematical Computing Page 104

1.8 The ?: Operator

The operator ?: is just like an if..else statement except that because it is an operator one can use it

within expressions. This is a ternary operator in that it takes three values. The general form of use of

this operator is:

conditional expression ? expression 1 : expression 2

Here, the conditional expression is evaluated first and the result if it is non zero, then expression

1 is evaluated and its value is returned as the value of the conditional expression. Otherwise,

expression 2 is evaluated and its value is returned. For example the code segment,

If (x < 0)

flag = 0;

else

flag = 1;

can be written as

flag = (x< 0) ? 0 : 1;

consider evaluation of yet another function

y = 1.5x+3 for x≤ 2

2x +4 for x >2.

This can be done using the conditional operator ? : as:

y = (x >2) ? (2*x+4) : (1.5 *x+3);

School of Distance Education

‘C’ Programming for Mathematical Computing Page 105

.On execution of the program, the maximum variable gives the maximum value of the three numbers .

1.9 The GOTO statement

In C, GO TO statement is used for altering the normal sequence of program execution by transferring

control to some other part of the program. That is ,A goto statement provides an unconditional jump

from the go to a labeled statement in the function. The general form of a go to statement is:

goto label;

………….

…………

label:

Statement;

include < stdio.h >

include < conio.h >

Void main ()

{

int a,b.c, maxm;

printf(“ program to find maxm value of three numbers:\n”);

printf(“enter the first number:\n”);

scanf(“%d”, &a);

printf(“enter the second number:\n”);

scanf(“%d”, &b);

printf(“enter the third number:\n”);

scanf(“%d”, &c);

max= a>b? (a>c?a: (b > c?b:c)) : (b>c? b:c);

printf(“the maximum number is %d:”, maxm\n”);

}

Fig 7.12: illustration of the conditional operator.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 106

In this syntax label; is an identifier, to identify the place where the branch is to be made.? That is,

when the control of program reaches to go to statement, it will jump to the label:, and execute the

codes after it. Control may be transferred to anywhere within the current function. The label is placed

immediately before the statement where the control is to be transferred. A label: is any valid variable

name, followed by a colon and can be any where in the program either before or after the go to

label; statement. During program execution when a statement like

go to begin;

Is met, the control flow will jump to the statement immediately following the label begin; This

happens unconditionally.

Note that though, using goto statement give power to jump to any part of program, using goto
makes the logic of the program complex and tangled .It breaks the normal sequential execution of the

program. If the label: is used before the statement goto label; a loop will be formed and some

statements will be executed repeatedly. Such a jump is called as a forward jump. On the other hand, if

the label: is placed after the goto label; some statements will be skipped and the jump is called a

forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to

read further data, in fact, such goto statements puts one to enter in a permanent loop called infinite

loop, until one take some special steps to terminate the program. Such infinite loops are to be

avoided. Another use of goto is to transfer control out of a loop 9or nested loop) when certain

peculiar conditions are encountered. Use of goto statement is highly discouraged in any programming

language because it makes difficult to trace the control flow of a program, making the program hard

to understand and hard to modify. An example to explain the control flow of goto statement is shown

in fig 7, 12.Here in this program,

we want to display the numbers from 0 to 9. For this, we have defined the label statement loop above

the goto statement. The given program declares a variable n initialized to 0. The n++ increments the

value of n till the loop reaches 10. Then on declaring the goto statement, it will jumps to the label

statement and prints the value of n.

1.10 Summary:

1. There are three ways of taking decisions in a C program. - The if statement, the if else statement,

and the switch statement. The default scope of the if statement is only the next statement.

2 An if block need not always be associated with an else block. However, an else block is always

Associated with an if statement.\

School of Distance Education

‘C’ Programming for Mathematical Computing Page 107

3. If the outcome of an if else ladder is only one of two answers then the ladder should be replaced

either with an else-if or by logical operators.

4. When we need to choose one among number of alternatives, a switch statement is used.

5. The switch key word is followed by an integer or an expression that evaluates to an integer. the

case

key word is followed by an integer or a character constant. the control jumps through all the

cases

unless the break statement is given.

6. The usage of goto is to be avoided as it obstructs the normal flow of execution.

#include< stdio.h>

#include< conio.h>

int main()

{

int n =0;

loop: ;

printf(“ \n%d”, n);

n++;

if(n <10)

{

goto loop;

}

getch();

return 0

}

Fig.7.12 Use of go to statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 108

Unit 2: Decision making and looping
Structure
2.1 Introduction
2.2 The While statement
2.3 The Do Statement
2.4 The For Statement
2.5 Jumps in loops
2.6 The continue statement
2.7 Summary:
2.1 Introduction

The multifunctional ability of the computer lies in its adaptability to perform a set of instructions repeatedly. This

involves repeating some portion of the program either a specified number of times or until a particular condition is being

satisfied. This repetitive operation is done through a loop control instruction. During looping, a set of statements are

executed until some conditions for termination of the loop is encountered .A program loop consists of two segments, one

is the body of the loop and the other known as the control statement. The control is tested always for execution of body

of the loop.

Depending on the position of the control statement in the loop, a control may be classified as the entry controlled loop
or as the exit controlled one (Fig.8.1). In the entry controlled loop, the control condition is tested first and if satisfied

then only body of the loop is executed. In the exit controlled loop, the test is made at the end of the body, so the body is

executed unconditionally first time.

test

condition

Body of loop

entry

false

true

True

test

condition

Body of loop

entry

false

Fig.8.1 loop control s
tructures

(b) Exit controlled loop
t controlled loop

(a) Entry controlled loop

School of Distance Education

‘C’ Programming for Mathematical Computing Page 109

A looping process, in general, would include the following four steps:

1. Setting and initialization of a counter.

2. Execution of the statement in the loop

3. Test for a specified condition for execution of the loop.

4. Incrementing the counter.

The three loop constructs in C language for performing loop operations are:

1. The while statement

2. The do-while statement

3. The for statement.

2.2 The While statement.

While statement is a sentinel controlled repetition which can be iterated infinite number of times. Number

of iterations is controlled using the sentinel variable (test expression). It is one of the simplest looping

structures. The basic format of the while statement is:

Sentinel loops

Based on the nature of control variable, and the type of value assigned to it, for testing the

control expression, there are two types of loops:

1. counter controlled

2. sentinel controlled loops (repetition).

Counter controlled repetitions are the loops which the number of repetitions needed for the

loop is known before the loop begins; these loops have control variables to count repetitions.

Counter controlled repetitions need initialized control variable (loop counter), an increment

(or decrement) statement and a condition used to terminate the loop (continuation condition).

Sentinel controlled repetitions are loops with an indefinite repetitions; this type of loop

use a special value, called sentinel value, to change the loop control expression from true to

false(i.e., to indicate end of iteration) .

School of Distance Education

‘C’ Programming for Mathematical Computing Page 110

The while is an entry-controlled loop statement. The test condition is evaluated and only if the condition is

true the body is executed. After execution of the body, the test-condition is once again evaluated and if it is

true, the body is executed once again. This process of repeated execution of the body continues until the test-

condition finally becomes false and the control is transferred out of the loop. On exit, the program continues

with the statement immediately after the body of the loop. If the body contains only one statement it is not

necessary to put the braces, but placing them is a good programming practice. Let us look at a simple example,

which uses a while loop.

While (test condition)

{

body of the loop

}

include< stdio.h>

int main()

{

int p,n,count;

float r,si;

count =1;

while(count <= 4)

{

printf (”enter values for p,n,r\n”);

scanf (“%d %d %f “, &p,&n,&r”);

si = p*n*r/100;

printf(“Simple interest is: Rs. %\n f”, si);

count = count +1;

}

return 0;

}

Fig 8.2: program to illustrate while loop

School of Distance Education

‘C’ Programming for Mathematical Computing Page 111

Here, the program executes all the statements after while 4 times. The logic for calculating the simple interest

is written within a pair of braces (i.e., the statements form body of while loop) immediately after the keyword

while. The parentheses after the while contain a condition. So long as this condition remains true, all

statements within the body of the while loop keeps getting executed repeatedly. .Also, to start with, the

variable count is initialized to 1 and every time the logic of simple interest is executed, the value of count is

incremented by one .The index variable count here, is called the loop counter .

The following points about while are worth noting.

1. The statements within while loop would keep on getting executed till the condition being tested

remains true. When the condition becomes false, the control passes to the first statement that follows

the body of the while loop.

2. In the place of condition there can be any other valid expression. So long as the expression evaluates to

a non zero value, the statements within the loop would get executed.

3. The condition being tested may be relational or logical operators as in the example below.

while (i < = 4)

while (i > = 4 && j < = 5)

while (i >. = 4 && (j < 5 || c< 10))

4. The statements within the loop may be a single line(i.e., here braces optional) or a block of

Statements as in example shown below.

while(i < =5)

i = i+1;

is same as, while(i < =5)

{

i = i+1;

}

5. Almost always, the while must test a condition that will eventually become false, otherwise the loop

Will be executed for ever.

6. Instead of incrementing a loop counter (not necessarily integer it can be a float), one can Decrement

it and can still manage the body of the loop to be executed repeatedly.

2.3 The Do Statement

The do while loop is also a kind of loop, which is similar to the while loop, in contrast to while loop, the do

while loop tests at the bottom of the loop after executing the body of the loop. Since the body of the loop is

executed first and then the loop condition is checked we can be assured that the body of the loop is executed at

School of Distance Education

‘C’ Programming for Mathematical Computing Page 112

least once. The while on the other hand, will not execute its statements if the condition fails for the first time.

That is, the while tests the condition before executing any of the statements within the while loop. As against

this, the do-while tests the condition after having executed the statements within the loop. Since the test

condition is evaluated at the bottom of the loop, the do-while statement is

an exit controlled loop statement. The do-while loop looks like this: Here the statement is executed first, and

next the expression is evaluated. If the condition in the expression is true then the body is executed again and

this process continues till the conditional expression becomes false. When the expression becomes false the

loop terminates. This difference is brought about more clearly by the following program.

Here the, since the condition fails the first time itself, the printf () will not get executed at all. The same

program using the do-while construct is

do

{

body of the loop

}

while (test condition);

#include<stdio.h>

int main ()

{

while (4<1)

printf(“hello\n”);

return 0;

}

#include<stdio.h>

int main ()

{

do

{

printf(“hello\n”);
} while (4<1);

return 0

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 113

In this program, the printf () would be executed once, since first the body of the loop is executed and then the

condition is tested. Break and continue are used with do while just as they would be in a while. A break takes

one out of the do-while by passing the conditional test. A continue sends you straight to the test at the end of

the loop.

2.4 The For Statement

The for loop is another entry-controlled loop that provides a more concise loop control structure. It

is a counter controlled repetition. Therefore the number of iterations must be known before the loop

starts (or predetermined). The body of a for statement is executed zero or more times until an

optional condition becomes false. Also one can use optional expressions with in the for statement to

initialize and change values during the for statements execution. The general form of the for loop is:

That is, in the control block of the for loop statement there are three expressions separated by

semicolon (;).The execution of the for loop is as :

1. The initialization: Initialization of the control variables is done first using assignment

statements .It is typically used to initialize a loop counter variable.

2. The value of the control variable is tested using the test condition. The test condition is a

relational expression, such as i <5 that determines when the loop will exit. That is, the loop

condition expression is evaluated at the beginning of each iteration. The execution of the loop

continues until the loop condition evaluates to false.

3. Increment: The increment expression is evaluated at the end of each iteration. It is used to

increase or decrease the loop counter variable.

Let us write down the simple interest program(which we have written earlier using while
statement) using for (Fig.8.3). If this program is compared with the one written using while
construct, we can see that , the three steps of for loop construct have now been incorporated in the

for statement. Here in this program (fig 8,3), when the for statement is executed for the first time,

the value of count is set to an initial value 1. Next the condition count <=3 is tested. Since the count

was set to 1, the condition is satisfied and the body of the loop is executed for the first time. Up On

reaching the closing brace of for, control is sent back to the for statement, where the value of count

for (initialization; test condition; increment;)

{

body of the loop

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 114

is incremented by 1. Again the test is performed to check whether the new value of count exceeds 3.

If the value of count is less than or equal to 3, the statements within braces of for are executed

again,. The body of the for loop continues to get executed till count does not exceed the final value

3.The control exits from the loop , when count reaches the value 4.and the control is transferred to

the statement(if any) immediately after the body of for.

.

Additional Features of for loop

1. More than one variable can be initialized at a time in the for statement as in :

for (p =1, n =6; n <11; ++n)

Statement. That is, initialization section has two parts p = 1 and n = 6 , separated by comma..Like

initialization section, increment section too can have more than one part. The multiple arguments

in

the increment section too are separated by commas.

2. The test condition may have any compound relation and the testing need not be limited only to the

Loop control variable. For eg:

#include<stdio.h>

int main()

{

int p,n,si;

float,si;

for(count =1; count <=3; count= count+1)

{

printf(enter the values for p.n,r\n”);

scanf(“%d %d %f”,&p,&n,&r);

si = p*n*r/100;

printf(“ simple interest + rs. %f\n”, si);

return 0

}

}

Fig 8.3: Program using for loop

School of Distance Education

‘C’ Programming for Mathematical Computing Page 115

sum = 0;

for (i =1 ;i<10 && sum< 19; ++i)

{

S = s+1;

printf(“%d %d \n”,i,sum):

}

Here the loop uses a compound test condition with the counter variable i and variable sum .The

loop is executed as long as both the conditions i<10 && sum < 19 are true. The sum is evaluated

inside the loop.

3. It is also permissible to use expressions in the assignment statements of initialization and increment

Sections. For eg. A statement of the type

for(x= (m + n)/2; x > 0; x = x/2)

is valid.

4. One or more sections can be omitted if necessary as in eg.,

Here, both initialization and increment sections are omitted in the for statement. The initialization

has been done before the for statement and the control variable is incremented inside the loop. Though

the sections remains blank, the semicolons separating the sections must remain. If the test condition is

not present, the for statement sets up an infinite loop. Such loops can be broken using break or goto
statements in the loop..

5.Time delay loops in for loop can be set up using the null statement as:

for (i = 100; i > 0; i = i-1)

;

m=5;

for (; m ! = 100 ;)

{

printf(“ %d\n”, m);

m = m+3;

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 116

Here this loop is executed 100 times without any output. The body of the loop contains only a

semicolon.

Known as null statement.

Nesting of For Loops

The way IF statements can be nested, similarly whiles and fors can also be nested; two loops can be

nested as follows:

………….

…………..

for (i =1; i <10; ++ i)

{

…………

for (j= 1; j! = 5: ++ j)

{

………..

}

………..

}

………..

The nesting may continue up to any desired level. To understand how nested loops work, we look at

the program below.

Inner loop
Outer loop

School of Distance Education

‘C’ Programming for Mathematical Computing Page 117

Here for each value of r, the inner loop cycles through twice, with variable c taking values 1and

2.The inner loop terminates when c exceeds 2 and the outer loop terminates when r exceeds 3.

include< stdio.h>

int main ()

{

int r,c,sum;

for (r =1; r < =3; r ++)

{

for(c=1; c<=2; c++)

{

sum = r+c;

printf(“r= %d sum = %d \n”, r,c,sum);

}

}

return 0;

}

output

r =1 c=1 sum=2

r =1 c=2 sum=3

r =2 c=1 sum=3

r =2 c=2 sum=4

r =3 c=1 sum=4

r =3 c=2 sum=5

Fig 8.4. Program to explain nested for

School of Distance Education

‘C’ Programming for Mathematical Computing Page 118

2.5 Jumps in loops

We often come across situations, where we want to jump out of a loop instantly, without waiting to

get back to the conditional test. The keyword break allows to do this. When break is encountered

in a loop , control automatically passes to the first statement after the loop. A beak is usually

associated with an if. The key word break, breaks the control only from the while in which it is

placed. As an example we have :

2.6 The continue statement

The keyword continue, allows us to take the control to the beginning of the loop, by passing the

statements inside the loop, which have not yet been executed. That is , when the key word continue is

encountered inside any loop, control automatically passes to the beginning of the loop .A continue is

usually associated with an if. The syntax is:

include < stdio.h>

int main()

{

int num, i;

printf(“ enter a number”);

scanf(“%d”, & num);

i =2;

while(i < = num-1)

{

if (num% ! = = 0)

{

printf(“not a prime number\n”);

break;

}

i++;

}

if (i = = num)

printf(“prime number\n”);

}

Fig 8.5 use of break statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 119

Continue;

As an example consider the program of Fig.8.6. The use of continue statement in loops is illustrated in

fig 8.7.In while and do while loops, continue, causes the control to go directly to the test condition

and then to continue the iteration process. In the case of for loop, , the increment section of the loop is

executed before the test condition is evaluated.

#include < stdio.h >

main()
{

int i;
int j = 10;

for(i = 0; i <= j; i ++)

{

if(i == 5 Goods 1

)
{

continue; Goods 1

}
printf("goods %d\n", i);

}
}

Output

Goods 1

Goods 2

Goods 3

Goods 4

Goods 5

Goods 6

Goods 7

Goods 8

Goods 9

Goods 10

Fig .8. 6 .Use of continue statement

School of Distance Education

‘C’ Programming for Mathematical Computing Page 120

Jumping out of the program.

We have seen that we can jump out of a loop using either the break or goto statement. In the same

way we can jump out of a program by using the library function exit().. The use of exit() function is

shown in fig. 8.8 below:

2.7 Summary:

1.The three types of loops available in C are for, while, and do while.

2. A Break statement takes the execution control out of the loop.

3.a continue skips the execution of the statements after it and takes he control to the beginning of the

loop.

4. A do while loop is used to ensure that the statements with in the loop are executed at least once.

5 when we need to choose one among number of alternatives, a switch statement is used.

6.The switch key word is followed by an integer or an expression that evaluates to an integer.

7. the case keyword is followed by an integer or a character constant.

8. the usage of goto keyword should be avoided as it usually violates the normal flow of execution.

While (test condition) do for(initialization; test condition; increment)

{ { {

……………….. ……… ……………..

If (……………) if(………) if(…………..)

Continue; continue; continue;

……………… ……….. ……………..

……………… ………… ……………..

} } (while test condition); }

Fig.8.7 continue command in while, do while and for loop statements

…………..

………….

If (test condition) exit (0);

……………

……………

Fig.8.8. use of exit () function.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 121

Module IV: Introduction
This module is designed as an introduction to Data structures. It is about structuring and organizing data as

a fundamental aspect of developing computer application. The standard data structures which are often

used and which forms the basis for complex data structures is the array. An array is a homogenous data

structure in which all elements are of the same type. In the first unit of the module, we describe different

types of arrays in general. The next unit is devoted to a useful introduction to User defined functions.

Unit 1 :Arrays
Structure
1.1 Introduction

1.2 One dimensional Arrays.

1.3 Declaration of one dimensional Arrays

1.4 Initialization of one dimensional Array.

1.5 Two dimensional Arrays.

1.6 Initializing 2-D arrays

1.7 Multi dimensional Arrays

1.8 Dynamic Arrays

1.9 Summary:

1.1 Introduction

An array is a collection of similar elements. These similar elements could be all integers, or all
floats, , or all characters, etc. Usually, an array of characters is called a ‘ string’, where as an array of
integers or floats is simply called an array. All elements of any given array must be of the same type.
That is, we cannot have an array of 10 numbers, of which five are of integers and five of float type.

C supports a rich set of derived and user defined data types, in addition to a variety of fundamental
data types.as detailed below:

Arrays Integral types Structures

Functions Float types Unions

Pointers Character Types Enumerations.

Data Types

Derived
Types

User defined TypesFundament
al Types

School of Distance Education

‘C’ Programming for Mathematical Computing Page 122

Arrays and structures are referred to as structured data types because they can be used to

represent data values that have a structure of some sort. Structured data types provide an

organizational scheme that shows the relationship among the individual elements and facilitate

efficient data manipulation. In programming language such data types are known as data structures.

1.2 One dimensional Arrays.

As already discussed, an array is a collective name given to a group of similar variables .The values

in an array is called as elements of array, and are accessed by numbers called subscripts. The array

which is used to represent and store data in a linear form (or accessing its elements involve only a

single subscript) is called as single or one dimensional array. As an example consider the C

declaration:

int number [5];

Here in this declaration, the array variable number contain 5 elements of any value available to the

int type .and the computer reserves 5 storage locations. The values to the array elements can be

assigned as:

number [0]= 12;

number [1]=13;

number [2]=15;

number [3]=20;

number [4]=25;

This would cause the array number to store the values as shown below:

12

13

15

20

25

These elements may be used in programs just like any C variable

number [0]

number [1]

number [2]

number [3]

number [4]

School of Distance Education

‘C’ Programming for Mathematical Computing Page 123

1.3 Declaration of one dimensional Arrays

To begin with, like other variables an array needs to be declared before they are used so that the

compiler will know what kind of an array and how large an array we want. The general form of array

declaration is:

type variable-name [size];

The type specifies the type of element that will be contained in the array, such as int, float or char and

the size indicates the maximum number of elements that can be stored inside the array .For example,

int marks [10];

Declares the marks as an array to contain a maximum of 10 integer constants. This number is often

called the dimension of the array .The bracket ([]) tells the compiler that we are dealing with an

array.

The C treats character strings simply as array of characters. The size in a character string represents

the maximum number of characters that the string can hold. For instance,

char name[13];

Declares the name as a character array(string) variable that can hold a maximum of 13 characters.

Suppose we read the following string constant in to the string variable name

“GOOD MORNING”

In this, each character of the string is treated as an element of the array name and is stored in the

memory as:

‘G’
‘O’
‘O’
‘D’
‘ ‘

‘M’
‘O’
‘R’
‘N’
‘I’
‘N’
‘G’
‘\o’

School of Distance Education

‘C’ Programming for Mathematical Computing Page 124

When the compiler sees a character string , it terminates with an additional null character \o. Thus the
element name[13] holds the null character ‘\o’. Remember that, while declaring character arrays, we
must allow one extra space for the null terminator.

1.4 Initialization of one dimensional Array.
After an array is declared, its elements must be initialized. If they are not given any specific value,

they are supposed to contain garbage values. An array can be initialized at either of the following
stages:

 at compile time
 at run time

Compile time initialization

Whenever we declare an array we can initialize it directly at compile time. In this type of
initialization, we assign certain set of values to array elements before executing program The general
form of initialization of arrays is:

type array-name[size] = [list of values];

the values in the list are separated by commas. The type size can be specified directly as :

int num [5] = { 2.3,4,5,6};

Here the size of the array is specified directly as 5 in the initialization statement. The compiler will
assign values to the particular elements of the array. i.e., At the time of compilation all, the elements
are at specified positions as shown below.

num [0] = 2

num [1] = 3

num [2] = 4

num [3] = 5

num [4] = 6

Also the type size can be specified indirectly as in:
int num [] = { 2.3,4,5,6};

The compiler counts the number of elements written with in the braces and determines the size of the
array.
Character arrays may be initialized in the same manner. Thus the statement

char name [] = { ‘j’, ’o’, ’h’, ’n’, ‘\o’};
Declares the name to be an array of five characters, initialized with the string ’john’ ending with the
null character. Alternatively, we can assign the string literal directly as :

char name [] = ‘john’;

School of Distance Education

‘C’ Programming for Mathematical Computing Page 125

Run time initialization

An array can also be explicitly initialized at run time usually; .this approach is applied for
initialization of large arrays. For example, consider the following program segment;

for (i = 0; i < 5; i++)

{

scanf (“% d “’ & x [i]);

}

The above segment will initialize the array elements with the values entered through the keyword .In
this type of initialization (run time initialization) of the arrays. looping elements are almost
compulsory. Looping statements are used to initialize the values of the arrays one by one by using
assignment operator or through the keyboard by the user. we can also use read function such as scanf
to initialize an array as in example below.

int x [2] ;

include < stdio.h >
void main ()
{

int array [3], i;
printf(“ enter 3 numbers to store them in an array\n”);
for (i =0; i < 3; i ++)
{

scanf (“ % d “, & array [i]) ;
}
printf (“ elements in the array are: \ n”);
for i =0; i < 3; i ++)
{

printf (“ elements stored at a [%d] = %d\n”,i, array [i]);
}
getch ();

}

output
enter 3 elements in the array : 2 3 4
elememts in the array are :
element stored at a[0] = 2
element stored at a[1] = 3
element stored at a[2] = 4

Fig 9.1: program to illustrate an array

School of Distance Education

‘C’ Programming for Mathematical Computing Page 126

scanf (“ %d % d”, & x[0], & x[1]);

will initialize the array elements with the values entered through the key word. Here is a sample

program (Fig.9.1) to store the elements in the array and to print them from this array.

Searching and sorting are two operations performed on arrays. Searching is the process of arranging

elements in the list according to their values, in ascending or descending order. An ordered list is a

sorted one. The three simple and important sorting methods are:

Bubble sort

Selection sort

Insertion sort.

Other sorting methods include, Merge sort, quick sort and Shell sort.

Searching is the process of finding the location of the specified element in a list. The specified

element is often called the search key. If the process of searching finds a match of the search key

with a list element value, then the search is sad to be successful. Otherwise it is unsuccessful. Two

most commonly used searching methods are ;

Sequential search

Binary Search.

1.5 Two dimensional Arrays.

So far, we have explored arrays with only one dimension. It is also possible to have two or more

dimensions. The 2-D array is also called a matrix. The 2-D arrays are declared as :

type array-name [size of row] [column size];

2-D arrays are stored in memory as shown below. In memory, whether, it is single or two

dimensional array, the array elements are stored in one continuous chain .Each dimension of the array

is indexed from zero to its maximum size minus one: the first index selects the row and the second

index selects the column within that row,

School of Distance Education

‘C’ Programming for Mathematical Computing Page 127

110 205 130

214 270 370

20 180 310

300 345 380

Column 0

Column 0
Column 2Column 1

[2] [0] [2] [2][2] [1]

Column 0
Column 2Column 1

[0] [0] [0] [2][0] [1]

Column 0
Column 2Column 1

[1] [0] [1] [2][1] [1]

Column 0
Column 2Column 1

[3] [0] [3] [2][3] [1]

Row 2

Row 1

Row 0

Row 3

Fig 9,2 : Representation of 2-D array in memory

School of Distance Education

‘C’ Programming for Mathematical Computing Page 128

Here is a sample program:

This program stores the roll number and marks obtained by a student side by side in a matrix. In the

first part of the program, i.e., in the first for loop, we read in the values of roll number and marks,

where as in the second for loop, we print out these values. Also, in the first scanf , the first subscript

of the variable student is row number which changes for every student. The second subscript tells

which of the two columns are we talking about- the zeroth column which contains the roll number or

the first column which contains the mark. The counting of rows and columns begins with zero.

Remember that two dimensional array is a collection of a number of one dimensional arrays placed

one below the other .In this program, the array elements have been stored row wise and accessed row

wise. Although it is possible to access the elements column wise, row-wise strategy is accepted

widely.

include< stdio.h>

int main()

{

int students [4] [2];

int i,j;

for (i = 0; i < = 3; i ++)

{

printf (“enter the roll no of student and marks\n”);

scanf(“ %d %d”, &student [i] [0], &student[i][1]);

}

for (i =0; i< = 3; i ++)

printf(“ %d %d “, student [i] [0],student [i] [1]);

return 0;

}

9.3. program to illustrate 2-D array

School of Distance Education

‘C’ Programming for Mathematical Computing Page 129

1.6 Initializing 2-D arrays

Like 1-D arrays, 2-D arrays could be initialized by following their declaration with a list of initial

values enclosed in braces as in ,

int table [2][3] = { 0,0,0,1,1,1};

which initializes the first row to zero and second row to one. Equivalently one can write the above

statement as:

int table [2][3] = {{ 0,0,0} ,{ 1,1,1}};

We can also initialize a 2-D array in matrix form as:

int table [2][3] = {

{0,0,0},

{1,1,1}

};

More over, the declaration

int table [][3] = {

{ 0,0,0},

{1,1,1}

};

Is perfectly valid.

If the values are missing in the initatializer, they are automatically set to zero. For instance, the

statement

int table [2][3] = {

{1,1}

{2}

};

will initialize the first two elements of the first row to one, the first element of the second row to 2

and all other elements to zero.

In situations where we have to initialize all the elements to zero, a short cut method as in,

int m [3] [5] = { { 0}, { 0},{0} };

School of Distance Education

‘C’ Programming for Mathematical Computing Page 130

may be used. Here the first element of each row is explicitly initialized to zero, while all other

elements are automatically initialized to zero. the following statement would also work.

int m [3] [5] =- { 0,0};

1.7 Multi dimensional Arrays

The general form of a multidimensional Array is:

Type array-name [s1] [s2] [s3] …….[sm] ;

Where si is the size of the ith dimension. A 3-D array can be thought of as an array of arrays of array.

The outer array has three elements, each of which is 2-d array of four 1-D arrays., each of which

contains two integers. That is, a 1-D array of two elements is constructed first, followed by placing

four 1-D arrays placed one below the other. So that a 2-d array containing four rows is obtained.

Thereafter, three 2-D arrays are placed one behind the other to yield a 3-D array containing three 2-D

arrays.

1.8 Dynamic Arrays

In C it is possible to allocate memory to arrays at run time. The arrays created at run time are called

dynamic arrays .Dynamic arrays are created using memory management functions like malloc,

calloc, realloc, that are included in the header file< stdlib.h > The concept of dynamic arrays is used

in creating and manipulating data structures like lists, stack and queues.

1.9 Summary:

1,An array is similar to an ordinary variable except that it can store multiple elements of similar type.

2.The array variable acts as a pointer to the zeroth element of the array. In 1-D array, zeroth element

is a

single valued one, whereas in a 2-D array this element is a 1-D array. During multidimensional

initialization, omission of array size other than the first dimension may result an error.

3. While initializing character array, enough space is to be provided for the terminating null

character.

4. The subscript variables in a array need to be initialized before they are used.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 131

Unit 2:User Defined Functions
Structure
2.1 Introduction

2.2 Need for User defined Functions

2.3 A Multi function Program

2.4 Elements of User defined Functions

2..5 Definition of Functions

2.6 Return Values and their types

2.8 Function Declaration

2.9 Category of Functions

2.10 Functions with no arguments and no return values

2.11 Function with Arguments but no return value:

2.12. Arguments with return values

2.13 Functions with no arguments but returns a value

2.14 Functions that return multiple values

2.15 Recursion

2.16 passing arrays to function

2.17. Passing strings to functions

2.18. Summary

2.1 Introduction
The C language is similar to most modern programming languages in that, it allows the use of

functions (i.e., a self contained block or module of program code), to get its tasks done. In

general, C functions contain a set of instructions enclosed by braces’{ }’ , that can perform a
coherent task of same kind. They are easy to define and are reusable. That means, it can be executed

from as many different points in a C program as required. Broadly speaking, the two categories of

functions in C are (1) Library functions and (2) user defined functions. Library functions are in

built functions that are grouped and placed together in a common place called ‘library’, and are
capable of performing specific operations. The main difference between a library and user defined
function is that library functions are not required to be written by the user where as a user
defined function has to be developed by us at the time of writing a program. In fact, a user defined
function later becomes a part of the C program library. main is a specially recognized function in C

and is an example of user defined function while the functions printf and scanf belong to the

category of library function.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 132

2.2 Need for User defined Functions

A function in C, is a module of a program code (or a block of code that takes information in,

does some computation, and returns a new piece of information based on the parameter information)

which deals with a particular task. In fact, every program can be thought of as a collection of these

functions. That is, functions groups a number of program statements into a unit and this unit can be

invoked from other parts of a program. This division approach clearly results in a number of

advantages:

1.It results in high level modular programming, (Fig.10.1) wherein the high level logic of the overall

problem is solved first while the details of each lower level functions are addressed later.

2. By using functions at the appropriate places, the length of the source program can be reduced.

3. A function may be used by many other programs.

2.3 A Multi function Program

As was pointed earlier, a function is a self contained block of instructions that perform a coherent

task of some kind. Moreover, a function can be accessed from any location with in the C program.

Making functions is a way of isolating one block of code from other Independent blocks of code. A

function can take a number of parameters, do required processing and then return a value. When a

function is

Main Program

Function A Function B Function C

B1 B2

Fig.10.1 Top down Modular Programming using functions

School of Distance Education

‘C’ Programming for Mathematical Computing Page 133

Defined at any place in the program then it is called function definition. That means, once a function

is defined and packed, then it takes some data from the main program and returns a value. Actually,

we will be looking at two things - a function that calls the function and the function itself. Let us

consider the above chunk of program(fig.10.2).

And here is the output…..

this is function definition

this explains the use

Here we have defined two user defined functions- main () and message (). In fact, we have used

the word message at three places in the program. During the execution of the main, the first

statement encountered is

message();

which indicates that the function message is to be executed. At this point , the program transfers its

control to the function message. After executing the message function (here no value is returned as

was indicated by the key word void)., the control is transferred back to the main. Now, the execution

continues at the point where the function call (by definition) was executed. After executing the

printf statement, the control is again transferred to the function message () if being called by main (
). That means the activity of main () is temporarily suspended while the message () function

void message();

int main ();

{

message();

printf (“this explains the use\n”);

return 0;

}

void message()

{

printf (“this is function definition \n”);

}

Fig 10.2

School of Distance Education

‘C’ Programming for Mathematical Computing Page 134

wakes up and goes to work. When the message () function runs out of statements to execute, the

control returns to main (), which comes to be active again by executing its code at the exact point

where it left off. Thus, main () becomes the calling and message () becomes the called function.

Any function can call any other function, In fact, it can call itself. Further, a called function can call

another function. Also, a function can be called more than once in any program. Moreover, there are

no predetermined relationships, rules of precedence or hierarchies (except at the starting point),

among the functions that make up the complete program. The functions can be placed in any order

and the called function can be placed either before or after the calling function. The best practice is

to put all the called functions at the end. Figure 10.3 illustrates the flow of control in a multifunction

program

2.4 Elements of User defined Functions

So far we have discussed and used a variety of data types and variables in our programs

.Nevertheless, declaration and use of these variables were primarily done inside the main function.

We can therefore define functions and use them like any other variables in C program. Both functions

names and variables are considered as identifiers and therefore they must follow the rules for

identifiers..Further, Like variables, functions have type associated with them and the function names

and types must be declared and defined before they are used in program. Every user defined

functions has three elements.

 Function definition

 Function Call

 Function Declaration.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 135

function 1 ();

{

………………..

}

function 3 ();

{

……………….

}

function 2 ();

{

………………..

function 3 ();

…………………

}

main ()

{

……..

function 1 ();

……….

function 2 ();

……………

function 1 ();

}

call

call

call

return

return

return

Fig 10.3 Flow of control in a multifunction program

School of Distance Education

‘C’ Programming for Mathematical Computing Page 136

The function definition is independent program modules that is specially written or apply the

requirements of the function. To use this block or function, we need to call down it at the required

place in the program, known as the functions. A function is defined when function name is followed

by a pair of braces in which one or more statements may be present. The program that calls the

function is referred to as the calling program or calling functions. The calling program should declare

any function that is used later in the program. This is termed the function declaration or function

prototype.

2..5 Definition of Functions

The function definition which is the heart of function, is an independent program module that is

specially written to suit to the requirements of the function. A function definition shall include the

following elements

 Function name

 Function type

 List of parameters.

 Local variable declarations

 Function statements

 A return statement

All the six elements are grouped in two parts namely,

1. Function header (first three elements)

2. Function body (Second three elements)

A general format of function definition to implement these two parts(Fig.10.4) is:

Fig.10.4

function_ type function_name (parameter list)

{

local variable declaration;

executable statement1;

executable statement2;

…………….

…………….

return statement;

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 137

The first line function_ type function_name (parameter list) is known as the function header

and the statements within the opening and closing braces constitute the function body.

Function header

The function header consists of three parts: function type, function name and the function

parameter list. Semicolon is not used at the end of the function header.

Function name and type

Function type may specify the data type that one may use (like float ,int or double whatever

according to ones needs) .If data type is not specified then C will assume it as int type and if the

function does not return any value then void is used.

Function name may consist of any variable that is suitable for users understanding. That means, it

is any valid C identifier that must follow the same rules of formation as other variable names in C. A

function gets called when the function name is followed by a semicolon.

Parameter List

It declares the variables that are to be used in the function and that are going to be called in the

program. Actually, they serve as input data to the function to carry out the specified task and are also

be used to send values to calling programs. They are often termed as formal parameters(or

arguments). The parameter list contains declaration of variables separated by commas and enclosed

in parentheses with no semicolon after the closing parentheses. Note that combined declaration of

parameter variables is invalid. That is, int sum(int a,b) is not a valid declaration of parameter list. To

indicate an empty parameter list, usually we use the key word void between the parentheses as in

void printline (void)

{

………..

}

Many compilers do accept an empty set of parentheses, without specifying anything as in

void printline ()

Again, its nice to have void to indicate a nill parameter list.

Function Body

The function body contains the declarations and statements necessary for performing the required

task. The bodies enclosed in braces contain three parts:

School of Distance Education

‘C’ Programming for Mathematical Computing Page 138

 Local declaration that specify the variables needed by the function

 Function statements that perform the task of the function

 A return statement that returns the value evaluated by the function.

If the called function is not going to return any meaningful value to the calling function, the use of

return statement can be omitted. Nevertheless, its return type should be specified as void. But it is

better to have a return statement even for void functions.

2.6 Return Values and their types

As pointed out earlier, a return statement is a statement that returns the value evaluated by the

function to the calling program. If a function does not return any value, one can omit the return

statement. When a return is encountered, the control is immediately passed back to the calling

function. A function can return only one value at a time per call and the return statement can take

one of the following forms:

return;

or

return (expression) ;

Here, the first ‘plain’ return does not return any value (or it acts as the closing brace of
function).The second form of return returns the value of the expression. For example, the function

int mul (int x, int y)

{

int z;

z = x* y;

return (z);

}

Returns the value of z . It is possible to have more than one return statement for a function as in:

if (x < = 0)

return (0);

else

return (1);

School of Distance Education

‘C’ Programming for Mathematical Computing Page 139

All functions by default return int type data. We can force a function to return a particular type of

data by specifying the type specifier in the function header. For functions that use doubles, yet returns

ints, the returned value will be truncated to an integer as in:.

int product (void)

{

return (2.5* 3.0);

}

Will return the value 7, only the integer part of the computation.

2.7 Function Calls .

In order to use functions user need to call on it at a required place in the program. This is

known as the function call. A function can be called by simply using the function name followed by a

list of actual parameters, if any, enclosed in parentheses. For example,

main ()

{

int y;

y = mul (10, 5); /* function call * /

printf (“ %d\n”,y);

}

Here in the main() program the mul(10, 5) function has been called. The C compiler, when it

encounters a function call, the control is transferred to the function mul (). This function is then

executed line by line and a value is returned (which is assigned to y) , when a return statement is

encountered.

A Function that returns value can be used in expressions like any other variable.

e.g; y = mul (p,q)/(p+q);

Of course, a function cannot be used on the RHS side of an assignment statement. Thus, the

statement

mul (a,b) = 15;

Is wrong. Moreover a function , that does not return any value may not be used in expressions; but

School of Distance Education

‘C’ Programming for Mathematical Computing Page 140

can be used to perform certain tasks specified in the function. Such functions may be called in by

simply stating their names as independent statements. For example,

main ()

{

printline ();

}

2.8 Function Declaration

The program or a function that called a function is referred to as the calling function or calling

program. The calling program should declare any function that is to be used later in the program. This

is known as the function declaration (also known as function prototype). Like variables, all the C

functions must be declared, before they are called on. A function declaration involves four parts. viz,

 Function type

 Function name

 Parameter list

 Terminating semicolon.

The general format is:

Function- type function –name (parameter list);

The format is similar to the function header line except the terminating semicolon. Further, when a

function does not take any parameters and does not return any value, its proto type , written

as:

void display (void);

A proto type declaration may be placed in two places in a program:

1. Above all functions including main (also called Global prototype);

2. Inside a function definition.(also called local prototype).

Global declarations are available for all the functions in the program where as local prototype type

declarations are used by the functions containing them. The place of declaration of a function defines

a region (also called scope of the function) in a program in which the function may be used by other

functions. It is nice to declare prototypes in the global declaration section before main so that the user

gets a quick reference to the functions used in the program thereby enhancing the documentation.

School of Distance Education

‘C’ Programming for Mathematical Computing Page 141

2.9 Category of Functions .

A function depending on whether arguments are present or not and whether a value is returned or

not, may be categorized into:

 Functions with no arguments and no return values

 Functions with arguments and no return values

 Functions with arguments and one return values

 Functions with no arguments but return a value

 Functions that return multiple values

Let us have a look category of functions one by one.

2.10 Functions with no arguments and no return values

When a function has no arguments, the called function does not receive any data from the calling

function and it does not return any data back to the calling function. Hence there is no data transfer

between the called and calling function. This is pictorially represented in Fig. 10.5.Let us understand

this with the help of a program (Fig 10.6)

Control

No Input

No output

Control

function 1 ()

{

……………….

function 2 ()

………………..

}

function 2 ()

{

……………….

……………….

……………….
.

}

Fig 10.5

School of Distance Education

‘C’ Programming for Mathematical Computing Page 142

2.11 Function with Arguments but no return value:

Here the called function receives the data from the calling function but the called function does not

void main ()

{

read_value ();

}

read_value ();

{

char name [10];

printf(“enter your name\n”);

scanf(“%s”, name);

printf(“your name is % s, name”);

}

output
enter your name

salu

your name is salu

Fig.10.6

School of Distance Education

‘C’ Programming for Mathematical Computing Page 143

include < stdio.h>

include < conio.h>

void main ()

{

int a,b;

printf(“enter the value for a and b\n”);

scanf(“%d %d”, &a, &b);

largest (a,b);

largest (c,d);

int c,d;

{

if (c > d)

{

printf(“ largest = % d\n”);

}

else

{

printf(“ largest = % d\n”);

}

return ();

}

output
enter the value for a and b

5

3

largest = 5

Fig 10.7 Program to find largest of two numbers

School of Distance Education

‘C’ Programming for Mathematical Computing Page 144

return any value back to the calling function. This is depicted in Fig 10.8.The dotted lines in Fig 10.8

Indicates that there is only transfer of control but not data.. A sample program to illustrate this is

shown in Fig 10.7

2.12. Arguments with return values

In this type of functions, functions accepts arguments and returns value back to the calling

program That means, a self contained and independent function receives a predetermined form of

input and outputs a desired value. Thus it is a two way communication between a calling function

and a called function (fig.10.9)

Fig 10.8

function 1 ()

{

……………….

function 2 (a)

………………..

}

function 2 (f)

{

……………….

……………….

……………….
.

}

Values of
arguments

No return value

Fig 10.9

function 1 ()

{

……………….

function 2 (a)

………………..

}

function 2 (f)

{

……………….

……………….

……………….
return (e).

}

Values of
arguments

Function result

School of Distance Education

‘C’ Programming for Mathematical Computing Page 145

For example, the program (Fig.10.10) illustrates the use of two way data communication

between calling and called functions.

#include < stdio.h >

float calculate_ area (int);

int main ()

{

int radius;

int area;

printf (“ enter the radius:\n”);

scanf(“%d”, & radius);

area = calculate_area(radius);

printf(“ area of circle :”, area);

return (0);

}

float calculate_ area (int radius);

{

float area of circle;

area of circle = 3.14 * radius * radius;

return(area of circle);

}

output
enter the radius: 1

area of circle = 3.14

Fig 10.10: program to show functions with argument and return value

School of Distance Education

‘C’ Programming for Mathematical Computing Page 146

2.13 Functions with no arguments but returns a value

In this type, the called function does not receive any data from the calling function. It is also a one

way data communication between the calling function and the called function. To understand this

following program (fig 10.11) will help.

include < stdio.h >

include < conio.h >

void main ()

{

float sum;

float total ();

clrscr ();

sum = total ();

printf (“ sum = % f \n”, sum);

}

float total ()

{

float a,b;

a = 2;

b= 8;

return (a+b);

}

output

sum = 10.000000

Fig 10.11: function with no arguments but returns a value

School of Distance Education

‘C’ Programming for Mathematical Computing Page 147

2.14 Functions that return multiple values

Using a return statement, a function in C can return only one value. If we want the function to

return more than one value of same data types, we could return the pointer to array of that data types.

We can also make the function return multiple values by using the arguments of the function. That is ,

by providing the pointers as arguments. In fact, when a function needs to return several values, we

use one pointer in return instead of several pointers as arguments. Here, the mechanism of sending

back information through arguments is achieved by using what are known as address operator (&)

and indirection operator (*).For e.g., consider the program code:

In this code, in the function call, when we pass the actual values of x and y to the function, we pass

the address of locations where the values of s and d are stored in the memory. When a function call I

s passed, the following assignments takes place.

Value of x to a

Value of y to b

Address of s to sum

Address of d to diff

The indirection operator * (The name indirection means that it gives indirect reference to
variable through its address) in the declarations sum and diff in the header indicates these variables

are to store addresses and not the actual values of variables. That means, the variables sum and diff
point to the memory location of s and d respectively. In the body of the function, the statements

*sum = a + b;

* diff = a - b;

void mathoperation (int x, int y, int *s, int *d);
main ()
{

int x =10, y = 8, s,d;
mathoperation (x, y, &s, &d);
printf (“ s = % d \n d = % d\n”, s,d);

}
void mathoperation 9 int a, in b, int * sum, int * diff)
{

*sum = a+b;
*diff = a-b;

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 148

Imply that the value stored in the location pointed to by sum is the value of s and the value of a-b is

stored in the location pointed to by diff is the value of d. The variables * sum and * diff are pointers

and sum and diff are pointer variables..Since they are declared as int , they can point to locations of

int type data. The use of pointer variables for communicating the data between functions is termed

call by reference (or call by address/ pass by pointers).

2.15 Recursion

In C programming, it is possible for the functions to call themselves or the process of defining.

#include < stdio.h>

int sum (int n);

int main ()

{

int num, add;

printf(“ enter a positive integer:\n”);

scanf(“ %d”, & num);

add = sum (num);

printf(“ sum = %d “, add);

}

int sum(int n)

{

if (n = = 0)

return n ;

else

return n+ sum (n-1);

}

output
enter a positive number

3

6

Fig.10.12 program code for the sum on n natural numbers

School of Distance Education

‘C’ Programming for Mathematical Computing Page 149

Something in terms of itself is known as recursion. A very simple example to find the sum of n natural

numbers using recursion(or call a function inside the same function) is shown in Fig 10.12.In this example,

the function sum () is invoked from the same function. If n is not zero then the function calls itself by passing

argument 1 less when the previous argument it was called with. When n becomes equal to zero, the value of n

is returned .In this example, a better visualization of recursion for n = 3, assumes the form:

sum (3)

= 3+ sum (2)

= 3+2+sum(1)

= 3+2+1+sum(0)

= 3+2+1+0

= 3+2+1

= 3+3

= 6

That is, every recursive function must be accommodated with a way to end the recursion. when n is zero, there

is no recursive function call and the recursion ends here.

2.16 passing arrays to function

In C programming it is possible to pass a single array or an entire array to a function. Also, both one and

multidimensional array can be passed to function as argument. To pass a 1-d array to a called function, listing

the name of the array without any subscripts, and size of the array as argument is sufficient. That means, while

passing arrays to the argument, the name of the array is passed as an argument. Also, Single element of an

array can be passed in the same way as passing variables to a function. For example, the following code

#include < stdio.h>

void display(int a)

{

printf(“%d”,a);

}

int main() {

int c [] = {2,3,4};

display (c[2]); /* passing array element c[2] */

return 0;

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 150

Explains the passing single element of an array (that is c[2]) to a function. The output of this

program is 4.In C, the name of the array represents the address of its first element. By passing the

array name in fact deals with passing the address of the array to the called function. The array in the

called function refers to the same array stored in the memory. That is, any changes in the array in the

called function will be reflected in the original array. Remember that one cannot pass a whole array

by value, as we do in the case of ordinary variables. Also, when we deal with array arguments, care

should be taken to incorporate the changes made to the original array that passed to the function, if

the function changes the values of the elements of an array.

Two dimensional arrays

Like simple arrays, to pass two dimensional array to a function as an argument, the starting address of

memory area reserved is passed .An example, to pass 2-D arrays to function is shown below.

include < stdio.h>

void function(int c[2][2]);

int main(){

int c[2][2],i,j;

printf("enter 4 numbers:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j){

scanf("%d",&c[i][j]);

}

function(c);

return 0;

}

void function(int c[2][2]){

int i,j;

printf("displaying:\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j)

printf("%d\n",c[i][j]);

}

School of Distance Education

‘C’ Programming for Mathematical Computing Page 151

The output of this program is:

Enter 4 numbers

1

2

3

4

Displaying

1

2

3

4

The function defined in the program can be used in the main function to display 4 numbers in the

array .

2.17. Passing strings to functions

The strings are treated as character arrays in C and therefore the rules for passing strings to

functions are same as those for passing arrays to functions .The rules are as follows:

1. The strings to be passed must be declared as a formal argument of the function when it is

defined.

2. The function prototype must show that the argument is a string. eg., void display (char str []
);

3. A call to the function must have a string array name without subscripts as its actual argument.

eg. display (names);

2.18 Summary

1. Function declaration specifies the return type of the function and the types of parameters it

accepts. A function can return only one value at a time.

2. There is no restriction on the number of return statements that may be present in a function.

Also return statements need not always be present at the end of the called function.

3. A return statement is needed if the return type is anything other than void. If a function does

not return any value, return type must be declared as void

School of Distance Education

‘C’ Programming for Mathematical Computing Page 152

4. Any number of arguments can be passed to a function being called. However, the type, order,

and the number of actual and formal arguments must be same .If the value of the formal

argument is changed in the called function, the corresponding change does not take place in

the calling function.

5. Where more functions are used, they may be placed in any order.

6. If a function has no parameters, the parameter list must be declared as void .Functions return

integer value by default.

7. Functions cannot be defined as assignment.

8. A function with void return type cannot be used in the RHS of an assignment statement.

9. Function definition defines the body of the function .it may be placed either after or before the

main function.

10. Variables declared in a function are not available to other functions in a program.

11. A function can be called either by value or by reference.

12. Recursion offers a better solution than loops.

13. If a function is to be made to return more than one value at a time, then return these values

indirectly by using a call by reference.

10 Use parameter passing by values as far as possible.

