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1
CONTINUOUS FUNCTIONS ON INTERVALS

Definitions A function f:A— Ris said to be bounded on A if there exists a constant M >0
such that
|f(X)|£M forall xe A.
That is, a function f:A—R is bounded on the set A if its range f(A)is a bounded setin R.
f :A> R is unbounded on 4, if fis not bounded on A.
i.e., fis unbounded on A if given any M > 0, there exists a point X, € A such that
[f(x)[>M.

Example We now give an example of a continuous function that is not bounded. Consider the
function f defined on the interval A=(0,0) by

f(x):%

is not bounded on A because for any M >0 we can take the point X, = 1 1 in A to get

1 . . . . .
f(xy)=—=M +1>M . However, being the quotient two continuous functions 1 and x, f is
Xy

continuous on A.

We now review some basic definitions and theorems.

Cluster Point: Let AcR. A point ceR is a cluster point of A if for every d >0 there exists
at least one point xe A, x# ¢ such that |x—c|<d.

i.e, A point ceR is a cluster point of AcR if for every d -neighborhood V,(c)=(c—d, c+d)
of € contains at least one point of Adistinct from c.

The cluster point cmay or may note be a member of A, but even if it is in A, it is ignored
when deciding whether it is a cluster point of A or not, since we explicitly require that there be
points in V, (¢) N Adistinct from ¢ in order for Cto be a cluster point of A
Example We now show that A={1, 20, 323}, the set consisting of three elements 1, 20 and 323,

has no cluster point.
The point 1 is not a cluster point of A, since choosing d =% gives a neighborhood of 1 that

contains no points of A distinct from 1. The same is true for the point 20 and 323. Also, a real
number other than 1, 20 and 323 cannot be a cluster point. For, if Ce Rwith c#1, ¢# 20, and

C # 323, then choose d = min{|c—]j,|c—20|,|c—323|}. Then V,(c)(VA=. Hence A has no

cluster point.
Theorem A number ceR is a cluster point of a subset A of R if and only if there exists a
sequence (&,) in A such that lim(a,)=c and a, #c forall neN.
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Example Let A be the open interval A=(2, 3). All the points of A are cluster points of A Also

the points 2, 3 are cluster points of A, though they do not belong to A Hence every point of
the closed interval [0, 1] is a cluster point of A

Example We now show that A finite set has no cluster point.

Let F be a finite set. No number ceR is a cluster point of F as it is not possible to find a
sequence (a,) in F such that lim(a,)=c and a,#c forall neN.

Example The infinite set N has no cluster point. No number ceR is a cluster point of N as it
is not possible to find a sequence (a,) in N such that lim(a,)=c and a, #c forall neN.

Example The set B= {% neN } has only the point 0 as a cluster point.

Example 1f | =[0,1], then the set C=1 "Q consists of all the rational numbers in
I. It follows from Density Theorem (“If x and y are real numbers with x<y,
then there exists a rational number r such that x<r <y”) that every pointin | isa

cluster point of C.
Definition Let AcRR, and let ¢ be a cluster point of A For a function f:A— R, a real

number L is said to be a limit of f at c if, for every number e >0, there exists a
corresponding number d >0 such thatif xe A and O<|x—-c|<d, then |f(x)-L|<e. In that
we write lim f(x)=L.

X—C

Since the value of d usually depends on e, it may be denoted by d(e) instead of d to
emphasize this dependence.
The inequality 0<|Xx—c| is equivalent to saying x# c.
Theorem If f: A— R and if c is a cluster point of A, then f can have at most one limit at c.
Theorem Let f: A— R and let ¢ be a cluster point of A Then the following statements are
equivalent.
(i) le_rfg f(x)=L.
(ii) Given any e -neighborhood V, (L) of L, there exists a d -neighborhood V, () of ¢ such that
if x=#c is any pointin V,(c) " A, then f(x) belongs to V,(L).
Important Limits of Functions

(1) limk=Kk. (2) limx=c.
@) limx =c’. @) Iim%:% if ¢>0.

The following important formulation of limit of a function is in terms of limits of sequences.
Sequential Criterion for Limits: Let f:A— R and let ¢ be a cluster point of A Then the

following statements are equivalent.

(i) limf(x)=L.

(ii) For every sequence (x,)in A that converges to c¢ such that x, #c for all neN, the sequence
(f(x,)) converges to f(c).

Divergence Criterion: Let ACRR, let f : A—> R andlet ceR be a cluster point of A
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(@) If LeRR, then f does not have limit L at ¢ if and only if there exists a sequence (X,) in A
with x #c for all neN such that the sequence (X,) converges to C but the sequence
(f(x,)) does not converge to f(c).

(b) The function f does not have a limit at ¢ if and only if there exists a sequence (X,) in A
with x #c for all neN such that the sequence (X,) converges to C but the sequence
(f(x,)) does not converge in R.

Remark The assertion (a) in theorem enables us to show that a certain number L is not the

limit of a function at a point, while (b) says that the function does not have a limit at a point.

We list some examples, which works on the basis of Divergence Criteria. The details are
avoided as it is not mentioned in the syllabus.

Example If f(X)=% (x#0), then Iingf(x)zling% doesnot exist in R.

The signum function sgn is defined by
+1 for x>0,
sgn(x) =< 0 for x=0,
-1 for x<0.

Then Iirrgsgn(x) doesnot exist. We also note that sgn(x) =ﬁ for x=0.
X—> X
Iingsi n(l/ x) doesnot existin R.

Properties of Limits
The following rules hold if lim,_  f(x)=L and lim,__ g(x)=M (L and M real numbers).
1. Sum Rule: lim f(X)+g(X)]=L+M

i.e., the limit of the sum of two functions is the sum of their limits.
2. Difference Rule: lim f(x)—g(x)]=L-M

i.e., the limit of the difference of two functions is the difference of their limits.
3. Product Rule: lim[ f(x)-g(x)]=L-M

i.e., the limit of the product of two functions is the product of their limits.
4. Constant Multiple Rule: limkf (x) =kL (any number k)

i.e., the limit of a constant times a function is that constant times the limit of the function.
5. Quotient Rule: IimM = L, M =0
e g(x) M
i.e., the limit of the quotient of two functions is the quotient of their limits, provided the
limit of the denominator is not zero.

6. Power Rule: If m and n are integers, then
lim[ f (x)]" =L", provided L" is a real number.

i.e., the limit of any rational power of a function is that power of the limit of the function,
provided the latter is a real number.
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Definition Let AcCR, let f:A—> R, and let ce A. We say that f is continuous at c if, for
every numbere >0 there exists d >0 such that if X is any point of A satisfying |x-c|<d,
then | f(X)-f(c)|<e.

Definition If f fails to be continuous at ¢, then f is discontinuous at C.

Similar to the definition of limit, the definition of continuity at a point can be formulated
very nicely in terms of neighborhoods. .
Theorem A function f :A— R is continuous at point ce A if and only if given any e -

neighborhood V,(f(c)) of f(c) there exists a d -neighborhood V,(C) of ¢ such that if X is any
point of ANV, (c), then f(x) belongs to V,(f(c)), thatis
F(AAY, (©) <V, (f(©).
If ce A is a cluster point of A, then a comparison of Definitions 2 and 3 show that f is
continuous at cif and only if
f(c)=|xigc1f(x). ..(1)

Thus, if ¢ is a cluster point of A, then three conditions must hold for f to be continuous at C:

(i) f must be defined at c(so that f(c) makes sense),

(i) thelimitof f at cmustexistin R (so that le m f (X) makes sense), and

(i) f(c)=Ilimf(x).
If ce A is not a cluster point of A, then there exists a neighborhood V,(c) of ¢ such that
ANV, (c)={c}. Thus we conclude that f is continuous at a point ce A that is not a cluster

point of A. Such points are often called isolated points of A. They are of little practical

interest to us, since they have no relation to a limiting process. Since continuity is automatic for
such points, we generally test for continuity only at cluster points. Thus we regard condition
(1) as being characteristic for continuity at c.

Similar to Sequential Criterion for Limits (Theorem 4), we have the Sequential Criterion for
Continuity.
Sequential Criterion for Continuity: A function f:A— R is continuous at the point ce A if
and only if for every sequence (x,)in A that converges to c, the sequence (f(Xx,)) converges to
f(c).
Discontinuity Criterion: Let AcR, let f :A—> R, andlet ce A. Then f is discontinuous at
c if and only if there exists a sequence (X,)in A such that (X,) converges to c, but the sequence

(f(x,)) doesnot converge to f(c).

Example f(X) =% is not continuous at x=0.

The signum function sgn is not continuous at x=0.
Definition Let AcR, andlet f: A—R. If B isasubset of A, we say that f is continuous

on the set B if f iscontinuous at every point of B.

Example 13 The following functions are continuous on R.
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o The constant function f(X)=bh.
e The identity function g(x)=x.
e h(x)=x.

Example f(X) =% is continuous on A={XeR:x>0}.
Example The function f(x)=sin(l/x) for x=0 is not continuous at 0 as Iirgsin(l/ X) does not

exist.
Example The function f(x)=xsin(l/x) for x=0 is not continuous at 0 as f(x) is not defined at

0.
Example Given the graph off(x), shown below, determine if f(x)is continuous at

X=-2,x=0,x=3.
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Solution
To answer the question for each point we'll need to get both the limit at that point and the

function value at that point. If they are equal the function is continuous at that point and if
they aren’t equal the function isn’t continuous at that point.

First x=-2

f(-2)=2 and Iirpzf(x) doesn’t exist.

The function value and the limit aren’t the same and so the function is not continuous at this
point. This kind of discontinuity in a graph is called ajump discontinuity. Jump
discontinuities occur where the graph has a break in it as this graph does.

Now x=0.

f(0)=1 and Iing f(x)=1 sothat. Iim0 f(x)=1= f(0).
The function is continuous at this point since the function and limit have the same value.

Finally x=3.
f(3)=-1 and Iirrslf(x)zo
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The function is not continuous at this point. This kind of discontinuity is called a removable
discontinuity. Removable discontinuities are those where there is a hole in the graph as there
is in this case.

Example The function

F(x) = xsin(l/x) for x=0,
B 0 for x=0,

is continuous at 0.
Combinations of Continuous Functions:
Let AcR and let f and g be functions that are defined on A to R and let ce A. If k isa

constant and f and g are continuous at ¢, then
(i) f+g, f-g, fg, and kf are continuous at C.
(i) f/g iscontinuous at ¢, provided g(x)#0 for all xe A.
The next result is an immediate consequence of Theorem 10, applied to every point of A.
Theorem Let AcR andlet f and g be continuous on A to R. If k isa constant and f and ¢

are continuous on A, then
(i) f+g, f-g, fg, and kf are continuous on A.
(i) f/g iscontinuouson A, provided g(x) =0 for all xe A.
Examples A polynomial function is continuous on R.
Rational function r defined by
p(x)
r(x)= a0’
as the quotient of two polynomials p(x) and q(x), is continuous at every real number

for which it is defined.
The trigonometric functions sine and cosine functions are continuous on R.

The trigonometric functions tan, cot, sec, and csc are continuous where they are defined.
For instance, the tangent function is defined by
X:snx

COSX
provided cosx# 0 (that is, provided x# (2n+1p /2, neZ). Since sine and cosine functions are

continuous on R, it follows that the function tan is continuous on its domain.
Theorem Let AcR, let f:A—R,and let |f| be defined by
|f](x)=|f(x)| for xe A
(@) If f iscontinuous at point ce A, then |f| is continuous at C.
(@) If f iscontinuouson A, then | f | is continuous on A

Example Let 9(X)= |X| for xe R.Then ¢ is continuous on R.

Continuity of Composites:
If f iscontinuous at ¢, and g is continuous at f(c), then ge f is continuous at ¢
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Example Let g(x)=sinx for xeR and f(X) =% for x#0. Then, being the composition of the

continuous functions g and f , (ge f)(X)=sin(l/x) is continuous at every point ¢ 0.
Theorem  If X=(X,) is a convergent sequence and if a<x,<b for all neN, then
a<lim(x,)<b.
Sequential Criterion for Continuity A function f:A—R is continuous at the point ce A if
and only if for every sequence (X,)in A that converges to ¢, the sequence (f(X,)) converges to
f(c).
Hence if fis continuous at x, then
limx, =x=>lim f (x,) = ()
Equivalently,
Hmx, =x= Jim £x,) = f(imx,)
Squeeze Theorem: Suppose that X =(X,), Y=(Y,), and Z =(z,) are sequences of real numbers
such that
X, <Y,<z, forall neN,
and that lim(x,) =1im(z,). Then Y =(y,) is convergent and
lim(x,) = lim(y,) = lim(z,).
Nested Intervals Property: If |, =[a,, b,], neN, is a nested sequence of closed and bounded
intervals, then there exists a number x e R such that x eI, for all neN.
Characterization Theorem for Intervals: If S is a subset of R that contains at least two points
and has the property
if x, yeSand x<y then [x y]c S, (1)
then S is an interval.
Discontinuity Criterion: Let ACRR,letf : A—> R, and let ce A Then f is discontinuous at c if
and only if there exists a sequence (x,) in A such that (X,) converges to c, but the sequence
(f(x,)) does not converge to f(C).
The Supremum Property (or Completeness Property): Every nonempty set of real numbers
that has an upper bound has a supremum in R.
The analogous property of infima can be deduced from the Supremum Property.
The Infimum Property of R: Every nonempty set of real numbers that has a lower bound has
an infimum in R.
Theorem (Boundedness Theorem) Let | =[a,b] be a closed bounded interval and let f:l >R
be continuous on I. Then fis bounded on I.
To prove this suppose that fis not bounded on I. Then, for any ne N there is a number X, €|

such that| f (xn)| >n. Since I is bounded, it follows that the sequence X =(X,) is bounded. Being

a bounded sequence of real numbers, by the Bolzano-Weierstrass Theorem, X has a
subsequence X'= (an ) that converges to a number, say, x.

Since [ is closed and since the elements of the subsequence X' belongs to I, it follows, from
Theorem , thatxel
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As f is continuous on I, xel implies f is continuous at x. Now f is continuous at x,
together with (X, ) converges to x implies, by Sequential Criterion for Continuity, that ( f(x, ))
converges to f (X).

Since a convergent sequence of real numbers is bounded, the convergent sequence ( f(x, ))
must be a bounded sequence. But this is a contradiction since!

‘f(xnr)‘>nr >r for reN.

Therefore the supposition that the continuous function f is not bounded on the closed
bounded interval I leads to a contradiction. Hence fis bounded. This completes the proof.
The conclusion of the Boundedness Theorem fails if any one of the hypotheses is relaxed. The
following examples illustrate this.
Example The function f(x)=X for x in the unbounded, closed interval A=[0,») is continuous

but not bounded on A .

Example The function g(X) =£ for x in the half-open interval B=(0,1] is continuous but not
X

bounded on B.
Example The function / defined on the closed interval C =[0, 1] by
1
— when 0<x<1
h(x) =1 x

0 when x=0
is discontinuous and unbounded on C.
Example Let | =[a,b] and since f :1 — Rbe a continuous function such that f(x)>0 for each
X € | . We prove that there exists a number a > Osuch that f(x)>a forall xel .

To prove this, define g:1 - R by
g(X)=i for xel.
f(x)
Since f(x) >0 forall xel, and since f is continuous on I, it follows that g is continuous on
the closed bounded interval I. Hence, by Boundedness Theorem, gis bounded on |. Hence

there exists an a > Osuch that

|9(X)|Sl for xel .
a
As f(x) >0, the above implies
1 1
X)=——<— for xel.
9) f(x) a <
Hence f(x)>a for xel.

Absolute Maximum and Absolute Minimum
Definition Let AcR and let f : A—> R . We say that f has an absolute maximum on A if there

is a point X € A such that
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f(X)> f(x) forallxe A.
We say that fhas an absolute minimum on A if there is a point X. € A such that
f(x,)< f(x) forall xe A
We say that X is an absolute maximum point for f on A, and that X is an absolute minimum

point for f on A, if they exist.
Example We now give an example to show that a continuous function on set A does not
necessarily have an absolute maximum or an absolute minimum on the set.

. 1 . . ..
The function f(X)==has neither an absolute maximum nor an absolute minimum on the set
X

A= (0,) (Fig. 1). There can be no absolute maximum for f on A since fis not bounded above on

A. f can have no absolute minimum as there is no point at which f attains the value
0=inf{ f(x):xe A}. The same function has neither an absolute maximum nor an absolute

minimum when it is restricted to the set (0, 1), while it has both an absolute maximum and an

absolute minimum when it is restricted to the set [1, 2]. In addition, f(X) =£has an absolute
X

maximum but no absolute minimum when restricted to the set[1,c) , but no absolute maximum
and no absolute minimum when restricted to the set (1,).

Example We now give an example to show that if a function has an absolute maximum point,
then this point is not necessarily uniquely determined.

Consider the function g(x)=x" defined for xe A=[-11] has two points x=+1 giving the

absolute maximum on A, and the single point x = 0yielding its absolute minimum on A.
Example The constant function h(x)=1 for xeRis such that every point of Ris both an

absolute maximum and an absolute minimum point for /.

Theorem (Maximum-Minimum Theorem) Let | =[a, b] be a closed bounded interval and let
f :1 >R be continuous on I. Then fhas an absolute maximum and an absolute minimum on I.
To prove the result, let

f()={f(x):xel}.
i.e.,, f(l)is the nonempty set of values of fon I.

Since f is continuous and I is closed and bounded, using Boundedness Theorem, we have
f(l)is a bounded subset of R. Then f(l)is bounded above and bounded below. Hence by the

completeness property of R, supremum and infimum of the set exist.
Let

s =supf(l) and s =inff(l).
We claim that there exist points X and X. inIsuchthat s = f(Xx')ands = f(x).
We only establish the existence of the point X', as the proof of the existence of X is similar.

. <1
Since s =sup f (1), if ne N, then the number s - is not an upper bound of the set f(I).

Consequently there exists a number X, €| such that
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s*—£<f(xn)£s* forall neN. (2
n

By this way we obtain a sequence X =(x,) with members in I. Also, since I is bounded, the
sequence X =(x,)is bounded. Therefore, by the Bolzano-Weierstrass Theorem, there is
subsequence X'=(x, )of X that converges to some number X . Since the elements of X'belong
tol =[a, b], we have a< X, < b and hence it follows from Theorem A that

a<limx, <b.

That is,

as<x <b
and hence X €| . Therefore f is continuous at X and, by Sequential Criterion for Continuity, it
follows that

limf(x,)=f(x).
Since it follows from (2) that

s*—i<f(xn)s§ forall r eN,
n T

r

we conclude from the Squeeze Theorem that?
lim(f(x,)) = S.
Therefore we have
(<) =lim(f(x,))=s =supf(l).
We conclude that X is an absolute maximum point of fon I. This completes the proof.
Remark With the assumptions of the theorem, s = f(x')e f(I)and s = f(x)e f(I)
Theorem (Location of Roots Theorem) Let | =[a,b] and let f:l - R be continuous on I. If
f(a)<0< f(b), orif f(a)>0> f(b), then there exists a number c < (a,b) such that f (c) =0.
To prove the result, we assume that f (a) <0< f(b). We will generate a sequence of intervals by

successive bisections.

Let I, =[a,b],
where 8 =a, b =b, and let p, be the midpoint

1
plzi(al-i_bl)'
If f(p,)=0, we take c= p,and we are done.
If f(p,) #0, then either f(p,) >0or f(p,) <O.
If f(p)>0,thenweseta,=a, b,=p,
while if f(p)<0, then we seta, =p,,b, =b,.

In either case, we let

|2=[a'z’bz]}

then we have
l,cl,and f(a,) <0, f(b,)>0.
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We continue the bisection process. Suppose that the intervals 1,1,,...,I, have been
obtained by successive bisection in the same manner. Then we have f(a)<0 and f(b)>0,
and we set

a +h

pk:2'

If f(p,)=0, we take c= p, and we are done.

If f(p.) >0, we set

81 =8B =Py,
while if f(p,)<0, we set
81 = P B =N
In either case, we let
Lo =[81: 045
then l.,<l, and f(a,)<0, f(b,)>0.
If the process terminates by locating a point p,such that f(p,) =0, then we are done. If the
process does not terminate, then we obtain a nested sequence of closed bounded intervals
I, =[a,,b,] such that for every ne N we have

f(a,)<0 and f(b)>0
Furthermore, since the intervals are obtained by repeated bisections, the length of |, is equal to
b, —a,=(b—a)/2"". It follows from the Nested Intervals Property that there exists a point c that
belongs to |, for all ne N. Now cel for all ne Nimplies a, <c<h, for all neN, and hence

we have
0<c-a <h -a = (Z:_?),
and 0<b -c<h -a =(b-a)/2"".

Hence, it follows, by Squeeze Theorem, that

0<lim(c-a,) < (b—a)lim%

and Oslim(bn—c)s(b—a)limznll.
That is,
0<c-lim(a,) <0
and 0<lim(b,)-c<0.
Hence lim(a,)=c=Ilim(b,).

Since f is continuous at c, the fact that (a,) » ¢ and (b,) » ¢ implies (by Sequential Criterion
for Continuity) that

lim(f(a,))=f(c)=lim(f(b,)).
The fact that f(a,) <O for all ne N implies that
f(c)=lim(f(a,))<0.
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Also, the fact that f(b,)>0 for all neN, implies that
f(c)=lim(f(b,))=>0.

Thus, we conclude that f (c) =0. Consequently, c is a root of f. This completes the proof.

Remark The above theorem can be restated as follows:

“Let | =[a,b] and let f:l >R be continuous on I. If f(a)f(b)<0, then

there exists a number c e (a,b) such that f(¢)=0.”"
RemarkThe above result is called ‘location of roots theorem’ as it is the theoretical basis for
locating roots of a continuous function by means of sign changes of the function. The proof of
the theorem provides an algorithm, known as the Bisection Method, for finding solutions of
equations of the form f(x) =0, where f is a continuous function. (This method is discussed in
details in the text “Numerical Analysis” Sixth semester core).

Now using location of roots theorem , we examine whether there is a real number that is
one less than its fifth power?
The number we seek must satisfy the equation

x=x"-1.

ie, X*—x-1=0.

In other words we are looking for a zero of the function
f(X)=x"-x-1

By trial, we have
f()=1-1-1=-1
and f(2 =32-1-1=30.
Thus f<0 and f(2)>0.

Hence, by location of roots theorem, there exists a number €< (1,2)i.e., 1< ¢ < 2such that
f(c)=c®-c-1=0

Hence c=c’-1.
Therefore c is the required number which is one less than its fifth power.
Assignments

1. Show that every polynomial of odd degree with real coefficients has at least one real root.
2. Let | =[a,b] and let f:I - R be a continuous function on I such that for each x in I there

exists y in | such that | f (y)| < %| f (x)| . Prove that there exists a point c in I such that f (c)=0

3. Show that the polynomial p(x) = x> —x—1 has at least two real roots. Use a calculator to locate
these roots to within two decimal places.

4. Show that the polynomial p(x)=x*+7x*-9 has at least two real roots. Use a calculator to
locate these roots to within two decimal places.

5. Let f be continuous on the interval [0,1] to R and such that f (0) = f (1) . Prove that there exists
a point ¢ in [0,3] such that f(c)=f(c+3).[Hint: Consider g(x) = f (X) - f (x+2).] Conclude
that there are, at any time, antipodal points on the earth’s equator that have the same
temperature.
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6. Show that the function f(X)= 2InX++/X -2 has root in the interval [1, 2] . Use the Bisection
Method and a calculator to find the root with error less than1072.
7. Show that the equation x=cosxhas a solution in the interval [0,5]. Use the Bisection

Method and a calculator to find an approximate solution of this equation, with error less
than107.

8. The function f(X)=(x-1)(x—2)(x—3)(x—4)(x—5) has five roots in the interval [0, 7]. If the
Bisection Method is applied on this interval, which of the roots is located?

9. The function for g(x)=(x—2)(x—23)(x—4)(x—5)(x—6) has five roots on the interval [0, 7]. If
the Bisection Method is applied on this interval, which of the roots is located?

10. If the Bisection Method is used on an interval of length 1 to find p, with error | P, — C| <10°,

determine the least value of n that will assure this accuracy.
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2
BOLZANO’S INTERMEDIATE VALUE THEOREM

The next result is a generalization of the Location of Roots Theorem. It assures us that a
continuous function on an interval takes on (at least once) any number that lies between two of
its values.

Bolzano’s Intermediate Value Theorem: Let I be an interval and let f :1 — R be continuous on
I If a,bel andif keR satisfies f (a) <k < f(b), then there exists a point ce| between a and b
such that f (c) =K.

To prove the result, suppose that a<b and let g(x)= f(X)—k. Then f(a)<k< f(b) implies
g(a) <0< g(b) . By the Location of Roots Theorem there exists a point c with a<c<b such that

0=g(c).
i.e., such that 0= f(c)—k.
Therefore f(c)=k.

If b<a, let h(x)=k—- f(x) so that h(b)<O<h(a). Therefore there exists a point ¢ with
b<c<a such that 0=h(c) =k - f(c), and hence f (c) =k . This completes the proof.
Corollary Let | =[a,b] be a closed, bounded interval and let f:1 - R be continuous on I. If
keR is any number satisfying
inf f(1)<k<sup f(l)
then there exists a number cel such that f (c)=k.
It follows from the Maximum-Minimum Theorem that there are points ¢ and ¢  in I such that
inf f(1)=f(c) and f(c)=sup f(l).
Hence by the assumption
inf f(1)="f(c)<k<f(c)=sup f(l).
Hence by Bolzano’s Intermediate Value Theorem, there exists a point ce | between ¢. and

¢ such that f (c) =k . This completes the proof.

Theorem Let I be a closed bounded interval and let f :l - R be continuous on I. Then the set
f(1)={f(X):xel} is a closed bounded interval.
To prove this, we let m=inf f(I) and M =sup f(l), then by the Maximum-Minimum Theorem,
m and M belong to f () . Moreover, we have
f(l)c[mM]. ... (3)
If k is any element of [m,M], then it follows from Corollary to Bolzano’s Intermediate Value
Theorem that there exists a point ce | such thatk = f(c). Hence, ke f(I) and we conclude that
[mM]c f(l). .. (4
From (3) and (4), we have f(I)=[m,M].Since [m,M] is a closed and bounded interval, f(l)is
also a closed and bounded interval. (Also, we note that the endpoints of the image interval are

m and M, resp., the absolute minimum and absolute maximum values of the function). This
completes the proof.
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The previous theorem states that the image of closed bounded interval under a continuous
function is also a closed bounded interval. The endpoints of the image interval are the absolute
minimum and absolute maximum values of the function, and all values between the absolute
minimum and the absolute maximum values belong to the image of the function.

If 1 =[a, b] is aninterval and f =1 — R is continuous on I, we have proved that f(I)is the

interval[m,M]. We have not proved (and it is not always true) that f(l) is the interval
[f(a), f(b)].
The preceding theorem is a preservation theorem in the sense that it states that the continuous
image of a closed bounded interval is a set of the same type. The next theorem extends this
result to general intervals. However, it should be noted that although the continuous image of
an interval is shown to be an interval, it is not true that the image interval necessarily has the
same form as the domain interval.

Example We now give examples to show that the continuous image of an open interval need
not be an open interval, and the continuous image of an unbounded closed interval need not be
a closed interval.
If
1
x*+1
for xe R, then f is continuous onR . It is easy to see that if |, =(-1,1), then f(I,) = (%,1] , which is

f(X) =

not an open interval. Also, if |, is the closed interval given by |,=[0, ), then f(I,)=(01],

which is not a closed interval (Fig. 4).

Preservation of Intervals Theorem Let [ be an interval and let f:I - R be continuous on I.
Then the set f () is an interval.
To prove the result, let a,b e f(l)witha <b. Then there exist points a,bel such that
a = f(a) andb = f(b). Further, it follows from Bolzano’s Intermediate Value Theorem that if
k e (a, b) then there exists anumber ce | withk= f(c)e f(I).

Hence,[a,b] c f (1), showing that f(l)possesses property (1) of Characterization Theorem
for Intervals . Therefore f(l) is an interval and this completes the proof.
Example Let | =[a,b] and let f:l >Rand g:1 - R be continuous functions on I. We show
that the set E={xe|: f(X)=g(x)} is with the property thatif (X,) c E and x, = X,, thenx, €E.

To prove this, we note that since fand g are continuous, f —g:1 — Ris also continuous.

Also, since E={xel:(f-g)(x)=0},
we have E=(f-9)*{0}.
As {0} is a closed set and f —¢ is continuous, (f —g)™{0}is a closed subset of I. i.e., Eis a

closed subset of I.
Hence if we take a sequence (X,)in E with limit X, then its limit X, must belongs to the set E.

Solved Examples
Verity the following two important limits:
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(@) limx=x, (b) limk=Kk (k constant).

X—Xg X—>Xg

Answers

a) Let e>0 be given. We must find d >0 such that for all x

0<[x=X%,|<d implies

|Xx—%,|<e.

The implication will hold if d=e or any smaller positive number. This proves that
lim, . X=X,
b) Let e >0 be given. We must find d >0 such that for all x,

0<|[x—X%|<d implies |k-k|<e.

Since k—k =0, we can use any positive number for d and the implication will hold. This
proves that limk=Kk.

X—>Xg
1 A

Example Evaluate the following limit. «—u

Since we know that exponentials are continuous everywhere we can use the fact above.
. Licgy ania
: S1ELX ,.,—}I:Ii
lime™" =e

=l

=ED=1

Example For the limit lim,_, Jx-1=2, find a d >0 that works for e =1.
Answers We have to find a d >0 such that for all X
0<|x-5|<d = |/x-1-2]|<1.
Step 1 : We solve the inequality |v/x=1-2|<1 to find an interval about X, =5 on which the
inequality holds for all x# X;.
[Wx-1-2|<1
~1</x-1-2<1
1<+/x-1<3
1<x-1<9
2<x<10
The inequality holds for all x in the open interval (2,10), so it holds for all x#5 in this

interval as well.
Step 2 : We find a value of d >0 that places the centered interval 5-d < x<5+d inside the
interval (2,10). The distance from 5 to the nearer endpoint of (2, 10) is 3. If we take d =3 or any

smaller positive number, then the inequality 0<|x—-5|<d will automatically place x between
2 and 10 to make |/X-1-2|< 1.
0<|x-5]<3 = |Vx-1-2|<1L

Example Prove that lim_,, f(X)=4 if

X—2
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1 x=2.

Answers Our task is to show that given e >0 there exists d >0 such that for all X
O<|x-2|<d = |f(X)-4|<e.
Step 1: We solve the inequality | f(x)-4|<e to find on open interval about X, =2 on which

f(x):{xz, X# 2

the inequality holds for all x# X,.
For x#X,=2, we have f(X)=x’, and the inequality to solveis | X’ —4|<e:
|X*-4|<e
-e<x’-4<e
4-e<x’<4+e
Ja-e< |X|<\/m here we assume that e<4
Ja-e <x< \/m this is an open interval about x,=2 that solves the
inequality
The inequality | f(x) —4{ < e holds for all x# 2 in the open interval (\/ﬁ ~Na+e )
Step 2 : We find a value of d >0 that places the centered interval (2-d, 2+d) inside the

interval (vV4—e,J4+e):

Take d to be the distance from x,=2 to the nearer endpoint of (\/E Na+e ) In other
words, take

d =min{2—\/m, \/E—Z},

the minimum (the smaller) of the two numbers 2-J4-e and J4+e—-2.1f d has this or any
smaller positive value, the inequality 0<|x—-2|<d will automatically place X between Ja-e

and v4+e tomake | f(X)—4|<e.Forall X,
O<[x-2|<d = [f(x)—-4]|<e.
This completes the proof.
3 Pl
Example Show that # (x)=25" - 58" =102+ 5 hag a root somewhere in the interval
[-1,2].
What we're really asking here is whether or not the function will take on the value
? [x) =0
somewhere between -1 and 2. In other words, we want to show that there is a number ¢ such
that —-1<c<Zand Z%6)=0 However if we define # =0and acknowledge that @a=-1

and #=2we can see that these two condition on care exactly the conclusions of the
Intermediate Value Theorem. So, this problem is set up to use the Intermediate Value Theorem

and in fact, all we need to do is to show that the function is continuous and that Af =0is

between 2 (=1) and 7 () (ie. P (-1)<0<p(2) o P(2) <0< 2(-1] and we'll be done.
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To do this all we need to do is compute,
p(-1)=8 p(2)=-19
So we have, -18=p(2]<0<p(-1)=8

Therefore M =0 s between 2 {=1) and 2 (2} and since 7 () is a polynomial it's continuous
everywhere and so in particular it's continuous on the interval [-1,2]. So by the Intermediate

Value Theorem there must be a number —1<¢ < 2 so that, # £)=0
Therefore the polynomial does have a root between -1 and 2.

x

Example If possible, determine if f(x)=20sin(x+3) cos[ 5

j takes the following values in the
interval [0,5].

(a) Does Fla)=10, (b) Does flaj=-10,
If possible, suppose the function takes on either of the two values above in the interval [0,5].
First, let's notice that this is a continuous function and so we know that we can use the

Intermediate Value Theorem to do this problem.
Now, for each part we will let M be the given value for that part and then we’ll need to

show that M lives between 7 [O} and ¥ [5} If it does then we can use the Intermediate Value
Theorem to prove that the function will take the given value.

So, since we’ll need the two function evaluations for each part let’s give them here,

FlU]=28224 F(5]=19.7436

Now, let’s take a look at each part.

(a) In this case we'll define M =10 and we can see that,

F10)= 28224 <10 <15.7436 = /(5

So, by the Intermediate Value Theorem there must be a number J =¢ =3 such that
Fle]=10
(b) In this part we'll define #f =-10. We now have a problem. In this part M does not live

between f (U) and f (5] So, what does this mean for us? Does this mean that 4 (X} #-10n
[0,5]?
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Unfortunately for us, this doesn’t mean anything. It is possible that I ['I] #-10 in [0,5], but

is it also possible that F [ x] =-104, [0,5]. The Intermediate Value Theorem will only tell us
that ¢’s will exist. The theorem will NOT tell us thatc’s don’t exist.

In this case it is not possible to determine if # [XJ =-104 [0,5] using the Intermediate Value
Theorem.

Theory: Let’s take a look at the following graph and let’s also assume that the limit does exist.

L+eg 7
I st e /
1
L-¢& ra

Q -—— e o omm omm mm -

What the definition is telling us is that for any number £ > 0 that we pick we can go to our
graph and sketch two horizontal lines at L +& and L — £ as shown on the graph above. Then
somewhere out there in the world is another number & > U, which we will need to determine,
that will allow us to add in two vertical lines to our graph at 2+ and a— .
Now, if we take any x in the region, i.e. between @+ & and a — &, then this x will be closer
to a than either of 2+ & and a— 4. Or,
x—a|<d
If we now identify the point on the graph that our choice of x gives then this point on
the graph will lie in the intersection of the regions. This means that this function value f(x) will

be closer to L than either of L+ and £—¢&. Or,

F(x)- .El < E
So, if we take any value of x in the region then the graph for those values of x will lie in the
region.
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Notice that there are actually an infinite number of possible §’s that we can choose. In
fact, if we go back and look at the graph above it looks like we could have taken a slightly
larger 0 and still gotten the graph from that region to be completely contained in the region.

Also, notice that as the definition points out we only need to make sure that the function
is defined in some interval around z =« but we don’t really care if it is defined at 4= w.
Remember that limits do not care what is happening at the point, they only care what is
happening around the point in question.

Okay, now that we’ve gotten the definition out of the way and made an attempt to
understand it let’s see how it’s actually used in practice.

These are a little tricky sometimes and it can take a lot of practice to get good at these so
don’t feel too bad if you don’t pick up on this stuff right away. We're going to be looking at a
couple of examples that work out fairly easily.

Example Use the definition of the limit to prove the following limit.

. 2
limzx" =0
5=l

In this case both L and a are zero. So, let £ = () be any number. Don’t worry about what the number is,
£ isjust some arbitrary number. Now according to the definition of the limit, if thislimit is to be true we

will need to find some other number 5 = (0 so that the following will be true.
|xj—[]| < whenever 0 <|x—U| <d
Or upon simplifying things we need,
|x2| < £ whenever 0= |x| <d

Often the way to go through these isto start with the left inequality and do alittle simplification and see if

that suggests a choice for 5. We’ll start by bringing the exponent out of the absolute value bars and then

taking the square root of both sides.
|'.i

|x < E = |x|<:JE

Now, the results of this simplification looks an awful lot like J < |x] <& with the exception of the “ J < ”
part. Missing that however isn’t a problem, it is just telling us that we can’t take x = 0. So, it looks like

if we choose 7 = \*IE we should get what we want.
We’ll next need to verify that our choice of 2 will give us what we want, i.e.,

-

g whenever 0 -r:|x| -r:-..l]E
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Verification isin fact pretty much the same work that we did to get our guess. First, let’s again let == 0

be any number and then choose 9 = Je. Now, assume that ~ < |:‘| ":‘JIE. We need to show that by
choosing x to satisfy thiswe will get,

p
|| <&

p
To start the verification process we’ll start with ~ | and then first strip out the exponent from the absolute

values. Once this is done we’ll use our assumption on x, namely that x| < “-fg . Doing all this gives,

] 1 L .
.-1:‘| = |\r strip exponent out of absolute value bars
< L\d’g"j use the assumption that |x| <«/&
=& aimplify

Or, upon taking the middle terms out, if we assume that ¥ < x| < VE then wewill get,
al<g
and thisis exactly what we needed to show.

So, just what have we done? We’ve shown that if we choose £ = (J then we can find a & > (J so that we
have,
x*—0l<e whenever 0 <:|x—0| 'CZ'JE
. a _
and according to our definition this means that, lg% x=0

Assignments
Letl =[a,b], let f:l >R be continuous on I, and assume thatf(a)<0,f(b)>0. Let

W={xel:f(x)<0, and letw=supW . Prove that f (W) =0. (This provides an alternative proof
of Location of Roots Theorem).

Let | =[0,p/2] and let f:1 >R be defined by f(x)=sup{x?cosx} forxe | . Show there exists
an absolute minimum point X, € | for fon I. Show that X, is a solution to the equation cosx = X°.

Suppose that f:R — R be continuous on R and that |lim f =0 andlim f =0. Prove that f is

X—>—00 X—0
bounded on R and attains either a maximum or minimum onR . Give an example to show that
both a 4. Let f:R—R be continuous on R and letb e R. Show that if X, €R is such that

f (%) <b, then there exists a d -neighborhood U of X, such that f(x)<b forallxeU .
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Examine which open [respectively, closed] intervals are mapped by f(X)=x* for xeR onto
open [respectively, closed] intervals.

Examine the mapping of open [respectively, closed] intervals under the functions
g(x)=1/(x*+1) and h(x)=x*forxeR.

Give an example of an open interval that is not mapped by f(x)=x*for xe R onto open
interval.

If f[0,]] > R is continuous and has only rational [respectively, irrational] values, must f be

constant? Prove your assertion.
Let J=(a,b)and let g:J - R be a continuous function with the property that for every xe J,

the function g is bounded on a neighborhood V, (X) of x. Show by example that g is not

necessarily bounded on J.
Let | =[a,b] and let f:1 - R be a (not necessarily continuous) function with the property that

for every xe |, the function f is bounded on a neighborhood V, (X) of x (in the sense of the
Definition “ Let AcR, let f: A—> R, and let ce Rbe a cluster point of A. We say that f is
bounded on a neighborhood of C if there exists a d neighborhood V, (C) of ¢ and a constant
M > Osuch that such that | f (X)| <M forall xe AnV,(c)”). Prove that fis bounded on I.
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3
UNIFORM CONTINUITY

A function f is uniformly continuous if it is possible to guarantee that f(x) and f(u) be

as close to each other as we please by requiring only that x and u are sufficiently close to each
other; unlike ordinary continuity, the maximum distance between x and u cannot depend on x
and u themselves.

Every uniformly continuous function is continuous. Uniform continuity, unlike continuity,
relies on the ability to compare the sizes of neighbourhoods of distinct points of a given space.
Let AcR and let f:A—R. By the definition of continuity at a point it follows that the

following statements are equivalent.
(i) f is continuous at every point u € A.

(ii) Given e>0 andue A, there is a d(e,u) >0 such that for all x such that xe A and
|x—u|<d(e,u), then|f (x) - f (u)| <e.

In the above note that d depends, in general, on both € >0 andue A. For example, consider

f(x)=sin(l/x) for x>0 . fchange its values rapidly near certain points and slowly near other

points. Hence d depends on u.

Example 1If g(x)=1/x forxe A={xeR:x> 0}, then

u-x
9(x) - g(u) =—— .. (1)
Ux
If ue A is given and if we take
d(e,u)=inf{iu, iu’e}, . (2

then if [x—u|<d(e,u), we have |x—ul<iu so that —fu<x-u<Zu so that tu<x<Z%u, and

hence it follows that 1 < 2 . Thus, if |X - u| <3u, the equality (1) yields the inequality
X u

|g(x)—g(u)|s[u—22j|x—u| | 0

Hence if|X— u| <d(e,u), then (2) and (3) imply that

2
900 - 90 < | hure) e
We have seen that the selection of d(e,u)by the formula (2) works in the sense that it enables us
to give a value of d that will ensure that |g(x) - g(u)| <e when |x—u[<d and X, ue A. We note
that the value of d(e,u) given in (2) certainly depends on the pointu e A. If we wish to consider

allue A, formula (2) does not lead to one value d(e) >0 that will work simultaneously for all
u>0, sinceinf{d(e,u):u>0} =0.
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There are other selections that can be made ford. (For example we could also take
d,(e,u) =inf{1u,2u’}; however, we still haveinf{d,(e,u):u>0} =0.) In fact, there is no way of
choosing one value of d that will “work” for all u>0 for the function g(x) =1/x, as we shall

see.

Uniform Continuity
Now it often happens that the function f is such that the number d can be chosen to be
independent of the point ue A and to depend only on e . For example, if f(x)=2x forallxeR,

then
|f(x)— f(u)|=2/x-u

and so we can choose d(e,u)=e/2 for alle >0, ue R . Here d is independent of u.

7

Definition Let AcR and let f : A—> R . We say that f is uniformly continuous on A if for each
e>0 there is a d(e)>0 such that if x, ue A are any numbers satisfying|x—u|<d(e), then
| () - f(u)<e.

We note that d(e) in the definition above is independent of u. Also, it is clear that if fis

uniformly continuous on A, then it is continuous at every point of A. In general, however, the
converse does not hold, as is shown by the function g(x)=1/x on the set A={xeR:x>0}.

Example Show that the function f(x)=X* is uniformly continuous on [-11].
Let x, y be any two points of [-11] . Then
F )= f(y)| =] - y°|=[x=y| [x+Y]
Now we note that
[x+ Y| <|X+]y|< 2, since x,ye[-11].
Hence, for x, ye[-11]
[T () — f(y)|<2x-Y]
Hence for any e >0,
|f(X)— f(y)|<e

whenever |X - y| < %.

Hence taking d = %, we have for any € >0 and any X,y e[-11]]

| f(x)-f (y)| < e whenever |X— y| <d.
This shows that the given function is uniformly continuous.
Example Show that the function f(X)=1/Xis not uniformly continuous on
A={xeR:0<x<T.

Since x is continuous on A=(0,]] and x=#0 for all xe A 1/Xis continuous on A. If
possible, let f(X)=1/X is uniformly continuous on A. Then corresponding to e =1, there exists
a d >0 such that
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11

Xy

By Archimedean Property of real numbers [“If xeR, then there exists n, e N such that x<n "],

<1 whenever |X y| <d

1
corresponding to this d > 0, we can find a natural number me N such that dl< m. Then E <d.

Since me N, both l and 1 are elements of A=(0,1] and

2m
—_——=— —<d
m 2m 2m m
But
f 1 —f Ay ol |m—2m|=m21.
m 2m 1/m 1/2m

This is a contradiction to the inequality. Hence our assumption is wrong. i.e., f is not uniformly
continuous on A.
Example 1f g(x)=1/x forxe B=[1/2,1], then

u-—X
Ig(X)—g(U)I=ﬁ .. (1)

Since x, ue[1/2,1], |xu[>(1/2) —1/4:>|Xu|£4

Soif |[x—u|<d, |f(x) - f(u)|= || || <4d <eif d<e/A4.

Here d doesn’t depend on x and u. It works for any pair of numbers in the interval [1/2,1] with
|x— u| <d. Hence g(x)=1/x is uniformly continuous on B=[1/2,1] .
Example Show that f(X) = cosx?,x € R is not uniformly continuous on R.
If possible let f(x)=cosx’, xe Ris uniformly continuous on R. Then corresponding to
e =1, there exists a d > 0, such that forany x,ye R,
|f(x)— f(y)|<1 whenever |X—y|<d

By Archimedean Property, corresponding to this d >0 we can find natural number ne N such

that diz<n.Hence i<d.

Jn
Now let x=4/(n+1)p and y:ﬁ.

Then

oy =P —p =R T

= P < \/a <i<d
[\/n+l+\/ﬁ]\/a 2Jdn n

But | f (x) - f ()| =‘cos 2

:‘(_1)n+1_ _q\n

=|cos(n+1)p —cosmp |
=2>1.
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This is in contradiction with inequality (6). Hence our assumption is wrong i.e. f is not
uniformly continuous on R.

It is useful to formulate a condition equivalent to saying that f is not uniformly continuous
on A. We give such criteria in the next result.
Nonuniform Continuity Criteria: Let AcR and let f : A—> R. Then the following statements

are equivalent:

(i) f is not uniformly continuous on A.

(ii) There exists an €,>0 such that for every d >0 there are points Xx;,u; in A such that
| —Uy| <d and |f(x;)— f(u,)|>e,.

(iii) There exists an e,>0 and two sequences (x,) and (u,) in A such that lim(x,—u,)=0 and

f(x,)—f(u,)>e,forall neN.
Example Show that g(x) =1/X is not uniformly continuous on A={xeR: x>0} .

We apply Nonuniform Continuity Criterion. For, if X, =1/n andu, =1/(n+1), then we have
lim(x, —u,) =0, but

11

1 1
a(x,) Mw)—K1

“lUn U(n+

for allne N. Now choose €,=1. By the Nonuniform Continuity Criterion, g is not uniformly

u

n

=n-(n+1)|=1

continuous.

We now present an important result that assures that a continuous function on a closed
bounded interval I is uniformly continuous on I.
Uniform Continuity Theorem: Let I be closed bounded interval and let f:1 >R be

continuous on I. Then fis uniformly continuous on I.
To prove the theorem, we apply Contrapositive Method (which works on the logic
p — g=—q— —p) for proving the Theorem. If f is not uniformly continuous on I, then, by the

Nonuniform Continuity Criterion, there exists €, >0 and two sequences (X,) and (u,) in I such
that

|xn—un|<% and |f(x,)-f(u,)|>e, forallneN.

Since I is bounded, the sequence (X,) is bounded; and hence by the Bolzano-Weierstrass
Theorem there is a subsequence (Xnk) of (x,) that converges to an element, say, z. Since I is

closed, the limit z belongs to I, by Theorem A in chapter 2.
Since

u, —74<

1
Unk —Xnk‘+ Xr.Ik —Z‘<n—+‘xnk —Z‘
k

. 1
and since ——0 and ‘xnk - z‘ — 0as n, — 0, we have the subsequence (U, ) also converges to
nk

Z.
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Now if f is continuous at the point z, then, by the sequential criterion for continuity, as

(%, ) = zand (u, ) > z, we have both of the sequences ( f(x, )) and ( f(u, )) converge to f(2).

But this is not possible since

[F06) = T (u,) > e,
for allne N. Thus the hypothesis that f is not uniformly continuous on the closed bounded
interval I implies that f is not continuous at some point ze | . Consequently, if f is continuous

at every point of I, then fis uniformly continuous on I. This completes the proof.
Example Show that g(x) =1/Xx is uniformly continuous on A={xeR:1<x<2}.

To show this, we note that since A=[1, 2] is closed and bounded and ¢ is continuous on A, by
Uniform Continuity Theorem, g is Uniformly Continuous.
Lipchitz Functions
If a uniformly continuous function is given on a set that is not a closed bounded interval, then it
is sometimes difficult to establish its uniform continuity. However, there is a condition that
frequently occurs that is sufficient to guarantee uniform continuity.
Definition Let Ac R and let f : A— R . If there exists a constant K >0 such that

|f(x)— f(u)] <K|x—ul o (%)
for all X, ue A, then fis said to be a Lipchitz function (or to satisfy a Lipchitz condition) on A.

Geometric Interpretation

The condition (**) that a function f:l >R on an interval I is a Lipchitz function can be

interpreted geometrically as follows. If we write the condition as

f(x)— f(u)
X—u

then the quantity inside the absolute value is the slope of a line segment joining the points

(%, f(x)) and(u, f (u)). Thus a function f satisfies a Lipchitz condition if and only if the slopes of

<K, X uel, x#u,

all line segments joining two points on the graph of y= f(x) over I are bounded by some
number K.
Theorem If f:A— R isa Lipchitz function, then fis uniformly continuous on A.

To prove this we note that if fis a Lipchitz function, then there exists K >0such that

‘f(x)—f(u)

X—=U

<K, x,uel, x#u,

i.e., such that
|f()—-f(U)|<K[x-u, x uel, x=u.
If e >0is given, we can take d =e/K . If x,ue A satisfy|x—u| <d, then
1F (- fU)<K-==e
K
Therefore fis uniformly continuous on A. This completes the proof.
Example If f(X)=x> on A=[0,b], whereb>0, then
| f(X)— f ()] =[x+ u|[x—u| < 2b|x— |
f()—f(u)

X—U

for all x,u in[0,b]. Thus <2b forall x, ue[0,b], x=u.
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Thus f satisfies the Lipchitz condition (4) with K=2b on A, and therefore f is uniformly
continuous on A. Of course, since f is continuous and A is a closed bounded interval, this can
also be deducted from the Uniform Continuity Theorem. (Attention! The function f in the
above example f does not satisfy a Lipchitz condition on the interval[0,) .)

Converse of the Theorem is not true, in general. Not every uniformly continuous function is a
Lipchitz function. The following example shows this.

Example Show that g(x) = Jx on [0, 2] is not a Lipchitz function, but a uniformly continuous
function.
If possible let g(x) = JX, for xe [0,2] is a Lipchitz function. Then there exists a constant
K > 0 such that
|9(x) - g(u)| < K|x—u]| forall x,ue[0,2]

ie., ‘\/;—x/a‘<k|x—u|for all x,ue[0,2]

Then, \/7+\/7 \/;+ UX|———

ff

for all x,ueA

x=dl
T
By Archimedean Property, corresponding to the real number K, we can find a natural number

both X, u €[0,2].

n, such that n > K . Now consider X= iz and U= L 5
4 16n

n
But
3 1 1
Ix+Ju = —+—:—<—<—, since n>K
2n 4n 4n n K

This is a contradiction. Hence our assumption is wrong. Hence g(X)is not a Lipchitz function.
Since [0, 2] is closed and bounded and since g is continuous, by Uniform Continuity Theorem g
is uniformly continuous.

Alternatively, There is no number K >0 such that |g(x)|£ K|X| for allxel . The

reason is this: If there is such a K then, in particular for 0 < x <1, <K', which is not possible

NIE
as the set { J; :0<x<1} is unbounded. Therefore, g is not a Lipchitz function on I.

The following example illustrates that Uniform Continuity Theorem and Theorem 3 can
sometimes be combined to establish the uniform continuity of a function on a set.
Example We now verify the uniform continuity of the function g defined by g(x) = JX on the
set A=[0,).

The uniform continuity of the continuous function g on the closed bounded interval

I =[0,2] follows from the Uniform Continuity Theorem. If J =[1x), then if both X,u are in J,

we have
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|90 - g(u)| =[x~ u| = [ [—1IX ul.

Thus g is a Lipchitz function on | with constantK =1, and hence, by Theorem 3, g is uniformly
continuous on[l,«). Now A=1 U J, and for a given e >0, uniform continuity of g on I gives a
d, denoted by d, (e) and uniform continuity of ¢ on ] givesa d, denoted by d,(e).
Now take
d(e) =inf{1d, (e),d,(e)} -
Then for a given e > Othere exists d >0 such that
|9(x) - g(u)|<e for x,ue A and |x—u|<d.

Hence g is uniformly continuous on A.

The Continuous Extension Theorem
We have seen examples of functions that are continuous but not uniformly continuous on
open intervals; for example, the function f(x)=1/x on the interval (0, 1). On other hand, by the

Uniformly Theorem, a function that is continuous on a closed bounded interval is always
uniformly continuous. So the question arises: Under what conditions is a function uniformly
continuous on a bounded open interval? The answer reveals the strength of uniform continuity,
for it will be shown that a function on (a, b) is uniformly continuous if and only if it can be
defined at the endpoints to produce a function that is continuous on the closed interval.

We first establish a result that is of interest in itself.
Theorem If f:A— R is uniformly continuous on a set A of R and if (X,) is a Cauchy sequence
in A, then ( f(x,)) is Cauchy sequence in R.
To prove this we Let (x,) be a Cauchy sequence in A and let e >0 be given. Choose d >0 such
that if x, u in A satisfy [x—u|<d, then|f(x)— f(u)|<e. Since (x,)is a Cauchy sequence, by the
definition! of Cauchy sequence, there exists H(d) € N such that

|, —x,|<d forall n,m>H(d).

By the choice ofd, this implies that for n, m>H(d), we have

LICORRICHIELS

Therefore, by the definition of Cauchy sequence, the sequence (f(x,)) is a Cauchy sequence.
This completes the proof.
Definition A sequence X =(X,) of real numbers is said to be a Cauchy sequence if for
every € >0 there is a natural number H(e) such that for all natural numbers n, m>H(e),
the terms X, X, satisfy | X, — X, |<e€.
Example Using Theorem 4 show that f(X)=1/x is not uniformly continuous on (0,1).

We note that the sequence given by x, =1/nin (0,1) is Cauchy sequence, but the image
sequence, where f(x )=n,is nota Cauchy sequence.
Sequential Criterion for Limits Let f: A— R and let ¢ be a cluster point of A Then the

following statements are equivalent.
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@@ limf(x)=L.

(ii) For every sequence (Xx,)in A that converges to c¢ such that X, #c for all neN,the
sequence (f(x,)) converges to f(c).

Cauchy Convergence Criterion A sequence of real numbers is convergent if and only if it is

a Cauchy sequence.

Continuous Extension Theorem: A function f is uniformly continuous on the interval (a,b) if
and only if it can be defined at the endpoints a and b such that the extended function is
continuous on [a,b].

Proof.
(<) This direction is trival.

(=) Suppose f is uniformly continuous on(a,b). We shall show how to extend f to a; the
argument for b is similar. This is done by showing that limf(x)=L exists, and this is

accomplished by using the sequential criterion for limits. If (X,) is a sequence in (a,b) with
lim(x,) =a, then it is a Cauchy sequence, and by the preceding theorem, the sequence ( f(x,))

is also a Cauchy sequence, and so is convergent by Cauchy Convergence Criterion. Thus the
limit lim(f(x,))=L exists. If (u,) is any other sequence in (a,b) that converges to a, then

lim(u, — x,) =a—a=0, so by the uniform continuity of f we have
lim(f(u,))=lim(f(u,)- f(x,))+lim(f (xn))

=0+L=L.
Since we get the same value L for every sequence converging to a, we infer from the sequential
criterion for limits that f has limit L at a. If we define f(a) =L, then f is continuous at a. The
same argument applies to b, so we conclude that f has a continuous extension to the interval [a,
b]. This completes the proof.
Example Examine the uniform convergence of the functions
f(X) =sin(1/x)
and
g(x) = xsin(1/ x)
on (0,b] forall b>0.
Since the limit of f(x)=sin(1/x) at 0 does not exist (Fig. B), we infer from the Continuous
Extension Theorem that the function is not uniformly continuous on (0,b] for anyb> 0. On the

other hand, since Iingxsi n(l/x) =0 exists, the function g(x)=xsin(l/x) is uniformly continuous

on (0,b] for allb>0.

Approximation

In this section we describe the way of approximating continuous functions by functions of an
elementary nature.

Definition Let | cR be an interval and lets:1 — R . This s is called a step function if it has
only a finite number of distinct values, each value being assumed on one or more intervals in I.
Example The function s:[-2,4] —» R defined by
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0, -2<x<-1],

1 -1<x<0,

S(X) = i' 21X<%
' s<x<1

-2, 1<x<3,

2, 3<x<4,

is a step function.
We will now show that a continuous function on a closed bounded interval I can be

approximated arbitrarily closely by step functions.

Theorem Let I be a closed bounded interval and let f :| — R be continuous on I. Ife >0, then

there exists a step function s, :1 > R such that |f(X)—s, ()| <e forallxel .

Proof. Since f is continuous on the closed bounded interval I, by the Uniform Continuity
Theorem, the function f is uniformly continuous on I. Hence it follows that, given e >0 there is

anumber d(e) >0 such that if x,yel and|X—y|<d(e), then|f(X)— f(y)|<e.
b-a

Let | =[a,b] and let meNbe sufficiently large so that h= <d(e). We now divide

| =[a, b] into m disjoint intervals of length /1; namely,
l,=[a, a+h] and |, =(a+(k—-1h,a+kh] fork=2,...,m.
Since the length of each subinterval |, ish<d(e), the difference between any two values of fin
I, is less thane . We now define
s (xX)= f(a+kh) forxel,, k=1..,m,
so that s, is constant on each intervall, . (In fact the value of s, on |, is the value of f at the
right endpoint of I, . Consequently if xel,, then
[f()—s.(¥)|=|f(x) - f(a+kh)|<e.
Therefore we have |f(x)—s,(X)| <e for all xe | . This completes the proof.

The proof of the preceding theorem also establishes the following result.
Corollary Let | =[a, b] be a closed bounded interval and let f:I - R be continuous on I. If

e >0, there exists a natural m such that if we divide I into m disjoint intervals |, having length
h=(b-a)/m, then the step function s, defined by

s (X)= f(a+kh) forxel,, k=1,..,m,
satisfies

|f(x)—s.(¥)|<e forall xel .

Step functions are extremely elementary in character, but they are not continuous (except
in trivial cases). Since it is often desirable to approximate continuous functions by elementary
continuous functions, we now shall show that we can approximate continuous functions by
continuous piecewise linear functions.
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Definition Let | =[a,b] be an interval. Then a function g:1 — R is said to be piecewise linear
on [ if I is the union of a finite number of disjoint intervals |,...,1,, such that the restriction of g

to each interval |, is a linear function.

Remark It is evident that in order for a piecewise linear function g to be continuous on I, the
line segments that form the graph of ¢ must meet at the endpoints of adjacent subintervals

Lol (k=1 ...,m=1).
Theorem Let I be a closed bounded interval and let f :| — R be continuous on I. If e >0, then
there exists a continuous piecewise linear function g, :1 =R such that |f(X)—g,(X)|<e for all

xel.
To prove this we note that being continuous on a closed bounded interval, f is uniformly
continuous on | =[a,b]. Hence corresponding to e >0, there is a number d(e) >0 such that if

X, yel and |X— y| <d(e), then |f(X) - f(y)| <e. Let meN be sufficiently large so that
h=(b—a)/m<d(e). Divide | =[a, b] into m disjoint intervals of length /; namely
let I, =[a,a+h], and let I, =[a+(k-1)h,a+kh] for k=2,..., m.
On each interval |, we define g, to be linear function joining the points

(@a+(k-Dh, f (a+(k-1h)) and (a+kh, f (a+kh)).
Then g, is a continuous piecewise linear function on I.

If xel then|x—(a+(k-Dh)<h<d(e), so that |f(x)-f(a+(k-Dh)<e. Similarly,
|f(x)— f(a+ kh)| <e. ie, for xel, the value f(x) is within e of f(a+(k—-2)h) and f(a+kh).

Hence

for xel,,
g.(¥) = f(a+ (k-1)h)
| fa+kh) - f(a+(k-Dh) -(x—(a+ (k=Dh)).

h

Hence for xel,,
|f(x)—ge(x)|£|f(x)— f(a+(k—1)h)|+
|f(a+ kh) — f(a+(k_l)h)|-h,
h

as |X—(a+(k—1)h)|<h

S|f(x)— f(a+(k—1)h)|+|f(a+ kh) — f(a+(k—l)h)|

£|f(a+ kh) — f(a+(k—1)h)|+|f(a+(k—1)h)— f(X)|

S|f(a)+kh)— f(X)

That is, for xel,, |f(X) -0, (X)| <e for all xel,; therefore this inequality holds for all xel .

, by Triangle Inequality <e.

This completes the proof.
Next is the important theorem of Weierstrass concerning the approximation of continuous
functions by polynomial functions.
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Weierstrass Approximation Theorem
Let I =[a,b] and let f:1 >R be a continuous function. If e >0 is given, then there exists a

polynomial function p, such that
|f(x)— p.(x)|<e forall xel.
Remark In order to obtain an approximation within an arbitrarily pre-assignede >0, we have
to choose polynomials of arbitrarily high degree.
There are a number of proofs of Weierstrass Approximation Theorem. One of the most

elementary proofs is based on the following theorem, due to Serge Bernstein, for continuous
functions on [0,1]. Given f :[0,1] - R, Bernstein defined the sequence of polynomials:

B,(9 =2 f (5)(2) ¢ @-x""

The polynomial function B, is called the nth Bernstein polynomial for f; it is a polynomial of
degree at most n and its coefficients depend on the values of the function f at the n+1lequally
spaced points 0,1/n, 2/n, ... ,k/n, ...,1 and on the binomial coefficients
n nt  n(n- 1) -(n-k+1)
(k)= ki(n—k) 1.2---k

Example If f(x) =X, for xe[0,1], calculate the first few Bernstein polynomials for f. Show that
B.(X) = (1—1jx2 +1x
n n

Here f(x)=x> for xe[0,]]

Bernstein polynomials for f are given by

B,(X) = Zf( jC(n K) x*(1-x)"*, n=12, ...
Then B,(X) = Z f (le(l,k)x 1-x)*
K2C@LK) X (1-x)"* =0+ x=x.

C(2,k) x“ (1-x)**

B,(X) = i (EJC(Z k) x* (1-x)**

2 X(A-X)+ X =1x* +1x

B,(X) = Zf( jC(S k) X* (1—x)**

= 230(3, K) X (1— x)**

=0+1-3: x(1-x*+4-3xX*(1-x) +2-1.x°
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1 2 371, A2 3 3_2y2 1
=3[ X=2X" + X’ ]+ 3[X" = X]+ X" =2X" +3X.
In general for any n=1,2,...

n

B,(X) = ZE—iC(n, k) X (1-x) "™

k=0

- n—lzi[k(k—l) e g™

k!(n—K)!
1 n' n-k
i
: nl n-k
oo ¢ }

= n(n-0x*)" X2 (1= x)"*

1 " (n-2)!
n = (k-2)!(n—k)!

3 (n-1)! k-1 n—k
nxkz:; k—DI(n—K)! " =) }

i2{n(n 1)X[X+(1 X)]n2+n)([x+](1 X)]n 1}

:iz{n(n—l)x2 + nx} = (1—1jx2 I
n n n

Bernstein’s Approximation Theorem
Let f:[0,1]] > R be continuous and lete > 0. There exists an n, € N such that if n>n,, then we
have | f(x)-B, (X)| <e forall xe[0,]].

The Weierstrass Approximation Theorem can be derived from the Bernstein Approximation
Theorem by a change of variable. Specifically, we replace f:[a,b] >R by a function
F:[0,] > R, defined by

F(t)= f(a+(b—a)t) for t[0,1].

The function F can be approximated by Bernstein polynomials for F on the interval [0, 1], which

can then yield polynomials on [a, b] that approximate f.
Assignments

1. Show that the function f(X) =i2 is uniformly continuous on A=[1©), but that it is not
X

uniformly continuous on B =(0,x) .
. 1. . . .
2. Show that the function f(X)== is uniformly continuous on the set A=[a,), where a is a
X

positive constant.
3. Use the Nonuniform Continuity Criterion to show that the following functions are not
uniformly continuous on the given sets.
a) f(X)=x*, A=[0,)
b) g(x)=sin(l/x), B=[0,x)
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4. Show that the function f(x)=1/(1+x?) for xe R is uniformly continuous onR .

5. Show that if f and g are uniformly continuous on a subset A of R, then f + g is uniformly
continuous on A.

6. Show that if f and g are uniformly continuous on Ac R and if they are both bounded on A,
then their product fg is uniformly continuous on A.

7. If f(x)=x and g(x) =sinx, show that both f and g are uniformly continuous onRR, but that
their product f ¢ is not uniformly continuous onR .

8. Give an example to show that boundedness of f and g is a necessary condition for the
uniform continuity of the product.

9. Prove that if fand g are each uniformly continuous on R, then the composite function f og is
uniformly continuous on R.

10. If f is uniformly continuous on Ac R, and |f(X)|2 k>0 for all xe A, show that 1/ f is

uniformly continuous on A.

11. Prove that if f is uniformly continuous on a bounded subset A of R, then fis bounded on A.

12. If g(x)=+/x forxe [0,1], show that there does not exist a constant K such that |g(x)| <K |X|
for all xe[0,1] . Conclude that the uniformly continuous g is not a Lipchitz function on [0,1].

13. Show that if fis continuous on [0,c0) and uniformly continuous on [a,) for some positive
constant g, then fis uniformly continuous on [0, ) .

14. Let AcR and suppose that f:A— R has the following property: for each >0 there
exists a function g, : A= R such that g, is uniformly continuous on A and | f(xX)—0, (X)| <e
for all xe A. Prove that fis uniformly continuous on A.

15. A function f:R — R is said to be periodic on R if there exists a number p>0 such that

f(x+ p)=f(x) for all xeR. Prove that a continuous periodic function on R is bounded

and uniformly continuous on R.

16. If f,(X)=1 forxe[0,1], calculate the first few Bernstein polynomials for f,. Show that they

coincide with f,. [Hint: Binomial Theorem asserts that

(a+b)"= zn:(g)akb”‘k. ]

k=0
17. Let f :[0.1] - Ris continuous and has only rational values. Show that f must be constant.
18. If f,(X)=x forxe[0,1], calculate the first few Bernstein polynomials for f, . Show that they

coincide with f, .
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4
THE RIEMANN INTEGRAL - PART I

The Riemann integral, created by Bernhard Riemann, was the first rigorous definition of
the integral of a function on an interval. For many functions and practical applications, the
Riemann integral can be evaluated by using the fundamental theorem of calculus or
(approximately) by numerical integration. The Riemann integral is unsuitable for many
theoretical purposes. Some of the technical deficiencies in Riemann integration can be remedied
with the Riemann-Stieltjes integral, and most disappear with the Lebesgue integral.

Partition and Tagged Partitions

If 1 =[a,b] is a closed bounded interval inR, then a partition of I is a finite, ordered set
P =(Xy,Xs-. X4, X,) of points in I such that

a=X%X <X <..<X ;<X =b
The points of P are used to divide | =[a,b] into non-overlapping subintervals

=00 x ] 1o =[] 1 =060 %]

Often we will denote the partition P by the notationP ={[x_,;,X]}{;. We define the norm (or
mesh) of P to be the number

1P| = max{x, = X5, X, = X0, X, = X, 4}
Thus the norm of a partition is merely the length of the largest subinterval into which the
partition divides[a,b].
Clearly, many partitions have the same norm, so the partition is not a function of the norm.
If a point t, has been selected from each subinterval |, =[x ;,x], for i=12,...,n, then the

points are called tags of the sub-intervals |, . A set of ordered pairs

P Z{([)ﬁ-r)ﬁ]:ti)}?:l

of subintervals and corresponding tags is called a tagged partition of I. (The dot over P
indicates that a tag has been chosen for each subinterval.) The tags can be chosen in a wholly
arbitrary fashion; for example, we can choose the tags to be the left endpoints, or the midpoints
of the subintervals, etc. Note that an endpoint of a subinterval can be used as a tag for two
consecutive subintervals. Since each tag can be chosen in infinitely many ways, each partition
can be tagged in infinitely many ways.

The norm of a tagged partition is defined as for an ordinary partition and does not depend on the
choice of tags.

Definition If P is the tagged partition given above, we define the Riemann sum of a function
f :[a,b] > R corresponding to P to be the number
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S(FiP) =3 (006 -X.).

Notation We will also use this notation when P denotes a subset of a partition, and not the
entire partition.

xof ML R | xsf % A X5 AX
tl tz 2 l I ls
Fig.1 Riemann sum of a positive function.

Definition If the function f is positive on [a,b], then the Riemann sum (2) is the sum of the

areas of n rectangles whose bases are the subintervals I, =[%_;, X]and whose heights are f (t;)

(Fig.1).

Riemann Integral
We now define the Riemann integral of a function f on an interval [a,b] .

Definition A function f :[a,b] > R is said to be Riemann integrable on [a,b] if there exists a

number LeR such that for every e>0 there exists d, >0 such that if P is any tagged
partition of [a,b] with“lj H <d,, then
\S(f;P‘)—L\<e.
The set of all Riemann integrable functions on [a,b] will be denoted by R [a,b] .
Remark It is sometimes said that integral L is “the limit” of the Riemann sums S(f :P) as the

normHP' H — 0. However, since S(f;P) is not a function of “P

, this limit is not of the type that

we have studied before.
First we will show that if f eR [a,b], then the number L is uniquely determined. It will be

called the Riemann integral of f over[a,b]. Instead of L, we will usually write
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L=["f or [ f(xadx.
It should be understood that any letter than x can be used in the latter expression, so long as it

does not cause any ambiguity.

Theorem If f eR [a,b], then the value of the integral is uniquely determined.
Proof. Assume that L' and L" both satisfy the definition of Riemann integral of f over [a,b],

and lete > 0. Then there exists d,, > Osuch that if P, is any tagged partition withHPlH <d,,,, then
|S(f;P)-L|<el2. .. ()
Also there exists d/,, >0 such that if P, is any tagged partition with “PZH <d,,, then

|S(f:P,)-L"

<el2. e (™)
Now let d, =mir{d,,,,d,,} >0 and let P be a tagged partition with|[P|<d,. Since both
[P <., and ||| <de,, then (%) and (+*) gives
[S(f:P)-L|<e/2 and |S(f;P)-L"|<e/2,
and hence it follows from the Triangle Inequality that
L= L' =|L'=S(f;P)+S(f;P)- L
<|L'=S(f:7)|+[S(f:P)-L|

<el/2+el2=e.
Since e > 0 is arbitrary, it follows thatL'=L".

Method of Verifying f €R [a,b] using Definition

If we use only the definition, in order to show that a function f is Riemann integrable we must
(i) know (or guess correctly) the value L of the integral, and (ii) construct a d, that will suffice

for an arbitrarye > 0. The determination of L is sometimes done by calculating Riemann sums
and guessing what L must be. The determination of d, is likely to be difficult.

In actual practice, we usually show that f eR [a,b] by making use of some of the theorems

that will be discussed after considering some examples based on the Definition.
Example Every constant function on [a,b]is inR [a,b] .

Let f(x)=k for allxe[ab]. If P ={[x_,,x],t)}, is any tagged partition of [a, b], then it is

clear that
S(FIP) = 3 00X -% )= 2K %) =K (X )

:k(xn_xn—l+xn—1+xn—l_xn—2+ _Xo)
=k(%,—%)
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=k(b-a).
Hence, for any e >0, we can choose d, =1 so that if ”P H <d,, then
|S(f;P)—k(b-a)|=0<e.
Since e > 0 is arbitrary, we conclude that f eR [a,b] and I: f =k(b—a).
Example Let g:[0,3] > R be defined by g(x) =2 for 0<x<1 and g(X)=3 forl< x<3. Find
3

Io 9.

A preliminary investigation, based on the graph of g, suggests that we might expect that
jjg — 2x1+2x3=8.

Let P be a tagged partition of [0,3] with norm <d;we will show how to determine d in
order to ensure that ‘S(g;P') —8‘ <e. Let P, be the subset of P having its tags in [0,1] where
g(x) =2, and the let P, be the subset of P with its tags in (L,3] where g(x) = 3. It is obvious
that we have

S(9:P) = S(G;P,) + S(g:P5) -
Since“P.H <d, if ue[0,1-d] and ue[x_ ;,X],then %, <1-d so that x <X_,+d <1, and hence
the tag t; €[0,1] . Therefore, the interval [0,1-d] is contained in the union of all subintervals in
P with tags t; €[0,1]. Similarly, this union is contained in [0,1+d]. Since g(t)=2 for these
tags, we have

2(1-d) < S(g;P,) < 2(1+d).
A similar argument shows that the union of all subintervals with tags t, € (1, 3] contains the
interval [1+d,3] of length2—-d , and is contained in [1-d, 3] of length 2+d . Therefore,

3(2-d) < S(g;P,) <3(2+d).
Adding these inequalities and using equation (3) we have

8-5d < S(g;P) = S(q:P,) + S(g;P,) <8+5d
and hence it follows that

|S(g;P')-8/<5d .
To have this final term < e, we are led to taked, =€/5.

Making such a choice (for example, if we taked, =e/10), we can retrace the argument and

see that ‘S(g;P') —8‘ <e when“P'H <d,. Since e>0 is arbitrary, we have

proved thatg € R[0,3] and Jjg =8, as expected.
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Example Let h(x) = X for xe[0,1] . Show thathe R0,1].
We will employ a trick that enables us to guess the value of the integral by considering a

particular choice of the tag points. Indeed, if {I;};; is any partition of [0, 1] and we choose the
tag of the interval |, =[x_;,%] to be the midpointq =3(%_, + X ), then the contribution of this
term to the Riemann sum corresponding to the tagged partition O ={(I,,q)}, is

h(g)(% —%_1) =2(X% +%_)(% = %) =20 = X,) .

If we add these terms and note that the sum telescopes, we obtain

sho)=3 406 ) =40 -0 =

Now let P ={(I;,t)}!, be an arbitrary tagged partition of [0,1] with HP H<d so that

% —%_, <d for i =1,...,n. Also let O have the same partition points, but where we choose the
tag @; to be the midpoint of the interval |, . Since both t; and ¢; belong to this interval, we have
|ti -q | <d . Using the Triangle Inequality, we deduce

|S(h;P') - S(h; Q)| = Zt (% - m)—iqi (% —%_1)

il —G|(% —%_y)
il(x X..)
=d(x,—%)=d.

Since S(h; Q) =1, we infer that if P is any tagged partition with “P H <d, then

|S(hP) -4 <d.
Therefore we are led to taked, <e. If we choosed, =€, we can retrace the argument to
conclude that heR [0,1] and I "h= j‘olxdx =2.
Example Let F(X)=1 forx=1%,2,2,4 and F(x) =0 elsewhere on [0, 1]. Show that F eR [0,]]
and J.O F=0.

Here there are four points where F is not 0, each of which can belong to two sub-intervals in
a given tagged partitionP . Only these terms will make a non zero contribution to S(F;P).

Therefore we choosed, =€ /8.
If HP H <d,, let P, be the subset of P with tags different from £,2,2,2, and let P, be the

subset of P with tags at these points. Since S(F;P;,) =0, it is seen that
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S(F;P)=S(F;P,)+S(F;P,) =S(F;P,). Since there are at most 8 terms in S(F;P,)and each
term is <1-d,, we conclude that0< S(F;P) = S(F;P,) <8d, =e. Thus F eR [0,1] and EF =0.
Example LetG(X) =1/n (neN), and G(X) =0 elsewhere on [0,1]. Show that G eR [0,1] and
[[c=o0.

0
Givene >0, let E, be the (finite) set of points where G(X) > e, let n, be the number of points in
E,, and letd =e/(2n,). Let P be a tagged partition such that”P'H <d,. Let P, be the subset of

P with tags outside of E, and let P, be the subset of P with tags in E,. Then, as in the

previous example, we have
0<S(G,P)=S(G,P,)<(2n)d, =e.
Since e > 0 is arbitrary, we conclude that G € R[0,1] and J.:G =0.
Example Suppose that c<d are points in[a,b]. If j :[a,b] > R satisfies j (X)=a >0 for
xe[c,d] and j (X) =0 elsewhere in[a,b], prove that ] €R [a,b] and that J.:j =a(d-c).
For a tagged partition P ={([%_,,%],t)},, Riemann sum is giving by
SGP) =200 )% —%.).
i=1
Given e€>0, let d, =e/4a . Then if “P H <d,, then “P H <elda, and then the union of the
subintervals in P with tags in [C,d] contains the interval [c+d,,d —d,]and is contained in
[c—d,,d +d.] .Therefore
a(d-c-2d,) <S(;P) <a(d-c+2d,),

and hence

|SG ;P)-a(d-c)|<2ad, <4ad, =e.

Hence by the Definition of Riemann integrability, ] €R [a,b] and that .[:j =a(d-c).

Some Properties of the Integral
The difficulties involved in determining the value of the integral and of d, suggest that it

would be very useful to have some general theorems. The first result in this direction enables us
to form certain algebraic combinations of integrable functions.
Theorem Suppose that fand g are inR [a,b] . Then:

a) If ke R, the function kf isin R [a,b] and

[’

b) The function f +g isin R [a,b] and
b b b
J(Fro=[f+] 0

Real Analysis Page 45



School of Distance Education

o) If f(x)<g(x) forall xe[a,b], then

IREIN

To prove (b), we note that if P ={([x_,,x],t)}, is a tagged partition of [a,b], then

S(FP) = D (K (% - %) = D k- T (% ~x.,)

—KD (1) (% — %) = kS(f1P).

i=1
Now the assertion (a) follows.
S(f+g;P)=S(f;P)+S(g;P).
Given e >0, we can use the argument in the proof of the Uniqueness Theorem to construct

anumber d, >0 such that if P is any tagged partition With“P. H <d, , then both
Hence

. b . b
S(f;P)—Lf‘<e/2 and ‘S(g;P)—Lg

<el2 .4

‘S(f rgiP)-([Uf +j:g)‘=‘S(f;P')+S(g;P')—j:f ['g

<

. b .. b
(i)~ [ 1] +|st@P)- [
<el/2+el2=e.
Since e > 0 is arbitrary, we conclude that f +ge R[a,b] and that its integral is the sum of the
integrals of fand g.
To prove (c), we note that S(f;P)< S(g;P) and also (4) implies
b e . . b e
f—=<S(f.P dS(g;P) < +—.

J, f-5<S(fiP) andS(g:P) <[ g+

If we use the fact that S(f:P) < S(g:P), we have
b b
ja f< J'a g+e.

But since e > Ois arbitrary, we conclude that j : f< I: g. This completes the proof.

Theorem If f,,..., f, arein R[a,b] and if k;,...,k, € R, then the linear combination f = Zin:lki f,
belongs to R [a,b] and
b n, (b
.[a f :Zizlki.[a fi
Hint for the Proof. Use mathematical Induction and part (a) and (b) of Theorem 2 above.
Theorem If f € R[a,b] and |f(X)| <M forall xe[a,b], then U: fl<M(b-a).

Take
g(x) =M for xe[a,b]
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and use part (c) of Theorem 2.

Boundedness Theorem If f eR [a,b], then fis bounded on [a,b].

Proof Assume that f is an unbounded function in R[a,b] with integral L. Then there exists
d > 0 such thatif P is any tagged partition of [a,b] with“P. H <d , then we have
|S(f:P)-L|<1,
which implies that
‘S(f;P')‘<|L|+1. (9
Now let O ={[x_,,x]}"_, be a partition of [a,b] with||Q|| <d . Since | f | is not bounded on[a, b] ,
then there exists at least one subinterval in Q, say [X,_;,X], on which | f | is not bounded - for,

if |f| is bounded on each subinterval [% ;,x] by M,, then it is bounded on [a,b] by max
(M, ..M.}

We will now pick tags for O that will provide a contradiction to (***). We tag O by t, =X
for i # K and we pick t, €[X _;,%] such that
2 ) —x.)

izk

[ f (G0 =% )| >[L[+1+

From the Triangle Inequality (in the form|A+ B| > |A| - | B

2 )6 =%.)

i=k

), we have

[S(F50)|= | (t) (X% = %2)] —

which contradicts (***).

>[L+1,

Remark In view of the above theorem we have the following:
An unbounded function cannot be Riemann integrable.

We now consider an example of a function that is discontinuous at every rational
number and is not monotone, but is Riemann integrable.

Example We consider Thomae’s function h:[0,1]] > R defined by h(x)=0if xe€[0]] is
irrational, h(0) =1 and by h(x) =1/n if xe[0,]] is the rational number X=m/Nnwhere mne N

have no common integer factors except 1.

We claim that & is continuous at every irrational number and discontinuous at every
rational number in[0,1]. If a> 0 is rational, let (x,) be a sequence of irrational numbers in A

that converges to a. Thenlim(h(x,)) =1im(0) =0, whileh(a) > 0. Hence, in view of Sequential

Criterion for Continuity, / is discontinuous at the rational point a.
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If b is an irrational number and e > 0, then (by the Archimedean Property) there is a natural

1 . 1 .. .
number N, such that —<n,. i.e, such that — <e. There are only a finite number of rationals
e

Ny

with denominator less than n, in the interval (b—1, b+1). Hence d >0 can be chosen so small

that the neighborhood (b—d, b+d) contains no rational numbers with denominator less than
N, . It then follows that for |X— b| <d and xe(0,©), we have|h(X) - h(b)| = |h(X)| < S <e. Then
Ny

h is continuous at the irrational number a.
We will now show thathe R[0,]].

Let €>0. Then the set E, ={xe€[0,1]:h(X) =%} is a finite set. We let n,be the number of
elements in E, and letd, =e/(4n,).If P is a tagged partition with”P' H <d,, let P, be the subset
of P having tags in E, and P, be the subset of P having tags elsewhere in[0,1]. We observe
that P, has at most 2n, intervals whose total length is <2n.d, =e/2 and that 0<h(t,) <1 for
every tag inP,; . Also the total lengths of the subintervals in P, is <1 and h(t;) <e/2 for every
tag inP, . Therefore we have

|S(hiP)| = S(hP,) + S(hiP,) <1-2nd, +(e/2)-1=e.
Since e > Ois arbitrary, we infer that h e R0,1] with integral 0.

Assignments

1.If | =[1, 8], calculate the norms of the following partitions:
a) R=(123456,7,9 b) P, =(1,3,4,6,8)
c) B=(136,8 d) P, =(1,5,9)

2. If f(x)=x* forxe[L8], calculate the following Riemann sums where P. has the same

partition points as in Assignment 1, and the tags are selected as indicated.
a) P, with the tags at the left endpoints of the subintervals.

b) P, with the tags at the right endpoints of the subintervals.
c) P, with the tags at the left endpoints of the subintervals.
d) P, with the tags at the right endpoints of the subintervals.

3. Show that f :[a,b] & R is Riemann integrable on [&,b] if and only if there exists L € R such

that for every e >Othere exists d, >0 such that if P is any tagged partition with norm
\pa'\\sde,then\S(f;P')—L\Se.

4.Let P be atagged partition of [0,3].
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a) Show that the union U, of all subintervals in P with tags in [0,1] satisfies [0, 1—”PH] c

Uy [0+
b) Show that the union U, of all subintervals in P with tags in [L2] satisfies
1Pl 2-Plicv. si-fp] 2+ -
5.Let P ={(l,,t)}", be a tagged partition of [a,b] and let ¢, <C,.

a) If u belongs to a subinterval |, whose tag satisfies ¢ <t <c,, show that

a-[Plsuse+p.

b) If ve[a,b] and satisfiesc, + “P H SV<ce, - “P

, then the tag t of any subinterval |; that

contains V satisfiest, €[c,,C,] .
6.a) Let f(X)=2if 0<x<1land f(X)=1if 1<x<2.Show that f e€R[0,2] and evaluate its
integral.
b) Let h(x)=2 if 0<x<1, h()=3 and h(x)=1if 1<x<2. Show that he R[0,2] and
evaluate its integral.
P,

7. If feR[ab] and if (Pn) is any sequence of tagged partitions of [a,b] such that|P.||— O,

prove that | f =lim, S(f:P}).

8. Let g(X)=0 if xe[0,]] is rational and g(X)=1/x if xe[0,]] is irrational. Explain why
g ¢ R[0,]] . However, show that there exists a sequence (Pn) of tagged partitions of [a,b]

9. Suppose thEt fis bounded on [a,b] and that there exists two sequences of tagged partitions of
[a,b] such that [P'| > 0 and |Q,|— 0, but such that lim, S(;P,) = lim, S(f;Q,). Show that f
isnotinR[a,b] .

10. Consider the Dirichlet function, defined by f(X)=1 for xe[0,1] rational and f(X)=0for
x€[0,]] irrational. Use the preceding exercise to show that f is not Riemann integrable on
[0,1].

11. Suppose that f:[a,b] > R and that f(X)=0 except for a finite number of points C,,...,C, in

such that — 0 and lim_S(g;P,) exists.

[a.b]. Prove that f € R[a,b] and that | f =0.

12. If ge R[a,b] and if f(X)=0g(X) except for a finite number of points in[a,b], prove that
f e R[a,b] and thatj‘:f =.[:g.

13. LetO<a<b, let Q(x) = x* for xe[a,b] and let P ={[%_;,x]}", be a partition of [a,b]. For
each i, let g be the positive square root of

506 2% +%%)
a) Show that ¢ satisfies 0<%, <q <X
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b) Show that Q(q)(X —%.4) = $(x =X,)
¢) If O is the tagged partition with the same subintervals as P and the tags ¢,

show that S(Q,0) =1(b*-a%)
d) Show that Q R [a,b] and
j:Q - I:xzdx —1(b*-ad).
14. If f eR[ab] andceR, we define g on [a+cb+c] by g(y)=f(y—c). Prove that
geR [a+c,b+c] and that .f::g = .[: f . The function g is called the c-translate of f.

15. Let 0<a<b andmeN, let M(X) =X" for xe[a,b] and let P ={[x_,,x ]}, be a partition of
[a,b] . For each i, let g be the positive mth root of

1 m m-. m-. m
g XTI XX
a) Show that q; satisfies 0<Xx ;< <X

m+1)

b) Show that M (6)(% =% 1) =7z (X" =X}
) If Q is the tagged partition with the same subintervals as P and the tags g, show

that S(M:0) = —— (0™ —a™?)
m+1
d) Show that M eR [a,b] and

['m = j:xmdx=mi+1(bm+1—am+1).
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5
THE RIEMANN INTEGRAL - PARTII

Cauchy Convergence Criterion for Sequences: A sequence of real numbers is convergent if
and only if it is a Cauchy sequence.
Cauchy Criterion for Integrability: A function f :[a,b] > R belongs to R [a,b] if and only if

for every e >0 there exists h, > Osuch that if P and Q are any tagged partitions of [a,b] with
“P H <h, andHQH <h,, then

|S(f:P)-S(f;0)|<e.
Proof.

(=)If feR[ab] withintegral L, let h, = % >0 be such that if P and Q are any tagged

partitions of [a,b] with “P H <h, and HQH <h,, then
|S(f;P)-L|<e/2 and |S(f;0)-L|<e/2.
Therefore we have
[S(f3P)=S(f;0)|<|S(F:P)-L+L-S(f;0)|
<[S(fiP )~ L|+[L-S(;0)|
<el/2+el2=e.
(<) For eachne N, let d, >0 be such that if P and Q are tagged partitions with norms<d,,
then
|S(1:P)-S(F;0)|<1/n.
Evidently we may assume that d,>d
d; =min{d,, ..., d}.

forneN; otherwise, we replace d, by

P,

n+l

<d, . Clearly, if m> nthen both P, and

For eachne N, let P, be a tagged partition with

P_ have norms<d,, so that

\S(f;P'n)—S(f;Pm)\<% for m>n. .. ("

0
m=

Consequently, the sequence (S(f;P;n)) s a Cauchy sequence in R. Therefore, by Cauchy
Convergence Criterion for Sequences! this sequence converges in R and we let
A=lim_S(f;P.).
Passing to the limit in (1) asm— o, we have
‘S(f;P'n)—A‘Sl/n forall neN.
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To see that A is the Riemann integral of f, givene >0, let K € N satisfy K >2/e. If Q is any
tagged partition with” QH <d, then
[S(1:Q) - A< [S(f:0) - S(f:P)| +[S(f:P) - A
<1/K+1l/K<e.
Since e > 0 is arbitrary, then f eR [a,b] with integral A. This completes the proof.

Example Let g:[0,3] > Rbe defined by ¢g(x)=2for0<x<1, and g(X)=3forl<x<3. We
have seen that if P is a tagged partition of [0,3] with norm“P' H <d, then
8-5d < S(g;P)<8+5d.
Hence if O is another tagged partition withHQH <d, then
8-5d < S(g;0)<8+5d .
If we subtract these two inequalities, we obtain
[S(g:P) - S(g:0)| <10d .
In order to make this final term < e , we are led to employ the Cauchy Criterion withh, =e/20.
The Cauchy Criterion can be used to show that a function f :[a,b] > R is not Riemann

integrable. To do this we need to show that: There exists €, >0 such that for any h >0 there
exists tagged partitions P and O with “P H <h and HQH <h such that
|S(f:P)-S(f;0)|>e,.
Example  Show that the Dirichlet function, defined by f(x)=1 if xe[0,1]is rational and
f (x) =0if xe[0,1] is irrational is not Riemann integrable.
Here we takee,=1. If P is any partition all of whose tags are rational numbers then
S(f;P)=1, while if Q is any tagged partition all of whose tags are irrational numbers then

S(f;0)=0. Since we are able to take such tagged partitions with arbitrarily small norms, we

conclude that the Dirichlet function is not Riemann integrable.

The next result will be used to establish the Riemann integrability of some important classes
of functions.
Squeeze Theorem: Let f :[a,b] > R. Then f eR [a,b] if and only if for every e > 0 there exist

functions a, and w, in R[a,b] with
a,(x) < f(x)<w,(x) forall xela,b], e (%)
and such that

J'b(we -a,)<e e (%)
Proof.
(=) Take a, =w, = f foralle>0.
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(<) Lete > 0. Since a, and W, belong toR [a,b], there exists d, >0 such that if P is any

tagged partition with “P H <d, then

. b
S(ae;P)—Lae <e.

<e and ‘S(we ;P')—I:We

It follows from these inequalities that
.[:ae ~e<S@,;P) and SW,;P) < _[:we +e
In view of inequality (**), we have
S@,;P)<S(f;P)<Sw,;P),
and hence
b : b
j ae—e<S(f;P)<.|' w, +e
a a
If O is another tagged partition with”Q"‘ <d,, then we also have

f:ae —e<S(f;0)< I:We +e
If we subtract these two inequalities and use (***), we conclude that
\s,(f;P')—s(f;Q‘)\<j:we —j:ae 12
= J:(we —a,)+2e<3e.

Since e > 0 is arbitrary, the Cauchy Criterion implies that f €R [a,b]. This completes the proof.

Classes of Riemann Integrable Functions
A function ] :[a,b] & R is a step function if it has only a finite number of distinct values, each
being assumed on one or more subintervals of [a,b].

We begin with a result seen in the previous chapter.
Lemma 1 Suppose that c<d are points in[a,b]. If j :[a,b] > R satisfies j (X)=a >0 for
xe[c,d] and j (X) =0 elsewhere in[a,b], prove that ] €R [a,b] and that .[:j =a(d-c).
Proof.

For a tagged partition P ={([%_,,%],t)},, Riemann sum is giving by

SG.P)=3 ()05 —%.).
i=1
Given €>0, let d, =e/4a . Then if “P H<de, then “P H<e/4a , and then the union of the

subintervals in P with tags in [C,d] contains the interval [c+d,,d —d,]and is contained in
[c—d,,d +d.] .Therefore
a(d-c-2d,) <S(;P) <a(d-c+2d,),
and hence
|SG ;P)-a(d-c)|<2ad, <4ad, =e.
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Hence by the Definition of Riemann integrability, ] €R [a,b] and that J.:j =a(d-c).
Lemma 2 If | is a subinterval of [a,b] having endpoints c<d and if j ;(X)=1 for Xxe J and
j ;(X) =0elsewhere in[a,b], then j ; € Ra,b] andf:j ;=d-c.

Proof. If J =[c,d] withc<d, then the proof of Lemma 1, we can choosed, =e/4.

A similar proof can be given for the three other subintervals having these endpoints.
Alternatively, we observe that we can write

Vo) =) tear 7 o] ar =) e ) e @) oy =) 1o.0) 7 e
b, . . .
Since_[ J ca 0, all four of these functions have integral equal tod—c. This completes the
a c,C

proof.

Riemann Integrability of Step Functions
Step functions of the type appearing in the previous lemma are called “elementary step
functions”. An arbitrary step function j can be expressed as a linear combination of

elementary step functions:
=2k,
j=1
where J; has endpointsc; <d; .
Theorem If j :[a,b] > R is a step function, thenj € Ra,b].

Proof . An arbitrary step function ] can be expressed as a linear combination of elementary

step functions:

i =YK ), .. (4
j=1
where J; has endpointsc; <d; .

Then

J. f:(jzm;kij J,j

n

( .[: Kij 3, ), using part (b) of Theorem 2 of the pervious chapter.
=1

n

K, ( I:j 3, ), using part (a) of Theorem 2 of the pervious chapter.

j=1

=

kj (dj -C ), using Lemma 2

=1

Hence ] €R [a,b].

We will now use the Squeeze Theorem to show that an arbitrary continuous function is
Riemann integrable.

Theorem If f:[a,b] >R is continuous on [a,b], then
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f eR[ab].
Proof. Being continuous function on a closed and bounded interval, it follows that f is
uniformly continuous on [a,b]. Therefore, given e >0 there exists d, >0 such that if

u,vela,b] and|u—v|<de,then we have
e

f(u-f .

- F]<5

Let P ={l,}], be a partition such that ||P ||<de, let u el, be a point where f attains its
minimum value on |; and let V, € I, be a point where f attains maximum value on |, .

Let a, be the step function defined by a.(x)= f(y)for xe[x_,%)(i=1..,n-1)and
a,(x)=f(u,) forxe[x, ,,X,]. Let W, be defined similarly using the points V, instead of the u,.
ie, W, (X)=f(v) for xe[x,,x)(=1..,n-1) and w,(X)=f(v,) for Xe[X,,,X,] . Then we
obtain

a,(x) < f(x) <w,(x) forallxe[a,b].
Moreover, it is clear that
o<| W —a) = 2((F ) = F(u))0x %)

< Z(%j()ﬂ - )ﬁ—l) =e.

i=1

Therefore it follows from the Squeeze Theorem that f € R[a,b]. This completes the proof.

Monotone functions are not necessarily continuous at every point, but they are also Riemann
integrable. Before proving this result, we recall Characterization Theorem for Intervals.

Characterization Theorem for Integrals: If S is a subset of R that contains at least two points
and has the property
if X, yeS and x<y then [x, y]c S,

then S is an interval.
Theorem If f :[a,b] - Ris monotone on [a,b], then f eR [a,b].
Proof. Suppose that f is increasing on the interval[a,b], a<b.If e >0 is given, we let g N be
such that
_ f(b)-f(a) __©

q b-a
Let y, = f(@)+kh for k=0,1,...,q and consider sets A = f*([y, ,,V,)) for k=1,..,q-1 and

h

A, =T (Y1, Yq]). The sets {A} are pairwise disjoint and have union[a,b]. The
Characterization Theorem implies that each A, is either (i) empty, (ii) contains a single point, or

(iii) is a nondegenerate interval (not necessarily closed) in [a, b]. We discard the sets for which
(i) holds and relabel the remaining ones. If we adjoin the endpoints to the remaining intervals
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{A<} , we obtain closed intervals { | k} . It can be shown that relabeled intervals {Ax}ﬂzl

are pair
wise disjoint, satisfy [a,b] =U}_; A and that f(X) €[y, ,, V] for xe A..

We now define step functions a, and w, on [a,b] by setting
a,(X) =¥y and W, (X) =y, for xe A forxe A

It is clear that a,(X) < f(X) <w,(X) for all Xxe[a,b] and that

J:(We -a.)= i(yk ~Yie) (X = X1) -

:Zi:h-(xk—xkl): h-(b-a)<e.

Since e >0 is arbitrary, the Squeeze Theorem implies that f R [a,b]. This completes the
proof.
Additivity Theorem: Let f :[a,b] >R and letce(a,b). Then f e Ra,b] if and only if its

restrictions to [a,c] and [C,b] are both Riemann integrable. In this case
b c b
[ =] t+]f e ()

Proof. (<) Suppose that the restriction f; of fto[a,C], and the restriction f, of fto [c,b] are
Riemann integrable to L, and L,, respectively. Then, given e >0 there exists d' > 0 such that if

P, is a tagged partition of [a,c] with“PiH <d’, then‘S( f;P)— Ll‘ <el/3.
Also there exists d”>0 such that if P, is a tagged partition of [c,b] with “P'ZH<d” then

‘S( f,iP,) - Lz‘ <e/3. If M is a bound f0r|f , we define d, =min{d’,d",e/6M} and let P be a

tagged partition of [a,b] with”QH <d . We will prove that

IS(f:0)- (L +Ly)| <e. ()
(i) If ¢ is a partition point of O, we split Q into a partition 0, of [a,c] and a partition O, of[c,b]
. Since

S(f;0)=S(f;0) + S(f;0,),
and since Q, has norm <d’ and Q, hasnorm<d”", the inequality (**) is clear.
(ii) If ¢ is not a partition point in QO ={(I,,t, )}, there exists k <m such thatce (X_,, %) . We let
O be the tagged partition of [a,c] defined by

G ={ (13t (hea ). ([%, €10}
and Q, be the tagged partition of [c,b] defined by

0, ={([€.X].0). (lesasbiesa)sooor (L )}

A straightforward calculation yields
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S(f;0)-S(f;0)-S(f;0,) = T (t)(% — %) — F(O)(% — %)
=(f(t)—f(0) (X% — %),
and hence it follows that

[S(1:0) - S(F:Q) - S(F: Q)| <2M (5 %) <.

But since HQIH <d <d’ andHQéH <d <d", it follows that

. e . e

IS(f:0)-Ly| <3 and[S(f;0,) - L,| <3
from which we obtain (**). Since e > 0 is arbitrary, we infer that f €R [a,b] and that (6) holds.
(=) We suppose that f eR [a,b] and, givene >0, we let h, >0 satisfy the Cauchy Criterion.
Let f, be the restriction of fto [a,c] and let P,, Q, be tagged partitions of [a,c] with M <h,

andHQlu <h, . By adding additional partition points and tags from[c,b], we can extend P, and
Q, to tagged partitions P and Q of [a,b] that satisfy “P H <h, and HQH <h,. If we use the same

additional points and tags in [c, b] for both P and Q, then

S(f:P) - S(1:Q) = S(:P) - S(f:0).
Since both P and Q have norm<h,, then‘S( f;P)—S(f 1Q1)‘ <e. Therefore the Cauchy
Condition shows that the restriction f; of f to [a,c]is inR [a,C]. In the same way, we see that
the restriction f, of fto [c,b] isinR [c,b].

The equality (*) now follows from the first part of the theorem. This completes the proof.
Corollary If f eR [a,b], and if [c,d] c[a,b], then the restriction of fto [c,d] isinR [c,d].
Proof. Since f €R [a,b] andce[a, b], it follows from the theorem that its restriction to [C, b] is
inR [c,b] . Butif d €[c, b], then another application of the theorem shows that the restriction of
fto [c, d]isin R [c,d]. This completes the proof.

Corollary If f eR[a,b] and if a=¢, < <:--<C,=Db, then the restrictions of f to each of the

subintervals [C_,;,G] are Riemann integrable and

b m G
f = f.
J; ; G
Definition If f eR [a,b] and if a,b €[a, bjwitha < b, we define

I:fz—.[:f and J.:f:O.

Theorem 7 If f eR [a,b] and if a, b, g are any numbers in[a, b], then

IRRINET e ()

in the sense that the existence of any two of these integrals implies the existence of the third
integral and the equality (***).
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Proof. If any two of the numbers a,b,g are equal, then (***) holds. Thus we may suppose that

all three of these numbers are distinct.
For the sake of symmetry, we introduce the expression

b a
L@b,g) =] f +jbg+jg f.

It is clear that (***) holds if and only if L(a,b,g) =0. Therefore, to establish the assertion, we

need to show that L =0 for all six permutations of the arguments a,b andg.

We note that the Additivity Theorem implies that

L(@,b,g)=0whena <g<b.

But it is easily seen that both L(b,g,a) and L(g,a,b) equalL(a,b,g). Moreover, the numbers

L(b,a,g), L(a,g,b) and L(g,b,a)
are all equal to —L(a,b,g). Therefore, L vanishes for all possible configurations of these three

points. This completes the proof.

Exercises
1. Consider the function h defined by h(X)=x+1 for xe[0,] rational, and h(X)=0 for

x€[0,]] irrational. Show that & is not Riemann integrable.
2. Let f :[a,b] > R. Show that f ¢R [a,b] if and only if there exists €, >0 such that for every

}Pn <1/n and HQ1H<l/n such that

neN there exist tagged partitions P, and O, with
IS(f:P,)-S(f;0,)| > e,.

3. Let H(X) =k for x=1/k(k e N) and H(X) =0 elsewhere on [0,1]. Use Exercise 1 to show that
H is not Riemann integrable.

4. If a(x) =—x and w(x) =xand if a(x) < f(X) <w(x) for all xe[0,1], does it follow from the
Squeeze Theorem that f € R0,1] ?

5.1f ] is any subinterval of [a,b] and if j ;(X) =1 for xe J and j ;(X) =0 elsewhere on[a,b], we
say that ] ; is an elementary step function on[a,b] . Show that every step function is a linear

combination of elementary step functions.
6.1fy :[a,b] > R takes on only a finite number of distinct values, isy a step function?

7. If S(f;P') is any Riemann sum of f :[a,b] >R, show that there exists a step function

i :[ab]>R suchthatj.:j —S(f:P).

8. Suppose that f is continuous on[a,b], that f(x) >0 for all Xe[a,b] and that Jj f =0. Prove

that f(x)=0 forall xe[a,b].
9. Show that the continuity hypothesis in the preceding exercise cannot be dropped.

10. If fand g are continuous on [a,b] and if j: f= j: g, prove that there exists € e[a,b] such that
f(c)=9(c).
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11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

If fis bounded by M on[a,b] and if the restriction of f to every interval [c,b] where ce (a,b)

is Riemann integrable, show that f eR [a,b]and that Lb f— Jj f asc—>a+.

Show that g(x)=sin(l/x) for xe(0,1] and g(0) =0 belongs to R [0,]].

Give an example of a function f :[a,b] > R thatis in R [c,b] for everyce (a,b) but which is
notinR [a,b].

Suppose that f :[a,b] > R, that a=¢, <c, <...<C, =band that the restrictions of f to [¢_;,C]

b ALY
belong to R [¢ ,,G] fori=1,..,m.Prove that f eR [a,b] and that the formula L f :Z : f
— o,

in Corollary holds.

If f is bounded and there is a finite set E such that fis continuous at every point of [a,b]\E,
show that f eR [a,b] .

If f is continuous on[a,b],a<b, show that there exists ce[a,b] such that we have

I: f = f(c)(b—a). This result is sometimes called the Mean Value Theorem for Integrals.
If f and g are continuous on [a,b] and g(x)>0 for allxe[a,b], show that there exists
ce[a,b]such that .[:f g=f(c) I:g Show that this conclusion fails if we do not have

g(x) > 0. (Note that this result is an extension of the preceding exercise.)

Let f be continuous on[a,b], let f(x)>0 for allxe[a,b], and letM :(J.: f ")m. Show that
lim(M ) =sup{ f(x): xe[a,b]}.

Suppose that a>0 and that f € Ri—a,a] .
a) If fis even (that is, if f(~x)= f(X)for all xe[0,a]), show that jf = 2j:f .

b) If fis odd (that is, if f(—x)=—f(x) for allxe[0,a]), show that E\ f=0.
Suppose that f :[a,b] >R and thatne N. Let P, be the partition of [a,b] into n subintervals
having equal lengths, so that x;=a+i(b—a)/n fori=0.1..,n. Let L (f)=S(f;P,,) and
R,(f)=S(f;P,,), where P, has its tags at the left endpoints, and P,, has its tags at the

right endpoints of the subintervals[x_,,%].
a) If fis increasing on[a,b], show that L,(f) <R (f) and that

0<R ()~ L(N=((f(B)- (a)- ©-2
b) Show that f (a)(b—a) < Ln(f)sj: f<R/(f)<f(b)b-a).
c) If fis decreasing on[a,b] , obtain an inequality similar to that in (a).

d) If f eRa,b] is not monotone, show that I:f is not necessarily between L (f) and

R(f).
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21.

If f is continuous on[-11], show that jo“’zf(cosx)dx= J':Zf(sinx)dx:% [ f(sinxax. [Hint

Examine certain Riemann sumes. |

22.If fis continuous on[-a,a] , show that J: f (x*)dx = 2.[: f(x°)dx.
Answers
1. If the tags are all rational, then S(h:P) >1, while if the tags are all irrational, then S(h:P)=0.
3. Let P, be the partition of [0,1] into n equal subintervals with t, =1/nand Q, be the same
subintervals tagged by irrational points.
5. If ¢,...,C, are the distinct values taken by j , then j "l(cj) is the union of a finite collection
{313, } of disjoint subintervals of [a,b]. We can write j = Z?zlzrk‘zlcjj i -
6. Not necessarily.
8. If f(c)>0 for some ce(a,b), there exists d >0 such that f(x)>1 f(c)for |X—C| <d. Then
I: f> J-C:d f >(2d)4 f(c) > 0. If ¢ is an endpoint, a similar argument applies.
10. Use Bolzano’s Intermediate Value Theorem (stated in chapter 2).
11. Leta,(X)=-M and o, (X) =M for Xxe[a,c)and a (x)=w,(X) = f(X) forxe[c,b]. Apply the
Squeeze Theorem for c sufficiently near a.]
12. Indeed, g(x)| <1 and is continuous on every interval [c,] where O0<c<1. The preceding
exercise applies.
13. Let f(x)=1/x for xe(0,1] and f(0)=0.
16. Let m=inf f(xX)andM =sup f . Then we have m(b—-a)< I:f <M(b-a). By Bolzano’s
Lt
Intermediate Value Theorem, there exists ¢ <€[a, b] such that f (c) = ba_
-a
19. (a) Let P be a sequence of tagged partitions of [0, a] with }Pn —0and let P, be the
corresponding “symmetric” partition of [-a, a] . Show that S(f;P)=2S(f;P,) — 2 Ioa f.
21. Let x =i(p/2) for i=0,1,...,n. Then we have that
P n-1 P n .
—-» f(cosx)=—- f(sinx).
2n Z|:0 ( )Q) 2n Zk:l ( Xk)
22. Note that x> f(x?) is an even continuous function.

Real Analysis Page 60



School of Distance Education

6

FUNDAMENTAL THEOREMS OF CALCULUS

In this chapter we will explore the connection between the notions of derivative and integral.
The First form of Fundamental Theorem of Calculus: If f is continuous at every point of

[a, b] and F is any antiderivative of f on [a, b], then
b
j f(x)dx = F(b)— F(a).
a

The First Form of the Fundamental Theorem provides a theoretical basis for the method of
calculating an integral. It asserts that if a function f is the derivative of a function F, and if f

belongs toR [a,b], then the integral I:f can be calculated by means of the evaluation

F(b)- F(a). A function F such that F'(x)= f(X) for all xe[a,b] is called an antiderivative or a
primitive of f on[a,b] . Thus, when f has an antiderivative, it is a very simple matter to calculate

its integral.
In practice, it is convenient to allow some exceptional points ¢ where F'(C) does not exist in

R, or where it does not equal f (c). It turns o

ut that we can permit a finite number of such exceptional points.
We recall Mean Value Theorem.

Mean Value Theorem: Suppose that fis continuous on a closed interval | =[a,b], and that f has

a derivative in the open interval (a,b). Then there exists at least one point ¢ in (a,b) such that
f(b)—f(a) =f'(c)(b—a).

The following is a result needed in the coming section.

Theorem If f:1 — R has a derivative atc e | , then fis continuous at c.

Fundamental Theorem of Calculus (First Form): Suppose there is finite set E in [a,b] and
functions f,F :[a,b] > R such that:

a) F is continuous on[a,b],

b) F'(x)= f(X) for allxe[a,b]\ E,
Then we have

j:sz(b)—F(a) . (1)

Proof. We will prove the theorem in the case where E ={a,b} . The general case can be obtained
by breaking the interval into the union of a finite number of intervals.

Let £>0 be given. By assumption (c), f eR [a,b]. Then there exists 5, >0 such that if P is
any tagged partition with“P' H <$§,, then

‘S(f;P')—f:f

<eg. .. (2
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If the subintervals in P are[x_,,x], then the Mean value Theorem applied to F on [x_,,X]
implies that there exists u € (x ;,%) such that

F(x)-F(%4)=F'u)-(x-%,) fori=1..,n.
If we add these terms, note the telescoping of the sum, and use the fact that F'(u) = f(u), and
obtain

FO)-F(@) = Y (F(X)-F(.1)) =3 Fu)(5-x.,)

Now letP, ={([%_,,%],u)}",, then the sum on right equalsS(f;P,). If we substitute
F(b)-F(a)=S(f;P,) into (2), we conclude that

F(b)-F(a)-[ f

But, since € >0 is arbitrary, we infer that equation (1) holds. This completes the proof.

Remark If the function F is differentiable at every point of [a,b], then (by Theorem C)
hypothesis (a) is automatically satisfied. If f is not defined for some points ce E, we take
f(c)=0. Even if F is differentiable at every points of [a,b], condition (c) is not automatically

<E€.

satisfied, since there exist function F such that F’is not Riemann integrable (This is illustrated
in the following Example 5).

Example 1f F(X)=1x’ for allxe[ab], then F'(X)=x for all xe[ab]. Further, f=F'is
continuous so it is in R[a,b] . Therefore the Fundamental Theorem (with E = &) implies that

[ xax=F(0) - F (a) =3(0 - 2°)..

Example 1f G(x)=Arctanx for xe[ab], then G'(x)=1/(x*+1) for allxe[a,b]; also G’ is
continuous, so it is in R{a,b] . Therefore the Fundamental Theorem (with E =) implies that
bzidx= Arctanb—Arctana.
ax +1

Example If A(X) =|X| for xe[-10,10], then A(X)=-1 if xe[-10,0) and A'(X)=+1for xe (0,10].
Then we have A'(x) =sgn(x) for all xe[-10,10]\{C}, where

+1 for x>0

sgn(x) =40 for x=0.
-1 for x<1

(sgn is called the signum function).

Since the signum function is a step function, it belongs toR [-10,10]. Therefore the
Fundamental Theorem (with E ={0} ) implies that

ffosgn(x)dx = A(10) - A(-10) =10-10=0.

Example If H(X)= 2Jx for xe [0,b], then H is continuous on [0,b] and H'(x) =1/ JX forxe (0,b]
. Since h=H" is not bounded on (0,b], it does not belong to R0,b] no matter how we define
h(0) . Therefore, the Fundamental Theorem does not apply.

Example Let K(X)=x’cos(1/x*) for xe(0,] and letK(0)=0. It follows, applying the Product
Rule and the Chain Rule, that

Real Analysis Page 62



School of Distance Education

K'(X) = 2xcos(1/ x*) + (2/ x)sin(L/ x*) for x < (0,1]
Further, we have
K(X) — K(O) =1lim
x-0

x—0

. x*cos(})
K'(O):I|n01 ~ X :Imgx-cos(x—lz):o.

Thus K is continuous and differentiable at every point of [0,1]. Since the first term in K’ is
continuous on [0, 1], it belongs toR [0, 1] . However, the second term in K’ is not bounded, so it
does not belong toR [0, 1] . Consequently K’ ¢R [0,1], and the Fundamental Theorem does not
apply toK".

The Fundamental Theorem (Second Form)

We now discuss the Fundamental Theorem (Second form) in which we wish to differentiate an
integral involving a variable upper limit.

Definition If f eR [a,b], then the function defined by

F(z):j:f for ze[a,b] .. (3)

is called the indefinite integral of f with base point a.
We will show that if f eR [a,b], then its indefinite integral F satisfies a Lipschitz condition;

hence F is continuous on[a,b]. We recall a result in the chapter Riemann Integrable
Functions.

Additivity Theorem: Let f :[a,b] >R and letce(a,b). Then f e Ra,b] if and only if its
restrictions to [a,c] and [C,b] are both Riemann integrable. In this case

Lr=[r[
Theorem The indefinite integral F defined by
F(2) =j f for ze[ab]
is continuous on[a,b] . In fact, if | f (X)| <M for allxe[a,b], then
|F(2)-F(W)| <M|z-Ww forallz,we[a,b].
Proof . The Additivity Theorem implies that if z,we[a,b] and w< z, then
F(z):j:f :wa +I;f = F(W)+j;f ,
and hence we have
F(2)- F(w):j;f
Now if -M < f(x)<M for all xe[a,b], then Theorem D implies that

[wsfesn
implies -M J.;S J.\; f<M J.;
implies

—M(z-w)sj;f <M (z—w)

and hence it follows that
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|F(2)-F(w)|<

<M|z-w.

X
This completes the proof.
We will now show that the indefinite integral F is differentiable at any point where f is
continuous.

Fundamental Theorem of Calculus (Second Form): Let f eR [a,b] and let f be continuous at a
pointc€[a,b] . Then the indefinite integral, defined by

F(z):j:f for ze[a, b],

is differentiable at ¢c and F'(c) = f ().

Proof. We will suppose that ce[a,b) and consider the right-hand derivative of F at c. Since f is

continuous at ¢, given & >0 there exists n, >0 such thatifc<x<c+n,, then
f(c)-e<f(X)<f(c)+e. ...(4)

Let h satisfy 0< h<mn_. The Additivity Theorem implies that fis integrable on the intervals[a,c],

[a,c+h] and [c,c+ h] and that

Fle+h)-F(o=[""t.

Now on the interval [c,c+h] the function f satisfies inequality (4), so that (by Theorem D) we
have

jcc+h( f(c)-e)< J.:m f < Lc+h( f(c)+e).

Since J.cwh f =F(c+h)-F(c), the above implies
(f(c)—¢e)-h<F(c+h)-F(c)<(f(c)+¢)-h

If we divide by h>0 and subtract f (c), we obtain
o< F(c+ hr)]— F(c)

- f(c)<e

which implies
F(c+h)-F(c)
h
But, since & >0 is arbitrary, we conclude that the right-hand limit is given by
lim €t -F(©) _ . ©).

h—0+ h

f(c)<e.

It is proved in the same way that the left-hand limit of this difference quotient also equals f(c)
whence (a,b] . This completes the proof.

If fis continuous on all of [a,b], we obtain the following result.
Theorem If fis continuous on [a,b] then the indefinite integral F, defined by

F(z):j:f for ze[ab],
is differentiable on [a,b] and F'(X)= f(X) for allxe[a,b].

Remark The above Theorem can be summarized as follows:

Real Analysis Page 64



School of Distance Education

If f is continuous on[a,b], then its indefinite integral is an antiderivative of f.

In general, the indefinite integral need not be an antiderivative (either because the derivative
of the indefinite integral does not exist or does not equal f(x)). This is illustrated in the

following examples.
Example If f(x)=sgnx on[-11], then
If x<0, then

F(x)= j f (x)dx:jjl—lz—l(x+l) =—x-1=|x-1

If x>0, then
FOO=["100=[" f+ [ f =] -1+ ] 1=-10- (-1]+Lx- ]
=—1+x=[¥-1.

Thus f eR [-11] and has the indefinite integral! F(X) = |X| —1 with the base point—1. However,
since F'(0) does not exist, F is not an antiderivative of fon[-11].

Example If h denotes Thomae’s function h:[0,1] - R defined by defined by h(x) =0if x<[0,]]
is irrational, h(0)=1 and by h(x)=1/n if xe[0,1] is the rational number X=m/nwhere

m,n € N have no common integer factors except 1. Then its indefinite integral H(X)= onh is

identically 0 on[O, 1]. Here, the derivative of this indefinite integral exists at every point and
H'(X)=0. But H'(x) # h(xX) whenever xe Q n[0,]], so that H is not an antiderivative of 1 on[0,1]

Substitution Theorem

The next theorem provides the justification for the “change of variable” method that is often
used to evaluate integrals. This theorem is employed (usually implicitly) in the evaluation by
means of procedures that involve the manipulation of “differentials”.

Substitution Theorem: Let J=[a,B] and let ¢:J —- R have a continuous derivative on J. If

f :1 > R is continuous on an interval I containing ¢(J) , then

jﬁ f (o(t)) - ¢'(t)dt = j‘”(“‘)’ f (x)dx .. (5)

Proof. Define F(u) =L l:a) f(x)dx for uel, and H(@t)=F( (t))=(Foj )(t) forteJ. Then
H'(t)=f( (t))j '(t) for teJ and that
[ Hdx=F( () =Hb)=[" G ®) Cck

The hypotheses that fand ¢’ are continuous are restrictive, but are used to ensure the existence

of the Riemann integral on the left side of (5).
Example Evaluate the integral

[en Jt g
Lt

Here we substitute ¢(t) = Jt for te [1,4] so that ¢'(t) = 1/(2\t) is continuous on [1,4]. If we let
f (X) =2sinx, then the integrand has the form (f c¢)-¢" and the Substitution Theorem implies

that the integral equals Lz 2sinxdx = —2cosx | = 2(cosl—cos2).
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snt

\ﬁt dt. Since (p(t)=x/f does not have a continuous

derivative on[0,4], the Substitution Theorem is not applicable, at least with this substitution.

Example Consider the integral I:

Exercises
1. Extend the proof of the Fundamental Theorem to the case of an arbitrary finite set E.

2.If neN and H,(X)=x""/(n+1) forxe[a,b], show that the Fundamental Theorem implies

that [ X'dx = (b ~a"™)/(n+1).. What is the set E here?
3. If g(X)=x for |X|21 and g(X)=-x for |X|<1 and if G(X)=%‘X2—1‘, show that
[* 9(dx=G(3)-G(-2) =5/2.

4. Let B(X) =—%x2 for x<0 and B(X) =%x2 for x>0.Show that ["|x|dx=B(b) - B(a).

5. Let f:[a,b] >R andletCeR.
(@) If f :[a,b] > R is an antiderivative of f on[a,b], show that
fo(X)=f (X)+C is also an antiderivative of fon [a,b] .
(b) If f, and f, are antiderivative of fon[a,b], show that

f,—f, is a constant function on [a,b] .
6. If f eR [a,b] and ifce[a,b], the function defined by F,(2) =Iczf for ze[a,b] is called the

indefinite integral of f with base point c. Find a relation between F, and F,.

7. Thomae’s function is in R [0,1] with integral equal to 0. Can the Fundamental Theorem be

used to obtain this conclusion? Explain your answer.
8. Let F(x) be defined for x>0 by F(x)=(n-1)x—(n-1)n/2 forxe[n-1n), ne N. Show that F

is continuous and evaluate F'(X) at points where this derivative exists. Use this result to
evaluate J:[[X]]dx for0O<a<b, where [[XH denotes the greatest integer in x. (The function
X—[[X]]is called the greatest integer function, for example, [[7.2]]=7, [[p]]=3,
[[—2.8]] =-3).

9.Let f eR [a,b] and define F(x):j:f for xe[a,b].
(a) Evaluate G(x) = LX f in terms of F, wherec e[a,b].

(b) Evaluate H(x) = Lb f interms of F.

(c) Evaluate S(x) = Jjnx f in terms of F.
10. Let f:[a,b] >R be continuous on [a,b] and let v=[c,d] > R be differentiable on [c,d]
withv((c,d]) c[a,b]. If we defineG(x) = [ :‘*) f, show that G'(X) = f (V(x))-V/(X) for all xe[c,d]
11. Find F'(X) when F is defined on [0,1] by:
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a) FOO= [ @+t) ot b) F9 = [ VLt ot

12. Let f:[0,3] > R be defined by f(x)=x for0<x<1, f(x)=1 for 1<x<2 and f(X)=x for
2<x<3. Obtain formulas for F(x)= _fox f and sketch the graphs of f and F. Where is F
differentiable? Evaluate F'(x) at all such points.

13. If f:R—R is continuous andc>0, define g:R—R by g(x)= j:: f(t)dt. Show that g is
differentiable on R and find g'(x).

14.If f:[0,]] »> R is continuous and J.Ox f= Ll f for all xe[0,1], show that f(x)=0 for all xe[0,]]

15. Use the Substitution Theorem to evaluate the following integrals.

a) [ttt b) joztz(1+t3)’l’2dt
0) L”l%ﬁ dt, d) jf—d"ojf/f ¢

16. Sometimes the Substitution Theorem cannot be applied but the following result, called the
Second Substitution Theorem is useful. In addition to the hypotheses of Substitution
Theorem, assume that | '(t) #0 for allte J, so the functiony :j (J) > R inverse to j exists

and has derivativey '(j (t))=1/j '(t). Then
[7 16 @)= | j (f:)) £ (x)y "(x)dx
To prove this, let
G(t):L: f( (s)ds for ted,
so thatG'(t) = f(j (t)) . Note that K(x) =G(y (X)) is differentiable on the interval j (J) and that

K'0)=G'& Oy "= oy Q) "= f(xy '(¥).
Calculate G(b)=K( (b)) in two ways to obtain the formula.
17. Apply the Second Substitution Theorem to evaluate the following integrals.

a) f%‘ﬁ b) ft \/?tleln(SJFZ«/E)—lnS
4t 4 dt ~
o [. ™ d [, \ﬁ(t+4)—Arctan(1) Arctan(l/ 2)

18. Explain why Substitution Theorem and/or Second shifting Theorem cannot be applied to
evaluate the following integrals, using the indicated substitution.

aJtdt oo acostdt . .
A Jogo g O b) [, 0=t

o[ Jrafei w=f & Jld_tTj (t) = Arcsint
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7
POINTWISE AND UNIFORM CONVERGENCE

Let Ac R be given and suppose that for each ne N there is a function f : A— R ; we say that
(f,) is a sequence of functions on A toR .

Clearly, for eachxe A, a sequence of functions gives rise to a sequence of real numbers,
namely the sequence
(1,00), )
obtained by evaluating each of the functions at the point x. For certain values of xe A the
sequence (1) may converge, and for other values of xe A this sequence may diverge. For each
xe A for which the sequence (1) converges, there is a uniquely determined real number
lim(f, (X)) . In general, the value of this limit, when it exists, will depend on the choice of the

point xe A. Thus, there arises in this way a function whose domain consists of all numbers
X e A for which the sequence (1) converges. Definition follows:

Let(f,) be a sequence of functions on AcRtoR,letAjc A, and let f : A) > R. We say that

the sequence (f,) converges on A, to f if, for eachxe A, the sequence (f (X)) converges to
f(x) inR. In this case we call f the limit on A, of the sequence(f,). When such a function f
exists, we say that the sequence (f,) is convergent on A, or that (f,) converges pointwise on
A .

Except for a possible modification of the domain A,, the limit function is uniquely
determined. Ordinarily we choose A, to be the largest set possible; that is, we take A, to be the
set of all Xxe A for which the sequence (1) is convergent inR .

If the sequence (f,) converges on A, to f, we denote it by
f=lim(f,) onA,, or f,>f on A.
Sometimes, when f, and fare given by formulas, we write
f(x)=limf (x) forxe A, or f (X)—> f(x) for xe A
We need the following result.
Theorem Let Y =(y,) be a sequence of real numbers that converge to y and let xe R. Then the
sequence
XY = (Xyy)
converge to Xy. i.e.,
lim(xy,) = xlim(y,).
Example Show that lim(x/n)=0 forxeR .
ForneN, let f (X)=x/n andlet f(x)=0 forxeR.
For xeR, it follows that
lim(f,(x)) =lim(x/n)
= xlim(1/n), using Theorem A
=X-0, as lim(2/n)=0
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Hence for allxeR, lim(x/n)=0.

Example Discuss the pointwise convergence of the sequence of functions (X") .

Let g,(X)=Xx" forxeR,neN. Clearly, ifx=1, then the sequence (g,(1)) is the constant
sequence (1) and hence converges to 1. It follows from the result “if 0<b<1, then lim(b")=0"
that lim(x")=0 for 0<x<1 and it is readily seen that this is also true for-1<x<0. Ifx=-1,
then g, (-1 =(-1", and since ((-1)")is divergent, the sequence (g,(-1)) is divergent. Similarly, if
|X| >1, then the sequence (x") is not bounded, and so it is not convergent! inR .

Hence if
900:{0 for —1<x<1,
1 for x=1,
then the sequence (g,) converges to g on the set(-11] .
1Reason: If this sequence is convergent, it must be bounded (by Theorem B), which is

not the case.

Theorem A convergent sequence of real numbers is bounded
Example Show that lim((x* +nx)/n)=x forxeR (Fig. 3).
2
Let h (x)=(x*+nx)/n forxeR, neN, and let h(x) = x for xe R. We can write h (X) :XF+ X.

Then

lim(h,(x)) = Iim[XFZ+ xj
= Iim(X—:J +lim(x) , using Theorem A

=x?. Iim(%) + X, using Theorem A and noting that for a fixed x, the limit of

the constant sequence (x) is x
=x*-0+X
=X
Then (h,(X)) & h(x) for allxeR.
Example Show that lim((£)sin(nx+n)) =0 forxeR (Fig. 4).

Let F,(x)=(})sin(nx+n) forxeR,neN, and let F(x)=0 forxeR. Since |Siny|S1 for all

yeR we have

|Fn(x)—F(x)|:%sin(nx+n) s% ()

for all xe R . Therefore it follows that lim(F,(x)) =0=F(x) forallxeR.
It should note that, given anye >0, if 1 is sufficiently large, then |F,(x) - F(x)|<e for all values

of x is simultaneously!
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Getting an intuition from the remark above, we have the following reformulation of the
definition of pointwise convergence
Lemma 1 A sequence (f,) of functions on ACR to R converges to a function f:A — R on

A, if and only if for each € >0 and each Xe A, there is a natural number K(e,X) such that if
n>K(e,x), then

.00 f(x)|<e. .. (3)

Example Let f (X)=

for xe€[0,©), n=1,2,... We show that (f,) converges point wise to
X+n

fwhere f(x)=0 forall xe[0,).
For x=0, fn(0)=1—>1.
n

For fixed x e (0, ), it follows that

Iim(fn(x)):lim(ij

X+nNn

=T’ using property of Limit of sequence of real numbers.

1 1
=X Tim@= (n/x)
=%-o, as lim(1/n) =0

=0, as lim@/n)=0
Hence (f,) converges point wise to f where f(x)=0 for all xe[0,»).
The above can be done as follows also:

For any xe[0, oo),(fn(x))zin—)O as n— o . Now, we let f(x)=0. Let e>0 be given.
X+

We have to find K(e,X) such thatif n>K(e,x), then
[f.00-f(x)|<e.

Now
1 _g<e

X+n
T 1
implies ——<e

X+n

Y 1
implies g <x+n
T 1
implies & Xx<n

Now if we choose
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integral part of (2 -x), when x<21
k(e )= 1, when x>1

i.e., k(e, x) as the smallest positive integer greater than or equal to %— X, then for n>k(e, x),

1
Z_x< <
= x<k(e, X)<n.

Hence, by Lemma, (f,) converges point wise to f where f(x)=0 for all xe[0,).
Uniform Convergence
Definition A sequence (f,) of functions on ACR to R converges uniformly on A/ c A to a

function f:A —> R if for each e >0 there is a natural number K(e) (depending on e but not
on Xe A)) such that if n>K(e), then
|f.()— f(X)|<e forall xeA,. .. (4)
In this case we say that the sequence (f,) is uniformly convergent on A,. Sometimes we write
f.of on A, or f (x)7 f(x) for xeA.

It is an immediate consequence of the definitions that if the sequence (f,) is uniformly
convergent on Ajto f, then this sequence also converges pointwise on Ajto f in the sense of
Definition of pointwise convergence. That the converse is not always true is seen by a careful
examination of earlier Examples in that section; other examples will be given below.

It is sometimes useful to have the following necessary and sufficient condition for a
sequence (f) to fail to converge uniformly on A, to f.

The proof of the following result requires only that take the negation of Definition of
uniform convergence.

Lemma 2 A sequence (f) of functions on AcR to R does not converge uniformly on A, c A

to a function f:A — R if and only if for some €, > Othere is a subsequence (f,) of (f))and a
sequence (X ) in A, such that
o (%) = F(%)| 2 & forall keN.

Example Let f (X) =§, neN and xeR. We have noted in an earlier example that
lim(f,(x))=0 for all xeR. Let f(x)=0 for all xeR. Then (f,) converges to f pointwise. If

we let n =k and x =k, then f (Xk):EZI so that|f, (%)- f(xk)‘ :|1—0|:1. Let e, =%. Then,

by the lemma above, the sequence (f,) does not converge uniformly on R to f.
Example Let g,(X)=X", xe(-1, 1], neN. We have seen in an earlier example that g,
converges to g on the set (-1, 1], where
0 for —1<x<1
g(x)={1 for x=1
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If n =k and x =(3)"", then g, (><k)=((%)&)k ==, sothat

g, (%) —9(x)|=3-0=1.

N

Let e, =1. Then, by the lemma above, the sequence (g,) doesnot converge uniformly on

(-1 tog.
X2 + nx

Example Let h (X) = xeR, neN. We have seen in an earlier example that (h,) - h for

all xeR, where h(x)=x forall xeR.

(=K)* +k(=k)
k

Let e, = k. Then, by the Lemma above, the sequence (h,) doesnot converge uniformly on R to

h.
Example Show that the sequence (f,(X)) where

If n, =k and x =k, then h, (x)= =0 and h(x)=-k so that |h, (x)-h(x)|=k.

f(X)=—2, x>0
X+Nn

is uniformly convergent in the closed bounded interval [0, m|], whatever m may be, but not in
the interval 0< X< .
Here for any given x>0,

f(x)= LLrQ f.(X)

=Iim(LJ:Iim{;}
X+n (x/n)+1

=1.
Then for a given € >0,
[f.00 - f(x)| <e,

. n
if —-1<e
X+n

. . —X

ie., if <e
X+n

.. X

ie., if <e
X+nNn

.. 1

ie., if n>xl —-11.

e

Let K(e, X) = the smallest integer greater than x(1/e—-1). Also, we note that K(e, X) increases
as x increases and tends o« as x— c . Hence it is not possible to choose a positive integer K(e)
such that

| f.()—f (X)| <e forevery n>Kf(e)

and for every value of x in [0, «] . Hence the convergence is nonuniform in [0, o).

Real Analysis Page 72



School of Distance Education

If we consider any finite interval [0, m] where m>0 is a fixed number, then the maximum

value of x(1/e —-1) on [0, m] is m(l/e —1) so thatif we take
K(e) = any integer greater than m(1/e -1),
Then
| f.()—f (X)| <e for every nxK(e) and for every x in [0, m].

This shows that the sequence (f,(X)) converges uniformly in the interval [0, m] where m is any
fixed positive number.
Example Show that x=0 is a point of nonuniform convergence of the sequence (f,(x)) in
0< x<1, where

nx

1+ n*x?

fo (%)

Solution
Here

: : n°x : x/n?
f(X) = ||m(fn(X)) = I|m[mj = I|m(mJ

=0for 0<x<1
For a given e , we have

[f.00-f(x)|<e,

n?x

if —_<e
1+ n*x?
. . 4.,2 2
ie., if n‘x‘e-n°x+e>0
.. ,  XEAXE —4x%e?
ie., if n° > 3
2Xxe
. ,  1+1-4e?
ie., if n >2— (1)
xe

Also (1) shows that if x—0,n— o so that it is not possible to choose K(e) e N such that
| f.()—f (X)| <e for every n>K(e) and for every xe[0,1].
Hence the sequence is nonuniformly convergent in [0, 1] .
But if we consider the interval [m, 1] where 0<m<1, the convergence is uniform since in

that case it is possible to take

2%xe

A ' —_— 2 %
K(e) = an integer just greater than [ﬁ] .
Hence x=0 is the point of nonuniform convergence of the given sequence in [0, 1] .
Example Test for uniform convergence the sequence {e’”"} forx=0.
Let f.(x)=€e™.
1when x=0

Then lim(f,(x)) =lim(e™) = {o when x>0
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1when x=0
Let f(x)={w X

0 when x>0
Then for each x€[0, ), lim (f,(X)) = f(X). Hence (f,) converges point wise to f in [0, ).
Now for any e >0 and xe (0, x),
| f.(x)—f (X)| =e™<e

NX

if e >
e

L 1
ie., if nx > Iog(—j
e

it Joolg)
ie., if n>|—|log| — |.
X e

Hence choosing
K(e, x) = the smallest integer greater than (1/x)log(1/e)

we get, for all xe (0, «)
|s,()—S(x)|<e forall n>Kf(e, X).
Here, obviously, K(e, x) depends on x. We note that K(e, X) increases and tends to « as x
tends to 0 i.e., K(e, X) is not a bounded function of x on (0, ). Hence it is not possible to find
a natural number K(e), depending only on e, such that
|Sn(x) - S(X)| <e whenever n>K(e) and xe[0, x)
Hence (f,) is not uniformly convergent on [0, ) .

If, however, we consider the interval [a, ) where a is any fixed real number greater than
zero, however small, then K(e, X) is a bounded function on [a, ). The maximum value of
K(e, X) on [a, ) is the integer just greater than (1/a)log(1/e) . Hence if we take

K(e) = the integer just greater than (1/a)log(l/e),
then
| f.(x)—f (x)| <ewhenever n>K(e) and xe[a, »)
Hence the sequence (f,) is uniformly convergent in [a, ) where a>0, but nonuniformly

convergent in [0, ) .

Example Show that if g, (X)=

for x>0, then (g,) converges uniformly on [0, ) .

nx+1
. . X . x/n
F x>0, lim X)) =lim| —— |=lim =0
orany (8,() (nx+lj (x+1/n)

Hence (g,) converges point wise to g where
g(x)=0 for x>0 on [0, =) .
Now for any € >0 and xe (0, »),

9,0 -g(x)|<e

if <e

nx+1
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.. X
ie., if nx+1>=—
e

.. 11
ie., if n>———.
e X

Take  K(e, X) = the positive integer just greater than (% —lj .
X

Then for all xe (0, «©),
|9,()—-g(x)|<e forall nxk(e, x)
Here K(e, X) = the positive integer just greater than (% —%j is a bounded above by % and is a
function of x on (0, «).
The maximum value of K(e, x) on (0, «) is the integer just greater than 1/e. Hence if we take
K(e) = integer just greater than 1/e,
then
|9,()—g(x)|<e forall n>K(e) and xe (0, »)
But when x=0, g,(X)=0 forall neN, and hence we have
|9,()—g(x)|<e forall n>K(e) and xe&[0, )

Hence the sequence (g,) is uniformly convergent on [0, «)

The Uniform Norm
In discussing uniform convergence, it is often convenient to use the notion of the uniform norm
on a set of bounded functions.

If AcR and j :A— Ris a function, we say that j is bounded on A if the set j (A) is a

bounded subset of R.If j is bounded we define the uniform norm of j on A by

i |, =sup{i ()]:xe A ... (6)
Note that it follows that if e >0, then
i],<e e | (¥|<e forall xeA. ..(7)

Lemma 3 A sequence (f,) of bounded functions on AcR converges uniformly on A to f if
and only if | f - f|, > 0.

Proof (=) If (f,)converges uniformly on A to f, then by the Definition of uniform
convergence, given any € >0 there exists K(e)such thatif n>K(e) and xe Athen

| f.(x)—f (X)| <e.
From the definition of supremum, it follows that
|| f, - f||A <e whenever n>K(e).

Since e > 0is arbitrary this implies that || f - |, - 0.
(<) If || f,— f|, =0, then given e > Othere is a natural number H(e) such that if n>H(e)
then || f, - f||A <e. It follows from (7) that |fn(X) - f(X)| <eforall n>H(e) and xe A. Therefore

(f,) converges uniformly on A to f. This completes the proof.
We now illustrate the use of Lemma as a tool in examining a sequence of bounded functions
for uniform convergence.
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Example Show that lim(x/n)=0 forxeR. Is the convergence uniform onR? Is the
convergence uniform on A=[0,1]? Explain.

ForneN, let f,(X)=x/n and let f(x)=0 forxeR. By Example 1, for allxeR, lim(x/n)=0,
so that the sequence of functions (f,) converges point wise to f. In particular, for x=0, (x/n)

converges to 0.
To examine the whether the sequence of functions is uniformly convergent on R, we

cannot apply Lemma since the function f (X)— f(X) =§is not bounded on R. But we have

verified in an earlier example that this convergence is not uniform on R.
Now we examine the uniform convergence on A=[0,1]. To see this, we observe that (for a
fixed neN)

I, - f||A:supH%—0 :0< xsl}:%sup{x:OS xsl}:l.

n

so that| f, - f||, =0 as n— c. Therefore, by Lemma, (f,) is uniformly convergenton Ato f .

We conclude that although the sequence (x/n) does not converge uniformly on R to the zero
function, the convergence is uniform on A.
Example Let g,(X)=X" for xe A=[0,]]andneN, and let g(x) =0 for 0<x<1 and g(1) =1. The

functions g, (X)—g(x) are bounded on A and, we have for anyneN,

X" for 0<x<1
9.~ gl =supy |

=1
Since ||g, — g, does not converge to 0, we infer, by applying Lemma, that the sequence (g,)

for x=1

does not converge uniformly on A to g.

Example We cannot apply Lemma to the sequence in Example 3 since the function
h (X) —h(x) = X /nis not bounded on R.

Instead, let A=[0,8] and consider

X 64
—h|, =supq—:0<x<8;=—.
I -] - 0= x<e) -
Therefore, the sequence (h,) converges uniformly on A to h.

Example We have seen from (2) that||F, —F|, < % . Hence (F,) converges uniformly on R to F.

First Derivative Test for Extrema
Let f be continuous on the interval | =[a, b] and let ¢ be an interior point of |. Assume that

f is differentiable on (a, ¢) and (c, b). Then:
(a) If there is a neigbourhood (c—d, c+d)c | suchthat f'(X)>0 for c—d <x<c and f'(x)<0
for c<x<c+d, then f has a relative maximum at C.
(b) If there is a neigbourhood (c—d, c+d)c| such that f'(X)<0 for c-d<x<c and

f'(X) >0 for c<x<c+d, then f has a relative minimum at C.
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Example Let G(x)=X"(1-x) forxe A=[0,1]. Then the sequence (G,(X)) converges to G(x)=0
for eachxe A. To calculate the uniform norm G,-G=G, onA, we find the derivative and

solve
G (X)=x"*(n—(n+)x)=0

to obtain the point X, = Ll . This is an interior point of [0,1], and it is easily verified by using
n+

the First derivative Test that G, attains a maximum on [0,1] at X,. Therefore, we obtain

1
G|, =G, (%) =1+ " ——
|| I"I||A n(xn) ( +n) n+1

which converges to () -0=0. Thus we see that convergence is uniform on A.

By making use of the uniform norm, we can obtain a necessary and sufficient condition for
uniform convergence that is often useful.

Cauchy Criterion for Uniform Convergence of Sequence of Functions: Let (f,) be a sequence
of bounded functions on Ac R. Then this sequence converges uniformly on A to a bounded
function f if and only if for each e >0 there is a number H(e)in N such that for allm,n>H(e),

then||f,, - f,|

A <e.
Proof. (=) If ff on A, then given e>0 there exists a natural number K(%e) such that if
n>K(e) then||f, — f||, <ie.Hence if bothmn=>K({e), then we conclude that
| £,00— £, <[ £, (00— F O +|f, () - f(W)|<ie+ie=e
for allxe A. Therefore” f.— fn||A <e,formnx>K(ie)=H(e).
(<) Conversely, suppose that for e >0 there is H(e) such that if m,n>H(e), then
|| f. - fn|| . <€ . Therefore, for each xe A we have
|fm(x)— fn(x)|£|| f,— fn||A£e for mn>Hf(e). .. (8)
It follows that (f,(x)) is a Cauchy sequence in R ; therefore, being a Cauchy sequence, it is a
convergent sequence. We define f:A—R by
f(x) =lim(f, (X)) for xeA.
From (8), we have for each xe A
—-e<f (X)-f.(X)<e for m,n>H(e).
Now fix m>H (e) and let n— o, then we obtain for xe A,
—-e<f (x)-f(x)<e.
Hence for each xe A, we have
|f.,()— f(x)|<e for m>H ().

Therefore the sequence (f,) converges uniformly on A to f. This completes the proof.

Exercises
1. Show that lim(x/(x+n))=0 for all xe R,x>0
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2. Show that lim(nx/(1+ n’x*)) =0 for all xeR.

3. Evaluate lim(nx/(1+ nx)) for xe R, x>0

4. Evaluate lim(x"/(1+ x")) for xe R,x>0.

5. Evaluate lim((sinnx)/(1+ nx)) for Xxe R,x>0.

6. Show that lim(Arctannx) = (p /2)sgnx for xe R, where sgn is the signum function.

7. Evaluate lim(e™)forxeR, x>0.

8. Show that lim(xe"™) =0 forxe R,x>0.

9. Show that lim(x’e ™) =0 and that lim(n’x’e™) =0 for xeR,x>0.

10. Show that lim((cosp x)*") exists for all xe R . What is its limit?

11.Show that if a>0, then the convergence of the sequence in Exercise 1 is uniform on the
interval [0, a], but is not uniform on the interval [0, ).

12.Show that if a>0, then the convergence of the sequence in Exercise 2 is uniform on the
interval [0, a], but is not uniform on the interval [0, ).

13.Show that if a>0, then the convergence of the sequence in Exercise 3 is uniform on the
interval [0, a], but is not uniform on the interval [0, ).

14.Show that if O<b<1, then the convergence of the sequence in Exercise 4 is uniform on the
interval [0, b], but is not uniform on the interval [0, 1].

15.Show that if a>0, then the convergence of the sequence in Exercise 5 is uniform on the
interval [a, «), but is not uniform on the interval [0, «).

16.Show that if a>0, then the convergence of the sequence in Exercise 6 is uniform on the
interval [a, «), but is not uniform on the interval (0, «).

17.Show that if a>0, then the convergence of the sequence in Exercise 7 is uniform on the
interval [a, «), but is not uniform on the interval [0, «).

18.Show that the convergence of the sequence in Exercise 8 is uniform on [0, ).

19. Show that the sequence (x’e ™) converges uniformly on [0, ).

20.Show that if a>0, then the sequence (n°x’¢ ™) converges uniformly on the interval [a, «),
but that it does not converge uniformly on the interval [0, o).

21. Show that if (f,), (g,) converge uniformly on the set A to f, g, respectively, then(f,+g,)
converges uniformlyonAto f +g.

22. Show that if f (X)=Xx+1/n and f(x)=x forxeR, then (f,) converges uniformly on R to f,
but the sequence (f’)does not converge uniformly onR. (Thus the product of uniformly
convergent sequences of functions may not converge uniformly.)

23. Let (f,),(g,) be sequences of bounded functions on A that converge uniformly on A to f,g,

respectively. Show that (f g,) converges uniformly on A to fg.
24. Let (f,) be a sequence of functions that converges uniformly to f on A and that satisfies
|f,()|<M for all neN and allxe A. If g is continuous on the interval[-M,M], show that

the sequence (go f,) converges uniformly to go f on A.
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8
UNIFORM CONVERGENCE AND CONTINUITY

We first list some examples which shows that, in general, limit of a sequence of continuous
functions need not be continuous. Similarly, limit of a sequence of differentiable (resp.,
Riemann integrable) functions need not be differentiable (resp., Riemann integrable). In this
text we discuss the limit of a sequence of continuous functions only.

We will consider results that reveal the importance of uniform convergence that allows
interchange of limits which makes the limit of sequence of continuous function also continuous.

Let g,(x)=x" for xe[0,]] andneN. Then, the sequence (g,) converges pointwise to the

function

1 for x=1

Although all of the functions g, are continuous at x=1, the limit function g is not continuous at

0 for 0<x<1
g(x) =

x=1. Recall that it was shown in Example 9 in the previous chapter that this sequence does not
converge uniformly to g on[0,1] .

Each of the functions g,(x)=X" for xe[0,]] and neN has a continuous derivative on[0,1] . For

xe[0, 1, g! (X)=nx"". However, the limit function g does not have a derivative at x=1, since

it is not continuous at that point.
Let f,:[0,]] >R be defined for n>2 by

n’x for 0<x<i
f.()=1-n*(x-2) for i<x<2
0 for 2<x<1
It is clear that each of the functions f, is continuous on[0,1] ; hence it is Riemann integrable.

We note that forxe[0,], f (X)—>0 asn—>w. Also, for n>2, j: f,(x)dx=1. This can be
described as below:

1 _ 1Un 2 2/n 2 1
.[0 fn(x)dx_jO n xdx+.|‘1/n -n (x—%)dx+j2/n0dx

1Un 2/n
_ 12 X2 2 X2 2
=n [7}0 -n[(5-2-%)]

1/n
=1+1=1for n>2
2 2
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If xe[0,1 and n— o, we have Estlso that f (xX) >0 asn—>o. Hence the limit
n

function f is such that f(x)=0 for xe€[0, 1]. Being a constant function, f is continuous on

[0, 1] and hence is Riemann integrable on [0, 1] and I: f (X)dx=0. Therefore we have

[T (0ax=0=%1=lim f,(x)dx
0 o "
In this example,
1. . 1
jollmfn(x)dx¢ nmj0 f (x)dx,
so that interchange of limits is not possible.
Example Consider the sequence (h,) of functions defined by h,(x) = 2nxe™ for xe [0,1], neN.

Sinceh, =H/, where H, (X) = —e™, the Fundamental Theorem gives

j:hn(x)dx= H ()-H. (0)=1-e™.

For xe[0,1], h,(X)= 222( — 0 as n— o . Hence if we take h(x) =lim(h,(x)), we have
e
h(x) =lim(h,(x)) =0for all xe[0,]] .

Hence

j:h(x)dx;tlimj:m(x)dx.

That is interchange of limits is not possible in this case also.

Interchange of Limit and Continuity
Theorem Let (f,) be a sequence of continuous functions on a set Ac R and suppose that (f,)
converges uniformly on A to a function f : A— R . Then fis continuous on A.

Proof. By hypothesis, given e >0 there exists a natural number H = H(3e) such that if n>H

then |fn(X) —f (X)| <ze forall xe A. Let ce A be arbitrary; we will show that f is continuous at
c. By the Triangle Inequality we have
|f(x)— f(c)|£|f(x)— f, (X)|+| f, () - f, (C)|+|fH (- f(C)|
<ie+|f,(x) - f,(0)+1e.
Since f,, is continuous at c, there exists a number d =d(e,c, f,;) >0 such that if [x—c|<d and
xeA, then| f, (X)— 1, (C)| <ze. Therefore, if |X—C| <d and xe A, then we have| f(x)—f (C)| <e.
Since e >0 is arbitrary, this establishes the continuity of f at the arbitrary pointce A.

Hence f is continuous at every point in A. Hence f is continuous on A. This completes the

proof.

Although the uniform convergence of the sequence of continuous functions is sufficient to
guarantee the continuity of the limit functions, it is not necessary. This is illustrated in the
following example.

Example
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Let f.(X0)=—7— forall xe[0,]] n=123,...

Then

Iim(fn(x))zlim(ljzlim XIN_|_0 forall xe[0,1].
1+n 1

Let us define f :[0,]] > R by

f(x)=0forall xe[0,1].
Then (f,) converges pointwise to f on [0, 1]. Here clearly each f, and f are continuous on
[0,1] . But

[f0 = flloy =sup{| f.(0 - F(X): xe[0,1]}
nx
sup{m.xqo,l]} .. (1)

To find sup{% Xe [0,1]} i.e., the maximum value of % on the set [0, 1], we can use

1+n°x 1+ n°x

. .. . nx .
the Differentiation Method. By the method, the function y= i attain an extremum when

n’x
y'=0
. 1+ n®x*)n—nx- 2n°x
i.e.,, when ( ) NI =0
1+ n°x%)
ie., when n+n’x’ —2n*x? =0.
. 1
ie., when X° ==
n
. 1 . . . 1 .
i.e, when x=*—. Hence y=——— attains a maximum in [0,1] at X== and the maximum
n n-x n
1
L | 1 1
value is 13 Hence from (1), we have || f, - f”[m] =5 Hence || f, - f||[01] —>§ as
) : :
1+n e
n — oo.

Since ||f, - f||,, does not tend to zero as 1 tends to infinity, (f,) is not uniformly convergent to

fon[0,1] .

Exercises

1. Show that the sequence ((x"/(1=Xx")) does not converge uniformly on [0,2] by showing that
the limit function is not continuous on[0, 2] .

2. Let f :[0,]] > R be defined for n>2 by
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n*x for 0<x<1l/n
f (%)= —nZ(X—%) for 1/n<x<2/n
0 for 2/n<x<1

Prove that the sequence in (f,)is an example of a sequence of continuous functions that
converges non-uniformly to continuous limit.
3. Construct a sequence of functions on [0,1] each of which is discontinuous at every point of

[0,1] and which converges uniformly to a function that is continuous at every point.

4. Suppose (f,) is a sequence of continuous functions on an interval I that converges uniformly
on I to a function f. If (x,) | converges to X, € | , show thatlim(f (x,))=f(x,).

5. Let f:R—>R be continuous on R and let f (x)=f(x+1/n) for xeR. Show that (f,)
converges uniformly on R to f.

6. Let f,(x)=1/(1+x)" for xe[0,]] . Find the pointwise limit f of the sequence (f,) on[0,1]. Does
(f,) converges uniformly to fon[0,1] ?

7. Suppose the sequence (f,) converges uniformly to f on the set A and suppose that each f is
bounded on A. (That is, for each n there is a constant M, such that |f (X)| <M, forall xe A.)
Show that the function f is bounded on A.

8. Let f (X)=nx/(1+nx*) forxe A=[0,0). Show that each f is bounded on A, but the

pointwise limit f of the sequence is not bounded on A. Does (f,) converge uniformly to f on
A?
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9
SERIES OF FUNCTIONS

If (f,) is a sequence of functions defined on a subset D of R with values inR, the sequence of
partial sums (S,) of the infinite series Z f, is defined for x in D by

s = f,(0

(%) =s(x) + ()

SH—I(X) = Sn(x) + fn+1(X)

In case the sequence (S,) of functions converges on D to a function f, we say that the infinite

series of functions Z f, converges to f on D. Notation We will often write

an for Zw:fn
n=1

to denote either the series or the limit function, when it exists.
If the series Z| f.(X)| converges for each x in D, we say that Z f, is absolutely convergent

on D. If the sequence (S,) of partial sums is uniformly convergent on D to f, we say that Z f, is
uniformly convergent on D, or that it converges to f uniformly on D.

One of the main reasons for the interest in uniformly convergent series of functions is the
validity of the following results which give conditions justifying the change of order of the
summation and other limiting operations.

Theorem 1 If f is continuous on DcR to R for each neN and if Z f, converges to f
uniformly on D, then fis continuous on D.

We note that Theorem 1 is a direct translation of the following Theorem for series.

Theorem A Let (f,) be a sequence of continuous functions on a set AcRR and suppose that
(f,) converges uniformly on A to a function f : A— R . Then fis continuous on A.

Example We now show that the series
4 4 4 4

ix——x4+ X X X L.
~@+xHt 1+x* @+xH)* @+xY)°
is not uniformly convergent on [0, 1]. Discuss the continuity of the sum function.
4

X N x*
1+ xH™t

and §,00=2.1,09=.

Let fn (X) = ~ W
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Hence
N X4
X) =
sv(¥) Z L)
x*1- !
_ L+ xHN _ @+ xHt -1
L1 (L)
1+ x*
:1+x4—(1T14)N1 if x=0. (1)

When x=0, f (0)=0 for all # and hence s, (X)=0. Hence 5,(0)=0—0 as N —> .
For x#0, using (1),

sy (X) =1+ x4—(1;—>1+ x* as N — oo
+

X4)N71

4
Hence if f(x)= 14X, x#0
0 x=0

then, (s,) converges point wise to fand hence ) f, converges pointwise to f on [0,1].
Each f,(X) is a continuous function on [0,1]. But its limit f(X) is not continuous at x=0.
Hence (with the aid of Theorem 1) )" f, does not converge uniformly on [0, 1] .

Example We now show that the series
X
(Nx+D)[(n-1) x+1
is uniformly convergent on any interval [a, b], 0<a<b, but only point wise on [0, b].
For each neN, let

fn (X)

B X B 1 B 1
T (x+D [(n-1) x+1 (n-1) x+1 (nx+1)

Then the sequence of partial sums of the series ) f () is given by

SN(X)=Z f,(X)

N 1
:,Z;{(n—l)x+1_nx+1}

=1- Nl when x#0 (as other terms, occur in pairs with same
X+
absolute value but with opposite signs and hence, get
cancelled)
When x=0, f,(0)=0 for neN
and hence S\(X)=0  forall NeN.

Combining the above, we have
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1-———,if x#0
sy(X) = Nx+1
0 if x=0
If x£0 lim( (x))—Iim(l—Lj—l
. Nx+1
and lim s, (0) =0.
Therefore (s,) and hence )_ f, converges point wise to f where
0
F(x) = 1 x=
0,x=0

For each neN, f (x) is continuous on [0, b] but f(x) is not continuous on [0, b]. Hence,
applying Theorem 1, »_ f_ does not converge uniformly on [0, b].
Now let J=[a, b], where O<a<b. Then

s = [, = Sup{S, () () xe[a, b}

Nx+1

1.
:SUp{Nx+l' xela, b]}

—>0as N> w.

=Ssup Hl—i—4: xela, b]}, since Xx#0

“Na+l
Hence (s,) converges uniformly to f on [a,b]. Hence the associated series Z f, also

converges uniformly to fon [a, b] (wWhere O<a<h.

Tests for Uniform Convergence

We now present a few tests that can be used to establish uniform convergence. We first recall
Cauchy Criterion for Series of real numbers and then describe Cauchy Criterion for Series of
Functions.

Cauchy Criterion for Series: The series

an:)(l+ Xp +ooet X 4o

n=1

converges if and only if for every e >0 there exists an M (e) € N such that if m>n> M (e), then

[Xoug + Xop +ooo % <.

Cauchy Criterion for Series of Functions: Let (f) be a sequence of functionson Dc R toR.
The series Z f, is uniformly convergent on D if and only if for every >0 there exists an
M (e) such thatif m>n> M (e), then

k
Proof. Let (S,) be the sequence of Nth partial sums of the series Z f.,. Then

(X)+--+ f (x| <e forall xeD.

n+l
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SN(X):ZN: f(x)=f,(x)+---+ f (X) forall xeD.

By definition of uniform convergence of series, the infinite series Z f, converges uniformly on

D if and only if (s,) converges uniformly on D. Now, by Cauchy Criterion for Uniform
Convergence of a Sequence of Functions, (S,) converges uniformly on D if and only if for every

e >0, there exists a natural number M (e) (depending only one ) such that

Is.—s.| <e forall m>n=M(e)
|$.(¥)—s,(X)|<e forall m>n>M(e) and xeD

ie., > f(x)-> f(x)|<e forall m>n>=M(e) and xeD
i=1 i=1
ie., Z f,(X)|<e forall m>n>M(e) and xeD
i=n+1
ie., [ £, 00+ f 00+ + f ()| <e

forall m>n>M(e) and xeD.

Weierstrass M-test: Let (M) be a sequence of positive real numbers such that
|fn(X)|£ M, forxeD,neN.

If the series Z M, is convergent, then Z f, is uniformly convergent on D.

Proof. If m>n, we have the relation

[f 0+ + f (0| <M ++ M for xeD. ...(1)

n+1
Now by Cauchy Criterion for Series of Real Numbers (Theorem A), the series » M, is
convergent implies for every e >0 there exists M (e) e N such thatif m>n>M(e), then

LY
Hence from (1), for m>n> M (e)

n+l

++ M |<e.

|fn+l(x)+“‘+ fm(x)|<e for xeD.
Hence by Cauchy Criterion for series of Functions (Theorem 3), the series Z f, is uniformly

convergent on D.

Example Test for uniform convergence the series
2 3 Xn
I+ X+ —+—+-+—+--
21 3 n!
To discuss the uniform convergence of the given series of functions, we consider the series
2 X3 Xn
X+-—+—+---+—+--- neglecting 1. Then
2 3 n!

the nth term of the remaining series is

fx)=2.
n!
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Si for -1<x<1

Then |fn(x)|: o

Xn
n!

. 1 1 . 1. . . .
Noting that - < o and the series ZE is convergent, we have, with the aid of comparison
n!

. . 1.
test of series of real numbers, the series Z—I is also convergent.
n!

Thus by Weierstrass’s M-test, it follows that the given series is uniformly convergent for all
values of xe[-1, 1].

Example We now show that
< 1
21: n® +nx?
is uniformly convergent for all values of X if p>1.
Here we have
1

— < for all values of x.
nP + nix?

[f.(9] =

np

. . 1. .
It is known that the p-series ) — is convergent if p>1.
n

Now take M, = ip Then by the discussion above, » M, is convergent if p>1. We conclude
n

from Weierstrass’s M- test that the given series is uniformly convergent for all values of x, if
p>1.

Example We now show that the series

o (2n+1)! 3 5

is uniformly convergent in every interval in [a, b] .

Let M be any positive number greater than each of |a| and |b| so that for every xe[a, b], we
have

|(_1)nX2n+1 y M 2
| @2n+D! |~ @n+D!

Now consider the series

3 5
M+M—+M—+--- v ()
3! 5!
Since
2 3
e =1+ M+ —+—+--,
2! 3!
and
2 3
e‘M =1-M +M__M_+...,
21 3
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we have
M —M 3 5

g MM .o
2 3 sl

The identity (2) shows that the series (1) is convergent, whatever the positive constant
M may be. Hence by Weierstrass’s M-test, the given series

0 (_l)nX2n+1
nZ::O (2n+1)!
is uniformly convergent in [a, b].
Remark. The series of functions given above is the important sine series. In the previous

example we have verified the uniform convergence of the sine series

in [a, b].

Example We now show that the series
COS2X = COS3X & COS4X
=t 7 et
converges uniformly, and also, give the interval of uniform convergence.
cosznx < iz
n n

COSX

Here |u, (x)| = for all finite values of x.

1 1
So taking M, =—; and noting that » M =) — is convergent, with the aid of Weierstrass’s
n n

cosnx
n2

uniform convergence is a< Xx<b where a and b are any finite unequal quantities.
Exercises

M-test, we have the uniform convergence of Z in any finite interval. The interval of

1. Discuss the convergence and the uniform convergence of the series Z f,, where f (X) is
given by
a) (¢ +n?)
b) (nX)? (x=0)
c) sin(x/n?)
d) (xX"+1 " (x=0)
e) X"/(X"+1) (x=0)
f) D"(n+x" (x=0)

Answers/Hints for selected Exercises
1. (a) Take M, =1/n” in the Weierstrass M-test.

(c) Since [siny|<|y|, the series converges for all x. But it is not uniformly convergent onRR . If

a> 0, the series is uniformly convergent for |X| <a.

(d) If 0<x<1, the series is divergent. If 1< X<, the series is convergent. It is uniformly
convergent on [a,) for a>1. However, it is not uniformly convergent on (1,»).
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10
IMPROPER INTEGRALS OF FIRST KIND - PART I

Evaluation of the definite integrals of the type J: f(X)dx is required in many problems. So far

you may have been seen those definite integrals that have the following two properties:
1. The domain of integration, from a to b, is finite.
2. The range of the integrand is finite (in other words, the integrand is defined at
every point in the domain).

0 1
Now consider the definite integrals Im—zxdx and I%dx Property 1 is violated in the first
1 X o VX

definite integral while Property 2 is not satisfied at x=0 by the second integral. In this chapter
we consider the methods for the evaluation of such definite integrals.

An improper integral is a definite integral which does not satisty Property 1 or 2 given above.
i.e., integrals with infinite limits of integration and integrals of functions that become infinite at
a point within the interval of integration are improper integrals. When the limits involved exist,
we can evaluate such integrals. We discuss this in this chapter in detail.

Improper Integral of First Kind

The definition or evaluation of the integral

J': f (x)dx

does not follow from the discussion on Riemann integration since the interval [a, ©) is not

bounded. Such an integral is called an improper integral of first kind. The theory of this type
of integral resembles to a great extent the theory of infinite series.

We define
J' " f (x)dx
as follows: )
If f eR [a,s] forevery s> a, then
J' " f (x)dx

is defined to be the ordered pair < f,F) where
F(s):J. Fdx  (ass<oo).

Integrals of the type discussed in this section are sometimes called improper integrals of the
first kind.
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Convergence of Improper Integral

We say that J- f is convergent to A if limF(s) =A In this case we write J- f=A If J. f

a

does not converge, we say that J. f is divergent.
a
. 21 .
Example We now show that the integral .[ — dXis convergent.
1 X
. . s1
With the usual notation, we have F(S) =I — dx,
1 X

and then F(s) =1—1 and hence limF(s) =1.Thus
S S

1
— dx=1
L X
Example We now show that the integral J. % dx diverges.
1 4/X
The integral
> 1
— dx
I
diverges since
°1
F(s =J. —dx=2(/s-1
=] x (Vs-1)

and lim F(s) does not exist.

S—0

tnx ... .
Example We now valuate I—de if it exists.
X
1

sIn

Here F(s) =L X dx

XZ
Recall the integration by parts formula,

I: w = [uv]z - j:u'v

ie., [Tuav(x) =[uvEIL; - [ du(vy .

Taking u(x) =Inx, dv(x) = %dx , we obtain
X

ol 2] (132

__'n_S_HS
S X1
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=——=_241
s s
Hence
lim F(s)=|im{—m_5_1+1}:{|im'”_s}_o+1
S—o0 S—o S S S §
Ll imls . ’ .
=— IImT +1, applying L’hospital rule.
=0+1=1
Hence [ g = lim F(s) = L.
1 x S—®
E : dx " dx
xample We now Investigate the convergence of g and o2
1 1

Jmﬁzlim %zlim(lns—lnl)zoo.
1 X

S0 J1 X S—00
. “dx . .
Hence the integral | = is divergent.
1 X

Now, | 9X_jim %:lim(—lﬂjzl.

1 X2 S—® Jq X2 S—o S

Hence the integral .[ d—)z( is convergent and its value is 1.
1 X

RESULT: If

I f and I g
both converge and ce R, then

(1) Jm(f +Q), converges and

fa-ef

Tests for Convergence and Divergence

In practice, most of the improper integral cannot be evaluated directly. So we turn to the two-
step procedure of first establishing the fact of convergence and then approximating the integral
numerically. The principal tests for convergence are the direct comparison and limit
comparison tests.

(2) J- cf converges and

Direct Comparison Test
Let f and g be continuous on [a,0) and suppose that 0< f(x) < g(x) for all Xx>a. Then
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1. j: f (x)dx converges if '[:g(x)dx converges
2. '[:g(x)dx diverges if I: f (X)dx diverges.

Example We now nvestigate the convergence of J‘lw e ¥ dx
By definition,
o . b
j e‘xzdx=llmj e dx
1 b—owJ1
We cannot evaluate the latter integral directly because it is non-elementary. But we can show
b 2
that its limit as b — oo is finite. We know that L e dx is an increasing function of b . Therefore

either it becomes infinite as b— o or it has a finite limit as b — «. It does not become infinite:

2
For every value of x>1 we have € <e™*, Also,

w . ¢b _ b .
j e *dx= Ilm.[ edx=lim[-e*| =lim/-e®+e*|<e*~0.36788.
1 b J1 b—w 1 bow

Hence by Direct comparison Test,

o 2 . b 2

J' e “dx=lim| e dx

1 b0 d1
converges to some definite finite value. We do not know exactly what the value is except that it
is something less than 0.37.

© QN2
Example We no investigate the convergence of L %dx .

We know that O<S|n X< 1
NG

— on [1, ) and J.lmizdx converges. Hence by Direct comparison test,
X

o0 i 2
I SN Xy converges.

1 X2

. © 1
Example We now Investigate the convergence of | ————dx
p g g ===

J‘lw;dx diverges because —— Lon [L) and J. Lox diverges.
X

x*-0.1 Ny G 1

RESULT: The improper integral

J.m1 dx

1 X

diverges.

Proof. For any integer N we have

N1 n+1q n+1 _N*1 1 N1
J.l ;dX—ZJ. =dx> =—J. dx —ém—g;‘i (4)

Again, since as N — o the right side of (4) diverges to infinity, we see that
lim| < ax
s—»odl X

does not exist. This proves the theorem.
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RESULT: j —dx, where p is a constant and a>0, converges if p>1 and diverges if p<1.

Proof.
© 1 x Pt
—dx=Ilim —dX—IIm , provided p=1
a xP s»oda yP e p+1 .
:LLTﬁ[slp_alp], provided p=1
:ﬁ[lsl_)rg Sl’p—al’pJ provided p=1
0 if
But lim sl-p:{ T p>L
s> o if p<l

Hence jwip dx is convergent when p>1 and divergent when p<1.
a x

Also, when p=1,

w—dx_ lim[*= dx_ lim[Ins—Ina]=c

a X s—»woda ¥ S0

Therefore, Iw—p dx converges if p>1 and diverges if p<1.
a X

Example Show that jwe"x dx where t is a constant, converges if t > 0and diverges if t<0.
a

g™ S
je’txdx_llm e dx = lim
n

S—® S—w _t
=lim }[e""‘ —e’S‘]zg[e"‘1t —Iime’ﬂ
S t t S0
s 0if t>0,
But lime
S0 o if t<O.

Hence re‘“‘ converges if t >0 and diverges if t <0.
Whent=0, [“e® dx=|" dx=lim j:dx: lim(s—a) =

Therefore, J.a e converges if t >0 and diverges if t <0.

Limit Comparison Test/Quotient Test:
If the positive functions f and g are continuous on [a,«) and if
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limt ) _ (0< L <o0)
x> g(X)

then J:O f(x)dx and _f: g(x)dx both converge or both diverge.

Example Using Lwd—)z( and the Limit comparison Test, we now discuss the convergence of
X

= dx
11+ %
With f(x)=1/x2 and g(X) =1/(L+ x?), we have
2
lim ) _ i1/
oo g(x)  x=1/(1+ X7)

. Also compare the values of each integral.

2
=|imitX =|im(i2+1)=0+1=1,

X—>0 X X—>00 X

0

o0
dx
> converges because I —, converges.
1 X

a positive finite limit. Therefore, I
1 1+ X

However, the integrals converge to different values. By an earlier Example, L@d_); =1.Also,
X

* . s . 4 s
I %:Ilm %:Ilm[tan 1x]
1 1+ X5 sonJi 1+ X5 s 1

=lim[tan*b-tan*1]=2 BB
b 2 4 4
Example We now show that J‘widx converges.
1 e +5

We know that J.lwixdx converges. Now we use Limit Comparison Test with f(Xx) =ix and
€ €

3
X) = .
909 e +5

imt X _jim_ Y€ i€ +5
= g(x) ==3/(e°+5) x>= 3

=Iim(l+ > )=1+0=1,
x-=\3 3e°) 3 3

a positive finite limit. As

0<—3 <
e +5

<1,
e

by Limit Comparison Test, we conclude that Lw %de converges.
e +

= OX
Example We now test for convergence the integral | ———
'[ toxdx+1
Let f(X)—; and g(x)—i
xVx®+1 x*

Then
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2
f(x): X = ! —1#0,as X—>o.
9(¥)  xJ/x°+1 \/1 1
t2
X
Since Iim% =1, a finite non zero number, by Quotient Test, Lw f(x)dx and J.lw g(x) dx
X—0 g X
converge or diverge together. But Lw g(x) dx= L“’iz dx converges. Hence
X
Jm f(x)dx= Iwi converges.
! b oxdx®+1

X2

Example We now test for convergence the integral Iw dx.
P+l
X 1
Let f(X)=—— and g(X)=—&%.
Then
5/2
g __x = 1 —las x> o.
g x+1 V141
Since Iim% =1, a finite non zero number, by Quotient Test J.lm f(x) dx and J.lw g(x) dx
X—0 g X
. " o 1 o 1 1
converges or diverge together. But L g(x)dx = L de= L de is divergent as 5< 1. Hence
X

J, fooax=" JXX;—H

Example We now test for convergence the integral I: e dx

is divergent.

Since 0 is not a point of infinite discontinuity, we have to examine the convergence at « only.
© 2 _ 1 2 © 2
[ e dx=] e dx+ | e*dx. ..(1)
Since first integral on the right is a proper integral we need only test the convergence of

0 2
j e dx.
1

Now , e >x?, for all real x
Hence e¥ < iz forall x>1.
X

. =1 . ® .
Since L — dx converges, by Comparison Test, we have L e* dx converges. Hence using (1),
X

being the sum of two convergent integrals, j: e dx converges.

log x
X+2

Example We now test for convergence the integral J.loo dx.
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Let F0=19% Jnd g =1
X+2 X

f(x) xlogx logx

Then =
g(x) x+2 1+2/x

—>00 aS X—> 0.

Here J.:O g(x) dx= jlm%dx diverges. Hence by Quotient test, Lw f(x) dx= J.:OI):)% dxdiverges.

Definition If f eR[a,s] for every s>a and if J‘ [f(x)|dx converges, we say that j f (x) dx

converges absolutely.

RESULT: If
F(s):J' | f(x)|dx

and if F is bounded (above) on [a, ©), then LLrEF(S) exists and hence J- . f (x) dxconverges
absolutely. a
RESULT: If ‘[ . f (X) dxconverges absolutely, if g € R[a,s] for every s> a,and if

[ < [f(X)] (a<x<o),

then Jm g(x) dx converges absolutely.

Proof.

G(s)=LS| g(x)|dx££|f(x)| dst:| £(x)[dx.

Hence G is bounded above on[a, «) and the absolute convergence of I g(x) dx follows from the

preceding theorem.

RESULT: If .[ m| f (x)|dxconverges absolutely, then r f(x)dx converges

Proof.
|f(x)| is either f(x) or —f(x). In either case f(X)+|f(X)|=0 and 2|f(x)p f(x)+]|f(X)].
Hence

0< F(X)+]F() 2] f(X)]| (a<x<oo), .. (1)

and since (by assumption) I 2| f (X) |dxconverges.
I:| f (X)|dX converges implies limF(s) exists where F(s)= _[:| f (X)|dX. Being a

‘convergent partial integral” F is a bounded (function). Hence from inequalities in (1),

j:| F(X) +| f (]| cx = j( £(x)+|f (x)])dx is bounded.
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Hence by the theorem above, lim [*|f(x) +|f (x)| dxexists and hence ["f (x)+|f (x)] dx

converges absolutely.
It follows that

.[:(f(x)+| F(%) ) dx

converges absolutely. Since f(x)+| f(x)[|>0 this means simply that
J' (£ -+ () ])dx
converges. But, since I | f (X)|dx converges, it follows (by subtraction) that

f( £+ F (%) |)dx—J':| f (x)|dx=j: F(x) dx

itself converges. This completes the proof.

© COSX
Example Prove that j >— OX converges.
1 x°+1
cosx| |[cosxl 1 )
We have | —— =|2—| <— forall x>1. since |COSX|S1
X+l x*+1 X

COSX
X2 +1

. = dX . . e
Then, since L — converges, by comparison test, it follows that L

2 dx converges, i.e.,

L a1 dxconverges absolutely. Since, every absolutely convergent integral converges,
J‘w COSX

1 x%+1

J‘w COSX

dx converges.

If J- f(x) dx converges but does not converge absolutely, we say that J- f(X) dx converges
conditionally.

Example Show that I INX 4 is a conditionally convergent improper integral. Also find the
X
value of J- SNX .
= X

“sinx o :
To show that j ——dxconverges, we have for any s>r (using integration by parts)
X

[ e L e
X T s Jx X
|cosx| 1
Now v S? (T <X <o).
. ”1 . °CoSX
Since J- — dx converges (absolutely) it follows that I >—0x converges absolutely and hence
x X r X

converges. Thus as s— o all terms on the right of (2) approach limits. Thus
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Ssmx
S~>oo

exists, which proves that j —_— dX converges.
r X

Letting s — «, (2) gives
J‘ smxd _ [ cosx,

Note that the second integral is absolutely convergent while the first integral (as we shall now
show) is not.

Now we show that J- —dX does not converge absolutely. For any N eZ", we have

Nr (n+)=w (n+h)n
'S'”X|d 'S‘”X|d sinx|dx
( 1)
n+1)m

AN 1 g
_nzn+ljo|sn(u+nn)|du.

n=1
Now
sin(u + Nxt) = SinuCoSN+ COSUSIN N = SiNUCOSNT.

Since cosnm=+1 this shows that |sin(u+nn)|=|sinu|.Hence if O<u<m, then

|sin(u+ nn) |=sinu. Thus

ansnxl 1N1 2N1 1 2N 1
— > = —_— == =
L < dx_nnZ;‘ 1J. sinudu = nnzi‘n+1 nék' ... (3)
Since the series Zlis divergent, the right side of (3) can be made as large as we please by
k=2
taking N sulfficiently large. This and (3) show that

. sinx
Ilmj'sudx
X

S—>wdT

: »SINX
cannot exist. Hence I de does not converge absolutely.

Exercises
In Exercises 1-, discuss the convergence of the following improper integral of the first kind.
xadx » 1
1. j 2|, gdx
= X2 +1 © 1
3. [ S—dx 4. [ dx
o x"+1 L3
X
= sin® x X
5. | X 6. [, -7
= logx = 43%
7. dx 8. | —————=
L X+€e™ L 1+2x* +12x*
=  XdX X
9| —4—5— 10. dx.
Il 3x* +5x° +1 L 1+ X2
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2
11. j Xcosxdx. 12. j _ 43
1 11+ 2x% +12x*
13, [ X 14—
2 (logx) ! 1+ x%)?
n-1
15. "X 16. [tk
1+x (1+x%)3
17. | ~ 100X g 18, [0 g
1 x+a o X
o X% +1
19. 20. dx
'[ Vx® +16 ‘[0 X' +1
= dX =  oX
21. 22, | ———
Lﬂ X +4 '[1 X/3X+ 2
2 .
3 [ X 24. | 2’LZ—S'”lex
= X+

(2 5/2
(x +x+1)

25. Show that j: X )3 dx= % [ (1+1X)2 dx

26. Show that

X

1

®© 2
27. Show that [/ a X 57 242
+

28. Show that the integral J.:ﬂpxdx where p>1 is absolutely convergent.
X

29. True or false? If fis continuous on[1,©) and if LOC f(x)dx converges, then lim f (x)=0.

30. Show that I: ){Sln;( dx is convergent.
+

31. If J‘:O f (x)dx converges and if lim f (x) = L, prove that L=0.

32. Give an example of a continuous function f such that
f(x)>0 (1< x< ),

and such that Z f(n) converges
=1
but J.lw f (X)dx diverges.

33. Give an example of a continuous function f such that
f(X)>0 (1< x<o)

and such that J.lw f (X)dx converges
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but z f(n) diverges.

n=1

0 n
34. Show that IO S—pxdx, 0< p<1is convergent but not absolutely convergent.
X
sinbx
X2

dx.

35. Discuss absolute convergence of J:O
36.If f(x)>0(1<x<w), if f is nonincreasing on[1,«),and if

L f (x)dx converges,

then show that limxf(x)=0.

37. Show that I: COSX2

V14X

38. Let fbe a continuous function on [a,®), such that, if

dx is conditionally convergent.

F(x):LXf(t)dt (a< x<w),

then fis bounded on (a,x).Let g be a function on [a,) such that g'is continuous on [a,x),
g'(t) <0for a<t<wo, and such that !im g(t)=0. Prove that

I: f(t)g(t)dt converges.
39. Use the preceding exercise to show that
= sint

L wdt converges.

40. Show that J.lw cosu’ du is convergent.

41. Evaluate Lw %
X

3

42. Evaluate jlw%
X

o dx
43. Evaluate —
44. Evaluate j) e dx.

45. Evaluate joo ZL
=X+ X+2

46. Show that I: e *dx is convergent.

11
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IMPROPER INTEGRALS OF FIRST KIND - PART II

Integral Test for Series
We have just used the divergence of an infinite series to establish the divergence of an improper
integral. It is more usual to use an integral in the investigation of a series. This is known as the
Integral Test for Series.

RESULT Let f be a nonincreasing function on [1, ) such that f(X)>0 (1<X<ow).Then
Z:Zlf(n) will converge if J?f(x) dx converges, and Z:Zlf(n) will diverge if J?f(x) dx
diverges.

Proof. For anyneZ" we have
f(n)>f(x)>f(n+1) (n<x<n+1)

since fis nonincreasing. Integrating from n ton+1we then have

n+l n+l n+l
jn f(n)olxzjn f(x)olxzjn f(n+1)dx
n+l n+l n+l
or f(n)jn dxzjn f(x)olxzf(n+1)jn dx
or f(n) zjn"”f(x)dxz f(n+1).
Thus, for N e Z* we have
N-1 N N-1 N
A2 [ fdx=Y fn+)=3f(k) ..()
n=1 n=1 k=2

If J:O f (x)dx converges to A, then, by (5),

ZN:f(k)sle f(X)dx< A

The partial sums of Z:zz f (k) are thus bounded above. i.e., the sequence of Nth partial
sums of the series is bounded and hence the sequence of the Nth partial sum is convergent, and

hence the series Z:zz f (k) converges and hence Z:zl f (k) converges.

If J:O f (x)dx diverges, the divergence ofzzllf(n) may be established in similar fashion,

using the left-hand inequality in (5). This completes the proof.
1

Example Using integral test for series establish the convergence of 2:71—2 .
“n

If f(x)=1/%? (1< x< ), then

Since [ fdx=[ 5 dx
X

is convergent, it follows that Z; f(n) converges.
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Example Show that Z::l[ll(n logn)] diverges.
If g(x) =1/(xlogx), then g is nonnegative and non-decreasing on [3,«) . Since G'(X) = g(X) where
G(x) =loglog x, then

j:g(x) dx=1loglogs—loglog 3,

and hence j:g(x) diverges. It follows from Integral Test for Series that Z:zl[ll(nlogn)]

diverges.

Example Using the Integral Test, show that the p-series
i:i+i+ip+...+i+... (1)
~n° p 2 3 nP

(p areal constant) converges if p>1 and divergesif p<I1.

Casellf p>1 then f(X)= ip is a positive decreasing function of x for x>1. Now,
X

0 ) —p+l s
idx:j x Pdx =lim| X
1 xP 1 soo| —p+1 )

—L' i_ :L _ : p-1 _
_1—pl|—>r?o(sp‘1 j 1_p(O 1 ,since s""—>w a s—w for p—1>0.

1
p-1°

Hence Iip dx converges and hence, by the Integral Test, the given series converges.
X
1

Case2lf p<1,then 1-p>0 and

Lav— 1 jim(s'" —1)=c0, as lims® =co for 1— p>0.
1 x? 1 — P s> S—®
Hence, by the Integral Test, the series diverges for p <1.
If p=1, we have the harmonic series

1+%+%+...+%+...,

which is known to be divergent,
Hence we conclude that the series converges for p >1but diverges for p<1.

Integrals of the form f f (x)dx
An integral of the form f f (x)dx may be treated by the same methods as those used on

integrals of the form J.: f (x) dx. Thus, we say that f f (x)dx converges to A if

lim asf(x)dx:A.

S —
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The change of variable X=-u will change a f‘ problem into a '[: problem.

-2
Example Examine the convergence or divergence of Jl %dx.

For any s> 2 we have

2 1 _ 1 s 1
—sl—xdx_-[s 1+u( 1)du_-[21+udu
Slnceli 2% % for 2<u<oo, it follows, from the fact Lwé dx is divergent, that
X
LEE 21+ du
does not exist. Hence lim| 1_ ——dxdoes not exist, which proves that I —dx does not

converge. (In this problem the divergence of
2 1
w]l—X T—x &

was deduced from the divergence of J‘:ﬁdu.)

Example Test for convergence I » X+ x dx
g & = x°+1
We write
OOX3'|‘X2 OX3+X2 OO)(3_’_)(2
dx = dx + dx .. (1
I—oo X6+1 J‘—oo X6+1 _[0 X6+1 ( )
Now
0 X3+X 3+ ‘
J.*“’ x®+1 _J. C y) ( y) (=dy) [Putting X=-Y]
__ —y2
L’ y® +1 dy

13 2 B 2
Yy [V Yy,

y +1 Ly’ +1
Taking f(y)= yy y and g(y)= y3,we have

3 2
im0 _jim YO =Y) i 1YY
X— g(y) X y +1 x->0]+1/ y

3 2
.. . oy — w1
a non zero finite number. Hence, by Quotient Test, L y 5 );_ dy and L — dy converge or
y + y

3 \2
diverge together. Since L i3dy converges, .[1 Y s Y dy converges.
Yy +1

2

3
Since J.: Y-y dy is a proper integral, it follows that I dx converges.
y +1

= X +1
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o X3+ X
— x® 41

Similarly, we can show that dx converges.

3 2

o X+ X
Hencej 3
= X +1

, (being a sum of two convergent improper integrals) is convergent.

Example Test the convergence of J %
o N

0 dx . 0 1
————=1im dx
J:w (1-3x%)? aﬁ—wj.a (1-3x)?

= lim =lim|=-
a>=| 3(1-3x) |, a3 3(1-3a)

R 111 1

im—— .
3 3a>=1-3a 3 3 3

1
Hence, the given integral is convergent and has value 3
Example Test the convergence of IO cosh x dx.

® coshx dx=lim [ coshx dx= lim [smhx]

—0 a——ooda a—>—owo

= lim [sinh0-sinha] = Ilm{O— _ze_ }:oo

a—>—w a—>—w

Hence, the given integral is divergent.

Example Evaluate I
<=1+ X

o dX 0 1 © 1
= dx+ dx
J.-°°1+ X2 del4 x2 -[0 1+ X2
= lim dx+I|m 5 dx
a——© 1+ X b—wd0 1+ X
=JLrEO[tan’ x]a+LLr2[tan’ x]o
= lim (tan’lo—tan’la)+Iim(tan’lb—tan’lo)
a—>—x b—oo
= tan'lo—(—gj LR tan'0, since
2 2
lim tan™ a_—B and I|mtan b= _P
a—>—mw 2 2
p.p_
2 2 =P

Hence, the given integral is convergent and has value p .
Example The cross sections of the solid horn in Fig.1 perpendicular to the x-axis are circular

disks with diameters reaching from the x-axis to the curve y=¢€", —o<x<In2. Find the

volume of the horn.
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Solution

1
For a typical cross section, radius is =y and area is

2

2
A(X) =p (radiUS)z =p (% yj :%eZX.

Fig.1 N2 7y

Now the volume of the horn in the Fig.1 is fnz A(x)dx . i.e., the volume of the horn is the limit

as a— —oo of the volume V, of the portion from a to In 2. By the method of slicing, the volume

V, of this portion is

In2

V, = j:z A(X)dx :I;nz%ezxdx {%ezx}

b

:R eIn4_62a :E 4_e2a ]
8( ) 8( )
As a—-w, €* >0 and V, > (p/8)(4-0)=p/2. Hence

In2 . T
jﬁ A(x)dx=lim V, = .

a—>—0

i.e., the volume of the given hornisp /2.

1"
Example Test for convergence | —dx.
- x

Let x=-y. Then,
1g 1e”’ wg¥
—dx=| —(-dy)=—| —dy.
j—w X J.oo _y( y) Il y y

Ly .
Now, eTSe'yfor all y>1 and, by Example above with a=1 and t=1, we have L e’dy is

: =g’
convergent. Hence by comparison test, .[1 — dy converges. Therefore
y

also converges.
Exercises
In Exercises 1-, discuss the convergence of the following improper integral of the first kind.
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o Xdx

1. | ——
2 -1

= x2+1
3.

-[0 x'+1

»sin?x
5. | v

= logx
7. L e dx

dx

dx

Iw xdx
1 3x* +5x° +1

11. wacosxdx.

13. [ xdx .

2 (logx)®

n-1

15. j”x dx
01+ X

17. Lwl):)% X
J.wx—_ldx
RGN

©  dX
Ieva

19

21.
2

. ,[, X° dx

25. Show that j:

26. Show that J:O

27. Show that

(x2 + x+1)5/2

(1+x)®

sinXx
X

(1+ x)?

1
2. L =5
X3
© 1
4 L —Adx
X3
I X > ax
11+X
E 43%°
8| ————
L 1+ 2x% +12x*
X
10. |, i
©  43x°dx
12| ———
Jl 1+ 2x? +12x*
1. [t
1+ x%)?

1

(1+x%)3

le— COSX
0 X2

6. [ I o

18. dx

20. dx

J‘w X2 +1
o x*+1

22

1¢> 1
=Z| ——=dx
2-[0 1+ x)?

dx is convergent and deduce that J.:O

1
X2 1 =
dx_2+4.

COsX .
——adx is convergent
X

28. Show that the integral J.:ﬂpxdx where p>1 is absolutely convergent.
X

29. True or false? If fis continuous on[1,©) and if J.lw f(X)dx converges, then lim f (x)=0.

30. Show that IO

© XSIN X
1+x

dx is convergent.

31. If Lw f (x)dx converges and if lim f (x) = L, prove that L=0.

32. Give an example of a continuous function f such that
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f(x)>0 (1< x< ),

and such that Z f(n) converges
=1
but J.lw f (X)dx diverges.

33. Give an example of a continuous function f such that
f(X)>0 (1< x<o)

and such that J.lw f (X)dx converges
but > f(n) diverges.
n=1

34. Show that jwﬂdx, 0< p<1is convergent but not absolutely convergent.
0o xP
sinbx
X2
36.1f f(x)>0(1<x<wm), if f is nonincreasing on[1,),and if

dx.

35. Discuss absolute convergence of J‘:)

J‘:O f(X)dx converges,

then show that limxf(x)=0.

X—00

37. Show that I: dx is conditionally convergent.

COSX
J1+ X
38. Let f be a continuous function on [a,®), such that, if

F(x):LXf(t)dt (a< x<w),
then fis bounded on (a,x).Let g be a function on [a,) such that g'is continuous on [a,x),
g'(t) <Ofor a<t <o, and such that !im g(t)=0. Prove that

I: f(t)g(t)dt converges.

39. Use the preceding exercise to show that

= sint
j —dt converges.
3 logt

40. Show that Lw cosu? du is convergent.

41. Evaluate Jm d—)s( 45. Evaluate Jw ZL
1oX X"+ X+2
dx

il 46. Show that re’x dx is convergent.
X3/2 0

42. Evaluate Lw
o dx
43. Evaluate .[ —
1 Jx

44. Evaluate j) e dx.

12
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IMPROPER INTEGRALS OF
SECOND AND THIRD KINDS - PART 1

Improper Integrals of Second Kind

The definition of
j —dx

does not follow from the dlscussion on Riemann integration because the function f defined by

f(x):%

is not bounded. Note, however, that f is bounded (and continuous) on[e,1] for every &> 0.This

(0<x<]

suggests treating
——=dx as the lim

I 0 Jx o Js%dx

1
which equals to lim { X :l =2.

e—0"| 1
2 e

Definition If f e R [a+¢,b] for all €such that O<e<b—a,but f ¢ R[a,b], we define I: f (x) dx
as the ordered pair ( f,F)where

F(g)=j:ﬂ f(x)dx (0O<e<b-a).
We say that Lb f converges to A if eILrgl F(e)= A.We say that I: f diverges if Lb f does not
converge. The integral Lb f is called an improper integral of the second kind.

By the discussion just above the Definition,

_[—dx

converges.

. 0 )¢
Example Examine the convergence of I —
0 X

The integrand iz is unbounded at x=0. Hence the given is an improper integral of second
X

kind.

1
Hence jl—dx_nm —2dx=Iim[—1} =|im(5—1)=oo

ox e—>0+Je X e—0+ X e e->0\ @
dx |, ..

Hence _[ — is divergent.
0 X

Todx
Example Find the value of I ——— , if it converges.
P -1 X+1 8
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The integrand is unbounded at x=-1. Hence

7 7 21377
j 1 dx= lim (x+1)1’3dx=lim{(x+1)}
1
1+e

3\/ X+1 e-0+J _14e e—0+ 2/3
= lim [382“ —§~e2’3} = lim [6_§e2’3} =6.
e—0+| 2 2 e—0+ 2
Hence Jﬂi converges and has value 6.
a3x+1

dx
(x-a)°

The given integral is a proper integral if p<0 and hence converges. So let p>0. Then the

b
Example Show that j converges if p<1 and divergesif p>1.

integrand ——— is unbounded at x=a.
(x-2a)°
b b
Hence, J. — _dx= Iimj dx
a (X—a)p €0+ Jare (X—a)p

_ -p+1 b
= Iim[%} ,if p=1
_p+ a+e

= lim i[(b—a)*’*l—e*p*l],if p=l

e—>0+1— p
1 poayriot jimeres

1- p 1- p e—0+

But Iirpe”’*lzo, if p<1
=oo,if p>1.
Hence, jb( 1 X dx is convergentif p<1 and divergentif p>1.
a(x—a

When p=1,

b 1 b 1
dx=| ——dx, improper integral of second kind
L‘(x—a)" ax-a Prop 8

. b 1
=lim —dx

e—0+Jate X—a

. b
_JI_)r(Q[In(X_a)]a+e
=JLr(r)1+[In(b—a)—lne]

=In(b—a)-limIne.

e—0+

b
Since the limit on the right does not exist I dxis not convergent at p=1.
a

(x-a)°
1
(b—x)°

Remark As in the above example we can show that I: dx converges if p<land

diverges if p>1.

Both improper integrals
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b dx b dx
Ia(x—a)p and Ia(b—x)p

are widely used as comparison integrals in testing convergence of improper integrals.

Convergence Tests
Direct Comparison Test: Let f and g be two positive functions, both are bounded at x=aand
such that
f(X)<g(x) for a<x<b.
Then

(i) J: f (X) dxconverges if I: 9(x) dx converges.
and (if) I: g(x) dxdiverges if I: f(x) dx diverges.
Limit Comparison Test/ Quotient Test: If f(x)>0, g(x)>0for a<x<b, f(x) and g(x)are

unbounded at Xx=aand if Iim% = A, then
X—a g X

(@) If A#0 or « i.e, if A is a non zero finite number, then the two integrals j: f (x) dxand
'[: g(x)dx converge or diverge together;

(b) If A=0 and j:g(x) dxconverges, then J: f (X) dx converges;
and
(c) If A=c0 and J:g(x) dx diverges, then j: f(x) dx diverges.

dx
xt -1

Example Test for convergence the improper integral Jf

1 1

We have —_
xt-1 ~x-1

forall x>1.

Also, converges.

ISL dx:r; dx
1

vxt -1

Example Test for convergence the improper integral Lﬁ

5
Hence by comparison test, L dx converges

log x

dx
(x-3)*

log x 1

We have > 2
x=-3)" (x-3

for all x> 3.

Also, J 1 diverges since 4>1.
3 (x-9)*
log x

(x-3)°

6
Hence, by comparison test, L dx also diverges.
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: 3 dx
Example Investigate the convergence of L 8
1 1
Let f (X) = W and g(X) = m
Then,
f(x) (x-2*° 1

= = ,since XX —22=(x—=2)(X* +2x+4
g(x) xX2(C-2°"2 XP(X*+2x+4)¥® (x=2)( )

Hence
lim % _jim 1 _ 1t
w2 g(x) oz X2 (X +2x+4)%° 8318’

a non zero finite number. Hence by Quotient Test Jj f(x) dx and Jjg(x) dxconverges or

diverges together. Now, since £>1, Isg(x) dx = J‘s;m dx converges. Hence,
2 2(x-2)
3 3 dx
Jo 10 =, g
also converges.
Example Investigate the convergence of Jp sin X dx
P & & 0 @
Let f(x) =20
X
Since sinx>0 in [0,p], f(X) is non negative in [O,p].
Take ag(x) = iz
X

Then

f(x)  x’sinx _sinx

gx) X X
Hence Ilim ) =lim 3nx =1, anon zero finite number. Hence by Quotient Test j; f(x) dx

x—0+ g(x) x->0+ X

and I: g(x) dx converge or diverge together. Now, J: g(x) dx = I:% dx diverges since 2>1.

pSINX .
Hence, j —— dx diverges.
0 X

Example Investigate the convergence of J~5L
PGB0 (x-D)

The given integrand is unbounded at two points x=1 and x=5.

We write
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IS dx - ! dx+J.5 ! dx
FJB-X)(x=1)  JB-x)(x-1) 3J(5—x)(x—1)

We first consider the improper integral j
L J6B- x) (x-1)

Let f()e——T  and g(x):%.
X_

VE=X)(x-1)

lim——= f(x) =lim _1
x—>1+ g(x) X—1+ [(5 X)(X 1 xa1+ /5—x 2

a finite non zero number, and hence by the Quotient Test LS f(x) dx and Lsg(x) dx converge

Then

or diverge together. Now, since 1 <1, we have Ilsg(x) dx= Is

1
———> dx converges and hence
t(x=1)

I f(x) dx I 1 dx also converges.

1 J(B=X)(x-1)

5
Now consider the improper integral j

1
B
1 1
Boawy 9 99 ey

Let f(X)=

Then

lim—= f(x) =lim 1

X5+ g(x) x—>5+ I(5 X)(X 1 x—>5+ / -1 2’

a finite no zero number. Hence L f(x) dx and L g(x) dx converge or diverge together. Since

3<1, Jjg(x) dx:fjﬁ dx converges, and hence IS converges. Combining

dx
$JGB-X)(x-1)

all the above, we have

3 1 5 1 5 dx
- 4 -
A G TR I ey i Ny e ey

Absolute and Conditional Convergence

Properties such as absolute convergence and conditional convergence for improper
integrals of the second kind are defined in the same way as for improper integrals of the first
kind, and results on these properties carry over without difficulty to improper integrals of the
second kind.

converges.

I:f(x) dx is said to be absolutely convergent if I:|f(x)| dx converges. If I:f(x) dx

converges but '[:| f (x)| dx diverges, then '[: f (x) dx is said to be conditionally convergent.
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RESULT: If I:| f (X)|dX converges i.e., if J:f(x) dx converges absolutely, then j: f(x) dx

converges.

RESULT: If I: f(X)dx is an absolutely convergent improper integral, and if

[a(X) <] f(X)|(a< x<b), then I: g(x)dx converges absolutely.

Example Show that
rEE%QQdX(p>®
X

0
converges absolutely for p>1.
sin@x)| _[sn@/x)] _

xP xP

We have — forall 0<x<land p>0.

Since I — dx converges if and only if p<1, by Comparison Test it follows that j M

1sin(1/x)

converges if p<1. Therefore IO
X

converges absolutely if p<1.

Example The improper integral J.lﬂ dx converges absolutely,

o Jx

lsnx] 1 (0O<x<l)and .[ 0 Ix converges (absolutely).

NERNF

since

Conversion of Second Kind Integral to First Kind
It is often useful to convert an improper integral of the second kind by a change of variable into
an improper integral of the first kind. This is illustrated in the next result.

RESULT The improper integral

1 dx
0 X
diverges.
Proof. ForO< e <1let
F@ﬂzrldx
If (p(u)=% (1< us= j then ¢'(u) = —i du (l< u< 1) Hence, by the Substitution Theorem which

provides justification for the Change of variable method, we have
F(e)= j ( jdu j =du.

1
As the first kind improper integral j 1 dx diverges, we have Iirp f%du

does not exist. Hence lim F (&) does not exist, and the theorem follows.

>0+
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Integrand Unbounded at Right End Point

b
So far in this chapter we have treated only integralsj f where f is “bad” near a.
a

Corresponding theory holds in the case where f is “bad” near b. Thus, if
f eR [a,b-¢]
for all ¢ such that O<e< b— a, and if

I|m f(x)dx

e—>0+

exists, we again say that L f (X)dx is a convergent improper integral.

1

Example Investigate the convergence of %dx.
0l—X

The integrand f (x) =1/(1-x) is continuous on [0,1) but becomes infinite as x —>1".
l-e e
J- idx:[—ln|1— x|:|1
o 1-x 0

=-In[1-(1-e)]+0
=-Ine.

Hence lim —dx— lim[-In(e) + 0]

e—->0+ Jo e—0+
= 00,
The above limit is infinite, so the integral
1 1 l-e 1
[ Eoox=lim[ Lo
0l-x e>0rJo 1-X
diverges.

1odx
Example Examine the convergence of I .
0y1-X

1
The integrand ——— is unbounded at x=1. Hence
& V1

I\/_ HOJHJ— ax= lim[ 21"

= I|m[2—2\/5]=

e—0+

1odx
Hence
-[ 0y1-x
: 2 dx
Example Examine the convergence of J‘ 5
0 2X—X

is convergent and has value 2.

The integrand

PV is unbounded at both the end points x=0. and x=2. Hence
X—X

2 dx 11 2 1]
v[o 2% — X2 _J.o 2% — X2 dx+L 2% — X2 o
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. 2-e, 1
dx+ lim
e,—0+J1 2X — X

= lim dx

e—~>0+Je, 2X — X

2 2

1 2-e,
= lim {llni} + lim {Elni} , where Inis the natural logarithm

a0t 2 2-X], %[ 2 2-X]
function
N e . 1), 2-e
= lim =|In1-In—— |+ lim =| In—=2-In1
€0+ 2 2— e e, -0+ 2 e,
1. e 1. 2—-e
=—=limIn +=limIn——-.
2 e—0+ 2— e 2 e—0+ e,
. - . .2 dxo .
Since the limits on the right do not ex1stj o S not convergent.
0 2X—X

RESULT: The improper integral
Il 1 ox
0

V1= X2

is convergent.

Proof. The integral is improper since is not bounded on[0,1] . We first show that the

1-x°
improper integral

J.:\/ll—ix dx

is convergent (and hence absolutely convergent, since v1-x>0).If 0<e<1, we have

1-¢ 1
dx=2-2e
IO V1-x

) 1-¢
and so lim 1
£—0+4J0 1_ X

dx=2

1
V1-X%
But, for 0<x<1,

1 1 1 1

i Iix ix ix

Hence j: dx converges absolutely.

11
Hence dx is absolutely convergent, and hence the improper integral
J. 0 [1_ X2
_[l 1 ox
0 Il_ XZ
is convergent.
Exercises
Discuss the convergence of the following improper integrals of the second kind
pSiNX 11
1, v dx 2. jo—gdx.

X3
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p/2 ax 11
. J.O W,n> 4. J.O—%dx.
X
1 X" 1 dx
5. dx 6. | ————.
J°1—X IO (Xx+D)V1- %2
e — s [ XL
(16— x*)3
N
(x-a)®
SNX gy 12, j”og(l/ 9 .
0 XE 0 &
1 5
0 t 3 X
13. [ oot 14. |, o dx

15. Evaluate J‘:%

X2

1 dx
16. Evaluate IO \/ﬁ
17. Prove that if s<1 then
(b _ a)l—s
1-s
Prove that if s>1then the integral diverges.

I:(x— a) *dx=

/2 - . .
18. Show that j; logsinxdx is convergent and hence evaluate it.

19. Prove that

01+Xx
is convergent if and only if 0< s<1.

20. Show that I: lzsi nxlog(sinx)dx converges and that its value is log (Ej =log2-1.
e

21. Show that J. X dx is convergent, but I i dx is divergent.
g X
22 Let S (0<x<w).

Prove that the maximum value of F(x)is attained when X=1.

23. Prove that j; 1si n1 dx converges conditionally.
X X

18N X
24. Show that J.OT dx converges absolutely.
X
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© dx
25. Test for convergence IO W

= SNX
26. Test for convergence J.O —=aXx

Ix

27. (Objective Type Questions) Classify the following according to the type of improper
integral

= dX ©  dx
(@) jo It 52 (b) .[0 1+ tanx

100 Xdx » X dx
© L (x-3)° @ J‘*w 5x* +x* +1

13
IMPROPER INTEGRALS OF
SECOND AND THIRD KINDS - PART II

The Integrand Becomes Infinite at an Interior Point
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If f becomes infinite at an interior point d of [a, b], then

b d b
L f(x)dx:ja f(x)o|x+jd f (X)dx. ... 5)
The integral from a to b converges if the integrals from a to d andd to b both converge.

Otherwise, the integral from a to b diverges.

ax

Example Investigate the convergence of I T

The integrand f (x) =1/(x—1)*° becomes infinite at the interior point x=1 but is continuous on
[0,2) and (1, 3]. The convergence of the integral over [0, 3] depends on the integrals from 0 to 1
and 1 to 3. On [0, 1] we have
1 c
[T ax s
Joey =t g = iploo ]
=lim[3(c-1)"%-3(0-1)"*]=3.
c-1
On [1, 3] we have

3 3
dx ; J‘ dx
——=lim| ——=
J.l (X_1)2/3 ol Jg (X_1)2/3
=1im[3(3-1)"° - 3(c-1)"%] = 3%/2.
c—1
Both limits are finite, so the integral of f from 0 to 3 converges and its value is 3+ 3¥2. ie
3 dx

jo( e =3+332.
Improper Integral of Third Kind
Improper Integrals of the third kind can be expressed in terms of improper integrals of the

first and second kinds.
The integral

© 1
jo ot Ix dx
does not fall into any one of the categories we have so far described since it is an integral over
1
(x2 +/x )

convergent improper integral since we can break it up into

J _I°x2+fdx and Jz:r

dx a

(0,00) and is not bounded for x near 0. However, we shall agree to call Jm

1
0 %2 +4/x

1
————=0ax
1 x? +4/X
Now J, is a convergent integral of the second kind [since

1 <1 for 0<x<1 and since J \/7 dxis convergent] and J, is a convergent improper

X +/x " x

integral of the first kind [since

]l
< if0r1< X< oo and since I — is convergent].

x+\f X X

In general if an integral | can be broken up in this way into two or more improper integrals

J,, ..., J, of the first or second kinds, and if each J, (k=1,...,n) is convergent, we shall say that | is
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a convergent improper integral. However, if one or more of the J, is divergent, we shall say
that | is a improper integral.
Example I:izdx is a divergent improper integral since
X
11 © ]
J.O F dX and jl 7 dX
are improper integrals (of the second and first kinds, respectively) one of which is divergent.
Example

on LXZ dx
»1+ X
is a divergent improper integral since both
J-w 1+X2dx and [° 1+X2dx
01+x =1+ X
: . . : 1+x 1 =1 .
are divergent improper integrals of the second kind. (Note T 22 forl<x<.)and L —dx is
+X X
divergent.
As we have just observed, the integral
J'°° 1+ )(2 dx
»1+ X
. . s1+X
diverges since —=adx .. (1
g foi M
does not approach a limit as S— o . Similarly,
o 1+X
— dx (2
[ @

does not approach a limit as s— .
However, the sum of(1) and (2) does approach a limit as s— o . For the sum of (1) and (2) is
J‘O 1+x dX+IS 1+x dx= J‘S 1-u du+r 1+u du

-1+ X2 01+ X2 01+u? 01+u?
_of*_1
- ZI 01+u’ au,
and lim2[ —— du
s»o JO0] 4y
does exist. The sum of (1) and (2) may be also be written Js 11+X2 dx. Hence, we have shown
-s1+ X
that
s 1+ X
LLrgJ.—sl+ X2 dX
. » 1+X .
exists, even though I v dx diverges. We call
=1+ X
s 1+ X
] e
the Cauchy Principle Value of T AEX gy

14 X?
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Definition The Cauchy principal value (C.P.V.) of J‘_w f (x)dx is defined to be

lim |~ f(x)dx,

if this limits exists. We denote Cauchy Principle Value by C.P.V.
ie., CP.V [ £(x) dx=lim j f(x) dx.

Theorem If J_w f (X) dx converges to A, then

CPV. [*f(x)dx=A.
Proof.
If J._m f (X) dx converges to A, then

A=["f(x) dx:LLer_oaf(x) dx+mj;’f(x) dx ... (1)

—00

Also
tim [ £(x) dx= Lim[jlf(x) ax+[ " (%) dx} Q)

The last two limits in (2) are the same as the limits on the right in equation (1). Hence left side
of (1) and (2) are the same. i.e.,

0 . R
A= f(x dx:lle.[in(x) dx.
Hence
CPV. [ f()dx=A.
The converse is not, in general, true, because Cauchy Principal Value of J._m f (x) dx may exist

even if the integral diverges. The following is an example.

Example f x dx diverges but

0 S 2 s
CP.V. [* xdx=lim xdx:lim[% —lim0=0.

—00 S0 d— S—>0 S0

Cauchy Principal Value - Unboundedness at Interior Point
If f(x) is unbounded at an interior point X=X, of the interval a< x<b, then by definition,

b . X—€ . b
jaf(x)dx=e!LrQ+ja f(x)dx+izumwf(x) dx ... (1)
It may happen that the limits on the right of (1) do not exist when e, and e, approach zero
independently. In such case it is possible that by choosing e, =e, =e in (1), i.e., writing
b ) -e b
RIS dx:elm{jj fgdk+[. (9 dx} Q)
the limit des exist. If the limit on the right of (2) does exist, we call this limiting value the

Cauchy Principal Value of J: f (X) dx and is usually denoted by C.P.V. I: f(x) dx.
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Thus
CPV. [ 1(x) dx= |im{jx°'e f0 e[ F(0) dx}
a e—->0+(va Xo+€

Example Determine whether Is

dx
-1(x-1)°

converges (a) in the usual sense (b) in the Cauchy

Principal Value sense.
(a) By definition,

[t ax=tim [ e lim [T o
—1(X_1) €,—0+d-1 (X—l) e,—>0J1+e, (X—l)

N T N
= lim Py + lim Py
e >0+ 2()( — 1) 5 e, >0+ 2()( — 1) 1o,

Since the limits on right do not exist, the given integral doesnot converge in the usual sense.

5 dx . e 1 5 1
b) C.P.V. = lim dx + dx
(b) J.*l(x—l)s e90+{J‘1 (X_1)3 -[1+e (X_1)3 }
1 1 1 3
=limi=———t— =
o0+ |8 27 2e° 32)] 32
Hence the given integral converges in the C.P.V. sense.

Exercises
Discuss the convergence of the following improper integrals of the second kind

pSINX 1]
1. i dx 2. jo—gdx.
X3
p/2  dx 11
. J.O W,n> 4. J.O—%dx.
X
1 X" 1 dx
5. dx 6. | ———.
Iol—X L’ (X+1)~1-x*
2 x 3x?+1
7. J.O—;dx. 8. Lmdx.
(16— x*)3
9. J':l 1 Tax 10. j:ciixdx.
(x-2a)°
11. jlsingxdx_ 12, J-llog(llx) dx.
0 XE 0 \/;
1 5
0 t 3 X
13. [ oot 14. | o dx.
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15. Evaluate jl %

1y2

1odx

16. Evaluate IO T

17. Prove thatif s<1 then

(b _ a)l—s
1-s

Prove that if s>1then the integral diverges.

I:(x— a) *dx=

/2 . . .
18. Show that J.: logsinxdx is convergent and hence evaluate it.

19. Prove that

o 1+x
is convergent if and only if 0< s<1.

20. Show that I: lzsi nxlog(sinx)dx converges and that its value is log [%) =log2-1.

21. Show that j X dx is convergent, but I i dx is divergent.
log x

22 Let SNty

(0< x< ).

Prove that the maximum value of F(X)is attained when x=r.

23. Prove that J.; ESi n1 dx converges conditionally.
X X

1snx
24. Show that IoT dx converges absolutely.
X

25. Test for convergence Jm

dx
0 3[X4 + X2
26. Test for convergence j de

27. (Objective Type Questions) Classify the following according to the type of improper
integral

0 dX ®© dX
(@) Io It 52 (b) .[o 1+ tanx

100 Xdx » X2 dx
© L (x-3)° @ J‘*w 5x* + x* +1

In Exercises 1-3, which of the following integrals does the Cauchy principle value exist? Do any
of the integrals converge?

28. [ sintdt.

—00
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29. [ |sint|dt.
1

30. [ —adt
=1+t
31. Prove that I: 4dx diverges in the usual sense but converges in the Cauchy principal value
- X

sense.

32. Show that C.P.V. '[111 dx=0 and C.P.V Illﬁ dx does not exist.
ay _

33. If fis continuous on (-0, ©) and if f f (x)dx converges to A, prove that
C.P.V. j_°° f(x)dx=A.
34. If fis continuous on [0,1], prove that
1 f(X)

0 }1_ X2

is convergent. Then prove that

dx

[ ge= [2 £ sinuycu

V1-X
Is the integral on the right improper?
35. If f is well behaved on [a,b] except near the point ce(a,b), we define the Cauchy principal

b
value of L\ f as
. c—-¢ b
lim([ 1021
(a) Show that CP.V. [ Lax=0.
-1X

(b) Show that C.P.V. Ij1|_>lq dx does not exist.

14
BETA AND GAMMA FUNCTIONS

The Beta Function
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1
If m, n are positive, then the definite integral jxm’l (1— X)nf1 dx is called the Beta function, (or
0

Beta Integral) denoted by b (m, n). That is,

1

b(m, n)=fxm’1(1—x)”7ldx, for m>0,n>0. (1)
0

The beta integral is some times called Eulerian Integral of the first kind.

Convergence of Beta Function
e Form>1and nx1 the beta function b(m, n) given by (1) is a proper integral and hence

is convergent.
e If m<landn<1, then b(m, n)is an improper integral of the second kind. The convergence is

verified as follows:
We have

1
j: X" 1-x)"" dx = J'OZ X" 1 X)"" dx+ ﬁ X" (1-x)" " dx
2

1
Let I, = joz X"t1-x)""dx and @ I,= ﬁ X" (21— x)"tdx.
2

Then

[xmia-xmt =1, 41,

Convergence of |,

Wetake  f(0=x"(1-x)"* and g(x)= Xﬂm .
Then, 09 _ (1-x)""—>1 as x—>0.
9(x)
. f(x) .
ie., im—=-=1, a non zero finite number.
x—>0+ g(X)
1 1
Hence, by Limit Comparison Test (Quotie nt test) IOZ f (x)dxand I 02 g(x)dx converge or
diverge together.
1 1
But ,[02 g(x) dx= ,[02 le_'m dxconverges if and only if 1-m<1l ie, m>0. Hence

1 1
IOZ f(x) dx= .[02 X" (1-x)"" dx=1,converges if and only if m> 0.
Convergence of |,

We take F() =x"1-%)"" and g(X)=——rr.
d-x)""

. f(x) . g ..
Then, lim L= limx™t=1, a non zero finite number.
X—1+ g(X) X—1+
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Hence, by Limit Comparison Test, both the integrals J‘ll f(x) dx and ﬁ g(x) dx converges or
2 2

diverge together. But

ﬁg(x) dx= J‘iﬁ dx converges if and only if 1-n<1, ie, if and only if n>0. Hence
2 2d=X

I,l f(x) dx= J,l X" (1-x)""dx=1, converges if and only if n> 0.
2 2

2

Therefore if m>0and n> 0, both |,and |, converges and hence $(m,n) converges.

Example Express IOZ (8—x*)™3dx in terms of a Beta function.
_[%ra_ 3)-13
Let |_jo(8 %) 3 dx

Put x*=8z. Then x=27Z"3 and dx:zzz’sdz.

Also, when x=0, z=0; when x=2,z=1
Hence (1) becomes

ot 3 2_ 23 40 _qus 21 _13_-2/3
I_fo(8—82) -52 dz=8 -Efo(l—z) z7"dz

_ % [{@-%¥°x?* dx, using the fact that
b b
L f(z)dz:fa f () dx
:%j:xm(l— x) ™% dx
Lo 2ea )2, 2]
3 3 3 3 \3 3
Example Evaluate j:(x— a)™(b-x)"'dx, m>0,n>0.
Put x=a+(b—-a)z sothat dx=(b—a)dz
b

Hence L (x—a)" " (b—x)"" dx

= _f [(b-a)z]" " [b-a—(b—a)z]"" (b—-a)dz

_ (b _ a)m+n—1J': 71 (1_ Z) 14y
=(b-a™"* J-:xm’l(l— X)"* dx=(b—a)™"*-b(m,n)
Properties of Beta Function

1. The beta function is symmetric in m and n.

ie., b(m n)=b(n, m).
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Proof . We have

b(m, n)= ix”“l(l— x)" ' dx

[

I(l X)™*(1- (1-x))"dx, obtained by taking f(X)=x""(1-x)"" and a=1 in the

0

result _[ f (x)dx:f f (a—x)dx
0 0

j (- x)™ " dx
=p(n.m)

2. When n is a positive integer,

b(m, n) = (n=-1!
mm+H(m+2) --- (m+n-1)

Proof.
Casel)Ifn=1,
1 m 1
_ 1
m1)= | x™La-xPax =| 2| ==.
) 5 -nfo - X7 2
0 0
Case 2) Ifnis an integer and n > 1, we have
B(mn =Ix (1-x)"Lax
0
1
n 1X n-2 X"
(1-x) J (=12 x)"2(-2)*—dx,
m
0
by integratmg by parts
1
_0+ N2t ym (1-x)"2dx
m
0
=n—_l[3(m+l,n—1)
m
By repeated application, we have
B(m n): n-1n-2 n-3 1 B(m+n—l,1)
’ m m+l1m+2 m+n-2
n-1n-2 n-3 1 1
m m+1m+2  ~ m+n-2m+n-1
1

since by Case 1, b (m',1)=—
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B (n-1!
Cmm+D)(m+2) - (M+n-1)

(1)

3. When m is a positive integer, proceeding as in Property 2, we obtain

b(m, n)= (m-1)!
n(n+H(n+2) --- (n+m-1)

4. If m and n are positive integers, then

(m-9!(n-1)!
(m+n-1!

b(m, n)= A

This can be obtained by multiplying both numerator and denominator of Eq. (1) by (m-1)!.

5. b(1, n):%.

This can be obtained by putting m=1 in Eq.(2).

6. If m and n are positive integers, then
b

[(x=2)"" (b—x)""dx =(b-a)"""b (m,n) .. (3)

Proof. In the given integral, we put x—a=(b—a)y so that dx=(b—a)dy. Whenx=a,y=0;
and when x =b, y = 1. Hence,

The given integral = j[(b -a) y]m_l [(b -a)(1- y)]n_l(b —a)dy

_ (b . a)m+n—1j ym,l (1_ y)n—ldy

0
=(b-a)"""b(mn)
b
7. [xmH(b-x)" dx =b™"*b (m,n)
0

This can be obtained by putting a=0 in Eq.(3).
p/2

8. b(m, n)=2f sin®™'q cos™'q dq .
0

Proof. Put X=Sin29, so that 1- x=cos?0 and dx=2sin6cos0dd. When x = 0, g=0and
whenx=1, q =p/2.

n
2

B(m.n)= jsi n2M g cos2" g 25in0cosodd
0

=2 sin? 19 cos? 19 do

o!—.l\)\q
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[ee]
J‘ y"”
1+ m+n
0 y
¢ 1 1
Proof. Consider the expressionb(m,n)=|x""(1- x)nf dx. Put X=——, so that
0 1+y
1—X:1—L=L and dx=— 5. Whenx=1,y=0and when x=0, q=c. Hence
l+y 1+y (1+y)
n-1
[ 1 y 1
B(mn)= ( J - dy
J@+y)™t1+y (1+y)?
- yn—l
- J 1+ m+n
 (L+y)
®© m—l
10. b(m,n) :.[—mm dx, where m>0, n>0
o (1+x)
Proof. In the expression forB(mn) , put z=-—"—, so that x=z+xz or x=1i and
+ X —Z
dx = @-2)-1- 22(_1) dz= dz 5. Whenx =0,z=0and when x=o, z= Iimizl. Hence
1-2 (1-z x>0 14 X
0 m-1 1 m-1
J' X —— dx= J'(ij (1-2™" 1 ~dz, since
s (1+X) \1-2 1-2
1+ x=1+— =i.
-z 1-z
j. Zm—l (1_ Z)m+n
. (1-2™ 1-2)°

Example We now show

O'—;I\)\T—l

sinP xcos? xdx = ZB[

_l[ “(1-2)""dz=b(m, n).

that

p+1 gq+1

2 ’ 2 ]7 p>_lr q>_l

By an earlier example, we have

b(m,

In (4), put m= pTJrl,

2
n)=2.|'sin2m‘1q cos”*q dq.
0

P

()

nzq; or p=2m-1, g=2n-1, and we obtain
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P

2
b (p—ﬂq—ﬂ) =2_[sinp xcos? xdx.
0

2 2
The above formula can be used to evaluate integrals. For example,
p/2 1 91
j sin’ xcos® xdx =~ b (7—4_15L1j T (4,3) _i32 1
5 2 2 2 2 2 6! 120

Example Express in terms of Beta function, the integral

j:xm(l— *2)"dx (m>1,n > ~1).

Put x* = zso that 2x dx=dz
Also when x=0, we have z=0 and when x=1, z=1.
Hence

1 m 2 _ 1 m-1¢q _ ,2\n

on (1—x)dx—J.0x (1—x*)" xdx
_(tmnizgg Al
_.[Oz 1-2 2dz
_ 1t mayzpq an
_Ejoz (1-2"dz

_1,(m-1 _1l,(m+1
—ZB( 5 +1Ln+lj—28( 5 ,n+1)

X2

V1-x°

2 _[to2 5%
dx—jox (1-x7)2dx.

dx in terms of beta function.

Example Express I:

X
V1-x°

Here put X° = zso that 5x*dx=dz.
Alsowhen x=0,z=0 and when x=1, z=1.Therefore, we have

We have Jj

1 2 1 -1 1 =2 11
IO s dX:J.OXZ(l—Xs)ZX4 dx:IOZS(l—z)ngz

V1-x°
1

-2 —
Z%j:z?(l— 2)7l dz:%B(—§+L—%+1)=§B(§,%).

Example Express in terms of Beta Functions, the integer

I:(x—a)m’l(b—x)"’l dx.

Here put x=a+ (b—a)zso that dx=(b—a)dz
Also when x=a, z=0 and when X=b, z=1 .Therefore, we get

j:(x— Q™ (b-x"t = j:[(b— a)z]"'[b-a-(b-a)z]" (b-a)dz
=[[(b-a)™z"*(b-a)""(1-2)"" (b-a)dz
—(b-a)™"[ 2" - )
=(b—a)™"'B(m,n).
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Example 1f p>0,q>0, prove that
@ BearD_Pple+ia) plp.a).
q p p+q’
(i)  B(p.9)=B(p+La)+B(p,q+D.
We have

B(p.q+1 = .[:Xp‘l(l— X)% dx = J:(l_ ) xPdx,

- {(1— X)¢ X_;L - Eq(l— x)ql(—l)x—;dx,

by integrating by parts
=0+%j:xp(1— x)q’ldx=%[3(p+],q). (D)
B(p.9+D _p(p+19) %)
a 5
Also from (2), we obtain
B(p.q+1) 1 1t N -1
g :BB(p’LLQ):BIoXp(l_X)q dej.oxp X(1— x)*"dx
- % [ X7 [1- (0- 9] @- % dx
1t pa B 1t pa
Zifoxp (1- x)° dx—Bjoxp (1- %)% dx
1 1
==B(p,q)-=B(p.q+1
pB(IO a) pB(p q-+
ie. B(p.9+D _ B(p.a+D _B(p.a)
aq p p
Hence (P+9)B(p.9+D) _B(p.9)
Pq p
Therefore, Bp.a+1) _ B p,q)_ ... 3)
a p+dq

From (2) and (3), we get
B(p.a+1)_B(p+1a) _B(p.9)

q Y p+q

(if) From (4), we get

__4q

B(p.q+1D=-"-B(p.), - ()

__b
and Bp+1.0) =" B(p.q.). --(6)
Adding (5) and (6), we have
B(P,a+D+B(P+10) =—1—B(p,a)+——B(p.)

p+q p+q
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_P*q _
“ g (Pa=B(p.a)

The Gamma Function

If n>0, the definite integral Ie’xxn’ldx is called the Gamma Function and is denoted by I'(n).
0
Thus
rn= Ie’xx”’ldx, x>0, n>0.
0

It is also called Eulerian integral of the second kind. Also I'(1)=1.

Convergence of Gamma Function
The Gamma function I'(n) = _f: e *x" ' dxis an improper integral of the first kind if n>1and is an
improper integral of the third kind n<1. Now we can write

) 1 ©
r(n)=| e*x" dx=| e*x"" dx+| e*x"* dx=1I,+1,, where
0 0 1 1772

1 ©
I, = I e”x"*dxand |, = I e X" dx.
0 1

Casel: n>1
Whenn>1, 1, is a proper integral and |, is an improper integral of the first kind.

Here f(x)=€e*x""
Take g(x)= iz .
X

Then Iimﬂz limx"e™>*=0.
X—>00 g(X) X—>00

Since J-:O g(x)dx= J’:’iz dx converges, by Limit Comparison Test, we have
X

Lw f(x)dx= J:O e*x"* dx=1, is convergent.

Hence, |, +1,=I'(n) converges if n>1

Case 2: n<1
When n<1, |,is an improper integral of the second kind and |,is an improper integral of the

first kind.

Here f(x)=e*x""*
1
Take X) =——.
g(x) v
(X)L ..
Then lim—== lime* =1, a non zero finite number.

X—0+ g (X X—0+
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Since ng(x) dx= J.:% dxconverges if 1-n<1, ie, if n>0, by Limit Comparison Test, it

follows that J:f(x) dX=_f:X”'le'x dx=1,converges if n>0. As in Case 1 we can show that

l,= J‘:C e *x"*dx converges for all n>1
Hence, |, +1,=T'(n) converges for all 0<n<1.
Combining the results obtained in Case 1 and Case 2, we see that I'(n)= _f: e *x"tdx
converges for all n>0.
Recurrence Formula For Gamma Function

rny)=(n-Hr(n-23 for n>1.
We have

r(n)= I e *x"dx
0

:I X"te*dx
0

t
=lim| x"te *dx

t—wo

dx,

t—o _1

r e—x t t e—x
=lim| x"*=— —Iim_f(n—l)x”’z
L o 14)000 _1

integrating by parts

t—>o _ex

r t
. xt ot e
=lim —(n—l)llmj X" = dx
o '(—)ooo _1

n-1

lim — (n-) x2&
_[Lrg_et (n 1)]; X _1dx
n-1
=0+ (n-DI'(n-1), since, by applying L'Hospital Rule repeatedly, !imt -=0
- —@

=(n-YIr'(n-1).
Theorem When 7 is a positive integerI'(n) = (n—1)!
We have rn)y=(mn-yr(n-1)
When 7 is a positive integer, by repeated application of the above formula
rm =m-Yr(n-71
=(n-D(n-2I'(n-2)
=(n-DH(n-2)(n—-3)I'(n-3)
=(n-H(n-2)(n-3)... D).
=(n-Y(n-2)(n-3)---1. T ().

© 0 . t
But r@= jo e*x® dx= jo e* dx=lim[ e*dx

X—00
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= Iim[—e’x]; = Iim(l— e’t)=1—0:1.

Hence - -
rmn=mn-Hn-2)(n-3)---1-1=(n-1!,

when 7 is a positive integer.

Remark I'(n+a)=(n+a-1)(n+a-2)---a-I'(a),
when 7 is a positive integer.

Example Show that j ey dy = F(n)

Putting x=ay in F( ), we have

0

r(n)= Ieay (ay)"tady = a”"‘eay y"Ldy
0

0
Hence Iea Yy Ly = ()
an
0
Example Show that
1,,m1 1— n-1
o= L b(mn)
o (a+bx) (a+b) a"
1 1
J‘x Ya—x)t X_J‘( X jm_l( 1—xJn_1 1
(a+bx)™" a+bx a+bx)  (a+bx)?
0 0
Put X __ Y ;sothat ————dx=dy
a+bx a+b (a+bx)2
1-x  la-ax 1{a+bx—bx—ax}
Also -
a+bx aa+bx a a+bx

_1{1_ x(a+ b)} 1y
a a+bx a
Also when x =0,y =0; and when x =1, y =1. Hence

1
y ™oyt g
=] —— dy
a+b a a(a+b)
0
1

_ 1 m-1 n-1 B(m,n)
_(a+b)ma”.“y =) dy_(a+b)ma”

Relation Between Beta and Gamma Functions
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Theorem b (m, n)= r((nr?]i:;)

0
Proof. Using the relation L : Ieax x"Ldx, we obtain (by taking z in place ofa)
0

7Me=ZXx M1y

—3

o0
r(m)= zmje_zxxm_ldx =
0

L o

n—

Multiplying both sides by € *-z"", we obtain

o0
r(m)e 2 N1 _ J'ez(l+x)zm+nlxm1dx.

0
Integrating both sides from 0 to «,

0

F(m)J‘ e 2N 14y = J‘J‘ez(l+x)zm+nlxm1dxdz

0 00
That is,

r(mr(n)= I J-ez(l”)z”””l dzx™ dx ,

by changing the order of integration.

I( m+n) XMLy = I'(m+n)
1

o'—;8

T x)men (L+x) m+n
= (m+ n)B(m, n)
Hence b(m, n):F(m)F(n)
I'(m+n)
The above can be proved as follows also:
B(m,n) = j: X" (1-x)"dx =2 jofsu n*"tecost0do ... (1)

by putting x=sin*0.
r'(m)= j e*x™ dx=2 j t?™dt, by putting x =t?
= 2'[0 e x*™idx, by changing the variable t tox ... (2)
Similarly, we have
r(n)=2[ ey dy. ... (3)

Hence
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r(mT(n) = 4[5 j: g (Y em Lyl .. (4)

In (4) putx=rcos0,y=rsind .Then dxdy=rdrd6. Since x and y vary from 0 tow, xandymay be
taken as the coordinates of any point in the first quadrant. Also by putting x=rcos6,y=rsin6,

we are transforming Cartesian coordinates into polar coordinates. Again in polar coordinates,

the first quadrant can be covered by varying r from O to coand 6 from 0O to %.So
r(mr(n) = 4_[: jf e " (rcos)®™(rsin0)>*r dr do
= 4jwj§e"2r2”‘*2” sin®™*@ cos’™ "6 dr do
0Jo

= (zj'me"zrzm””‘ldr )(ijsin > lgcos™™ o dr dej .. ()
0 0
Now
ZJ-O el ramalgr = L e't™" dt, by putting r’ =t
=I'(m+n)
Also, we have
2 jfsinz"-1 0cos?™0.d0 = B(n, m) = B(m,n).

Hence (5) becomes
r(m)-T'(n)=T(m+n)-p(m,n).

Hence B(m,n) = %
Corollary I (%) =
L(m)r(n)

Proof. We know that b (m,n)= for m>0,n>0

I'(m+n)
Takingm =% and n =", we get
1946
(11)-"2e)
2'2 r(1)
Since T'(1) =1, the above gives

Hence F(%J = \/E .

Theorem I'(n)['(1-n) , where 0 <n <1.

sin(xn)
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Proof. As
© n-1
b(m,n):jx—mmdx, for m>0,n>0
o (1+x)
and Mzb(m,n) for m>0,n>0,
F(m+ n)
we have -

HN

m+n 'c[]_+xm

Putting m+n=1 m=1-n, we obtain

l )F J- dx O<n<1
r(1) 1+ X

0
-1
Also I dx = T )
1+x sinmX
0

Hence F(n)F(l— n) =

3

- ,where 0 <n<1.
sin(rn)

1
n
Example Evaluate J‘Xm(logij dx.

Put x= e_t, then dx=—e 'dt. Hence

1 n 0 00
J‘xm(log%) dx = j(et )mt”(— et )dt = J-e(m”)tt“ dt
0

0 0
dy

Now put(m+1)t =y, then dt=
put(m+1)t=y 7

, so that

1
log— J dx = I = r(n+1).
( 0 (m+2)" m+1  (m+2)tl (n+1

O'—;I—‘

Example Evaluate J.ex dx

0

Put X2=t, then 2xdx=dt or dX=£=i. Hence

2x 2t

o0

2 _¢+ dt

e X dx:'[e t =
.[ 24/t
0 0
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Example

© —y[T

sin’q cos’q dq =%b(7+1 5_+1)

2 2

r4)r(3 121
EEC R U

Example Express the following in terms of Gamma functions:

'[;xp(l— x?)"dx, where p>0, g>0; n>0.

1 1,
Putx®=zorx=2z% Then dX=%Z{QJ dz. Also when Xx=0, z=0and when x=1, z=1. Hence

I;Xp(l— XH" dx = J:Zg(l_ Z)néz[clajldz

p+1

Lt g e
_qjoz Q-2 dz

[ P ey
Pq Jre

:lB(p_-'—l,n_Flj:l 1
9 q q F( p(—; +n+1]

Example Express the following in terms of Gamma functions:
j:xp’l(a— x)%* dx where p>0, g>0

Here put X=azso that dx=a dz
When x=0, z=0and when x=a, z=1

Ioax"’l(a— x)** dx = j'ol(az)pf1 (a—az)"* adz
= '[:ap’lzp’laq’l (1-2)%'adz
_ aprad [t pt _ »\a-1
=a IO z2"(1-2""dz

_ ob+a-1 _ AP+l 1—‘( p) 1—‘(q)
=a”""b(p,g)=a T(p+q)

n-1
Example Show that I'(n)= J‘;[Iog%) dx.

Put IOQ% =Yy.Then x=¢€¥ and dx=-€"” dy.
Also when x=0 y=wand when x=1, y=0.
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1 dx = _[: y"(-edy) = —_|‘:e’yy”’1 dy

'[:(Iog%)n

- L""e-Vyn-l dy =T'(n).

Example Prove the duplication formula:

Jar@m) = 22”‘1F(m)1“(m+ %j .
We know that B(m,n) = % - @
r 2
B(m,m) = [FE;?) .
Also B(m,m) = j:xm-l(l— X)™* dx.

In the above integral put x=sin’*q so that dx=2 sing cosq dq.

When x=0,q =0and when x=1q = % therefore, we have
P
b(mm)= _[Ozsinzm‘zq cos”™?q.2sing cosq dq

p P . 2m-1
- 2,[02 sin®™ g cos’™*q dq 2J'02 (—29 nqzcosq j dq

o(sinzg Y™ N .
= 2.J‘02 (Tj dq :2.“02 22m—1 S n2 ! 2q dq

1 (5. om 1 (P oma 1
= 22m—2 IOZSnZ laq dq :WIO Snz lf E df
by putting 2q =f
P
:—erlnfl [Zsin™t o
1 L.
= a1 < ZJ.OZ sn®™f df , using the result

jo"'a F(x) ax=2[ f(x)axif f(2a-x)=f(¥).

P
-1 jzsinzm’lf cos’f df
0

- 22m—2

2m-1+1 0+1
1 r( 2 )r( 2]

= om2 -
2 2F(2m—1+1+0+1j

2 2

. F(m)l“(;]

= o2m1" 1
F(m+ 2)
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_ 22}1_1 :((rr:)j; Q)

From (1) and (2), we conclude that
LG Y ()

~ H2m1
rem 2 F(er%j

Hence Jp -T(2m) = 2™ (m) - T(m+ %).

VP

Example Prove that .[: e X dx= -

Let | = j:e dx

Put x*=z Then 2xdx=dz and hence dx= dz _ idz.

2x 20z
Also, when x=0, z=0; when Xx— o, z— o . Thus

I =Ime’z£ 1r-e”

==| =—=dz
o 2z 20z
1e= 2,
=§.[0 z’e‘“dz
=4r(-$+D)=4r@) =4V
Example Prove that J‘_w e* dx= \/5
J._m e* dx:ZI: e* , using the result “if f(x) is an even function of x, then

j f () dx = 2joa f(x)dx”

:2.%=\/ﬁ_

Example Show that J:O Jxe ¥ dx = :—:;\/a :
Put X% =z so that dx=%. Also, when x=0, z=0; when X — ©,zZ— . Hence
X
© 33 _ ®© _; dZ
Jo e dx=[ Vxe®

Lo o L sy e
_gjox e dz_éjo (2°) e ?dz

1o 3.1 1 '
25.[0 z°€ =§r(%):§\/5, since T'(3) =+/p.

In an integral of the type Ie’ "“dx, we may put f(x)=z. The above example illustrated this.
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b(m+2,n-2)  m(m+1)
b(mn)  (n-1)(n-2)
r(m+2)T'(n-2)
b(m+2n-2) T'(m+2+n-2)
b(mn ~  T(mI(n)
r'(m+n)
I'(m+2)I'(n-2) (m+)mC(mI'(n-2)
(M)  rmn-)(n-2rn-2)
since I'(n)=(n-2) I'(n—1)]

Example Show that

~ m(m+1)
(n-H(n-2)
Example Evaluate
(i) [ e X2 dx (i) [ X @-%)° o
a2 X : 15 313
(iii) IO mdx (iv) IOX (1-x°)” dx

(i) Putting 4x=y, we have dx=%dy. Also, when x=0,y=0; when X— 0,y — . Hence
© _—Ax,312 4, 1 (= _y 5/2-1
Ioe X dx_ajoe ydy
1 (5 1 31 1 3
=—TI|=|==-2.=. I =|=—-p.
e PR
rerE 43 1
r(©9) 8l 280

(iii) Putting x=2yso that dx=2dy
Also, when x=0,y=0; when x=2,y=1. Hence

(ii) j:x“ (1-%)° dx= b (5,4) =

J~2 X% - dx

_ Y2 NV2 g, 1
: T_X_mp(l y)?dy=4V2b(33

_ 436 _ 4J2.2T(3) =64\/§.
0) TSIy ®
r r
2) 222 \2

(iv) Put X’ = y. Proceeding as above, we get

1.3l
Lyoa- 13 1
3 35 60
Example Evaluate
L e X=X o e XA
() [ 2o (i) [ X o
0 (1+X) 0 (1+x)

R S T I ST
@ ! —jo L+ %)% dx-jo (1+x)* o IO @+ X)24dx
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- X9—1 - 15-1
“Jo gl e
=b(9,15)-b(15-9) =0, since b(m,n)=b(n,m)

141 (141
:1“( 2 jl‘( 2 ):T(i)r(ﬁ)zlr(l)r(é)
(7 o

2r 2
2
Now by Duplication Formula, we have

2?1 T(p) T(p+3)=+p T(p).

1
Takin ==,
gp 2

27 r@) rE) =vp re)

1 oyree - ; 1y —
RO Jp b, since T(3) =p
implies
r()rEé=v2p - (2)
Using (2) in (1), we get
p/2 _E :i
jo Jtanx dx_z(\/ip) 7
Exercises

In Exercise 1-4, express in terms of Beta functions:

1. [(x(8- %) dx

2 [ o
3. .[Ol X dx

V1-x°
4, Ex"l(l— x?)™* dx

In Exercise 5-20, evaluate the given expressions:
5. b(35),

6.b(1.3).
7. b&,2

212
3
5 b(32)
P
9. jozsinl‘) dq
P
10. ksin7 dq cos’q dq

P
11. IOZ sin‘gsin®q dq
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12. jo%\/tanq dg
5 dx
13. 12
JO A/COSX
14 jgmdx
"o Joosx

15. [ (1) dx

16. [ (1-x)7dx
17. I:x7(1— x)® dx
18. j:xz(l— X)° dx

3
19. j02(4— %2)2 dx

. j;[@ dx
1

21. Show that [ (8- XS)%l =30(3.4)-

2

o

22. Prove that J:(a —x)" x"tdx = a™"*b (m,n).

m-1 n-1
23. Prove that Eﬁ dx=b(m,n).
+
o ym-1 n-1
24. Prove that J.O ﬁz 2b (m,n).
m-1 n-1
25 Prove that [ X &=X" g 1 ).
o (a+hbx)™" (a+b)"a"

n agn+m+1
26. Prove that jopx”‘( p? —xq) dx =P q b (n+], mTJflj

27. Show that if p, g are positive, then
B(p+1 a)+B(p. a+1)=p(p.a).

1 1)"
28. Evaluate I x”‘(log—) dx.
0 X
29. Prove that I: (a-x)™* x"dx=a""" b(mn).

30. Using the property b (m,n) = b(n,m), evaluate J.: x3(1-x)*"° dx

X" (1-x)"! dx— b(m,n)
o (a+x)™" a"(l+a)"

31. Show that

32. Show that
. w Xm—l + Xn—l
(i) f o

dx=2b(m,n), m>0,n>0
0 (1+ X)m+n
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Oc Xm—l _ Xn—l

(if) [ °——dx=0, m>0,n>0.
0 (l+ X)m+n

33. Express J.: X"(1—x")" dxin terms of Beta function and hence evaluate E x°(1-x%)° dx

m-1

X = 1 b (m,n)
(@a+bx)™" a"b™

where m>0,n>0,a>0,b>0

34. Prove that J.:

35. (i) Express I: X"(1—x")? dx in terms of the Beta function and hence evaluate Jj X (L) dx.

. . r(g‘jr(n)
ii) Show that [ x™*(1-x?)"" dx=2b[imn|=—2/
(if) [
0 2 \2 (1 j
2’ =m+n
2
(ifi) Prove that 2(P9*D _b(P*1Q)_b(R.A) 1 4450

q p p+d
b(m+1n) __m

b(m,n) m+n

(v) Prove thatb(mn) =2"°" b(m,3).

(iv) Prove that ,m>0,n>0.

P
(vi)Show that .[02 sin®q cos’q dq :%b (2,3) and hence evaluate it.

In Exercises 36-45, evaluate:

r(7)
S N OINE)

37. TRIFE)T ()
rare)
r@)

39. j: X’edx =6
40. J.:&e’xz dx

41. j: x*e™" dx

38.

42, 'f:e’x4 dx
43. j:e’x3 dx

J':[xlog(%)fdx

45, j: x3e™ dx

44.

=

46. Show that J? xe * dX:%\/E

47. Show that j: 4x‘e ™ dx= F(gj
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48. Show that I: xXb e dx = %p

49. Show that [1x*(1-x)? dx =~
0 60

50. Show that js

o
0 3x-x*

(3]
51. Show that J.l o =
R
6
52. Prove thatI'(n+1) = n'(n), wheren>0.

p-1
53. Show that J: yql(loglj dy = I(p) ,where p>0,q>0.
y q°

[
P 2
54. Show that IOZ Jsinqdq Xjﬁdq =p.
0
1 —(x%/2s?)

55. Show that the area bounded by the normal curve y=———¢€

and x-axis is unity.
SV2p Y

3 z 3 2
56. Prove that J.;{ X } dx = 2'p

57. Show that I:xll— x* dx =

58. Show that I Xdx xjol dx

-B
C@-x)t Pa-xt): 4
I'(a+1)

59. Show that ifa>ljo 2> - (loga)**

o 2
60. Prove thatj. tat _ p

o1+t* 22
\/_r( )
/1 X" nF(l

a-1
62. Show that I'(a) = ZIO et gt :I;(IOQ%) du.

61. Prove that I

63. Prove thatn> -1, j: e g = L [ (n_+1)

2an+l 2
1
64. Show that I'(n)= j ()™ (logy)"Lay.
0
- Xn—l _ Xm—l
65. Show that J-—mm dx=0. m>0, n>0.
. (1+x)
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66. (i) Prove that j X"e ¥ ¥ dx = oa ];Hl F(n—;lj Hence show that Jm g*x dx=£

a
(ii) Prove that J. e dx= ﬁ a>0

67. (a) Show that [ \/:L_)(—)(nz nl“(l %

2
/—'\\

n 2

(b) Prove that j;% E-i%% .
4

w|lh|pk

m-1 n-1
68. Show that j X7 (A-x)

I'(m) I"(n)
(a X)m+n

PS @+a)"T'(m+n)

r(n+1)
69. (i) Show that | sinqdg = b\ 2

> (ni2y "t
r(n+ j
2

(ii) Show thatj m dq x j

smq
(iii) Show thatj SiandXxj “sn”txdx=—P .
0 0 2(p+1

70. Show thatJmX—dX:F(a—H')l,
0 (loga)™
71. Show that I x+1 dx:i
1(x+2)° 20

72. Show thatl“(n+%) = 1'3'5;“(2”—1) \/E

if a>1.

1
F(n+)

73. Show that=2 2 (201 _ 2
24620 Jpr(nsd)

74. Show that

j sin™qcos'q dq b(m+l n+1)

m+1 n+1
r( 2 jr( 2 )
2 ) m+n+2
2r(2 j
_ 4N\3/4
75. Showthatj( X) gx——t (1,1)
(L+x%)? 42°) \44
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