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Chapter 1

DIVISIBILITY THEORY IN
THE INTEGERS

Well- Ordering Principle
Every non empty set S of nonnegative integers contains a least element. That
is, there exists some integer a in S such that a ≤ b for all b in S.

THE DIVISION ALGORITHM
Division Algorithm, the result is familiar to most of us roughly, it asserts
that an integer a can be ”divided” by a positive integer b in such a way that
the remainder is smaller than b. The exact statement of this fact is Theorem
1.0.1:

Theorem 1.0.1. Given integers a and b, with b > 0, there exist unique
integers q and r satisfying

a = qb+ r 0 ≤ r < b

The integers q and r are called, respectively, the quotient and remainder in
the division of a by b.

Proof. Let a and b be integers with b > 0 and consider the set

S = {a− xb : xisaninteger; a− xb ≥ 0}.

Claim: The set S is nonempty

It suffices to find a value x which making a − xb nonnegative. Since b ≥ 1,
we have |a|b ≥ |a| and so, a− (−|a|)b = a+ |a|b ≥ a+ |a| ≥ 0. For the choice
x = −|a|, then a− xb lies in S. Therefore S is nonempty, hence the claim.
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Therefore by Well-Ordering Principle, S contains a small integer, say r. By
the definition of S there exists an integer q satisfying

r = a− qb 0 ≤ r.

Claim: r < b

Suppose r ≥ b. Then we have

a− (q + 1)b = (a− qb)− b = r − b ≥ 0.

This implies that, a− (q+ 1)b ∈ S. But a− (q+ 1)b = r− b < r, since b > 0,
leading to a contradiction of the choice of r as the smallest member of S.
Hence, r < b, hence the claim.
Next we have to show that the uniqueness of q and r. Suppose that a as two
representations of the desired form, say,

a = qb+ r = q′b+ r′,

where 0 ≤ r < b and 0 ≤ r′ < b. Then (r′ − r) = b(q − q′). Taking modulus
on both sides,

|(r′ − r)| = |b(q − q′)| = |b||(q − q′)| = b|(q − q′)|.

But we have −b < −r ≤ 0 and 0 ≤ r′ < b, upon adding these inequalities
we obtain −b < r′ − r < b. This implies b|(q − q′)| < b, which yields 0 ≤
|q − q′| < 1. Because |q − q′| is a nonnegative integer, the only possibility is
that |q − q′| = 0, hence, q = q′. This implies |r′ − r| = 0, that is, r = r′.
Hence the proof.

Corollary 1.0.1. If a and b are integers, with b 6= 0, then there exists integers
q and r such that

a = qb+ r 0 ≤ r < |b|.

Proof. It is enough to consider the case in which b is negative. Then |b| > 0,
and Theorem 1. produces unique integers q′ and r for which

a = q′|b|+ r 0 ≤ r < |b|.

Noting that |b| = −b, we may take q = −q′ to arrive at a = qb + r, with
0 ≤ r < |b|.

Application of the Division Algorithm
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1. Square of any integer is either of the form 4k or 4k + 1. That is, the
square of integer leaves the remainder 0 or 1 upon division by 4.
Solution: Let a be any integer. If a is even, we can let a = 2n, n is an
integer, then a2 = (2n)2 = 4n2 = 4k. If a is odd, we can let a = 2n+1, n
is an integer, then a2 = (2n+1)2 = 4n2+4n+1 = 4(n2+n)+1 = 4k+1.

2. The square of any odd integer is of the form 8k + 1.
Solution: Let a be an integer and let b = 4, then by division algorithm
a is representable as one of the four forms: 4q, 4q+ 1, 4q+ 2, 4q+ 3. In
this representation, only those integers of the forms 4q + 1 and 4q + 3
are odd. If a = 4q + 1, then

a2 = (4q + 1)2 = 16q2 + 8q + 1 = 8(2q2 + q) + 1 = 8k + 1.

If a = 4q + 3, then

a2 = (4q+3)2 = 16q2+24q+9 = 16q2+24q+8+1 = 8(2q2+3q+1)+1 = 8k+1.

3. For all integer a ≥ 1, a(a
2+2)
3

is an integer.
Solution: Let a ≥ 1 be an integer. According to division algorithm, a
is of the form 3q, 3q + 1 or 3q + 2. If a = 3q, then

3q((3q)2 + 2)

3
= 9q3 + 2q,

which is clearly an integer. Similarly we can prove other two cases also.

THE GREATEST COMMON DIVISOR

Definition 1.0.1. An integer b is said to be divisible by an integer a 6= 0, in
symbols a|b, if there exists some integer c such that b = ac. We write a - b to
indicate that b is not divisible by a.

Thus, for example, −22 is divisible by 11, because −22 = 11(−2). How-
ever, 22 is not divisible by 3; for there is no integer c that makes the statement
22 = 3c true.
There is other language for expressing the divisibility relation a|b. We could
say that a is a divisor of b, that a is a factor of b, or that b is a multiple of a.
Notice that in Definition 1 there is a restriction on the divisor a: Whenever
the notation a|b is employed, it is understood that a is different from zero.
If a is a divisor of b, then b is also divisible by −a (indeed, b = ac implies
that b = (−a)(−c)), so that the divisors of an integer always occur in pairs.
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To find all the divisors of a given integer, it is sufficient to obtain the positive
divisors and then adjoin to them the corresponding negative integers. For
this reason, we shall usually limit ourselves to a consideration of positive
divisors. It will be helpful to list some immediate consequences of Definition
1.0.1.

Theorem 1.0.2. For integers a, b, c, the following hold:

1. a|0, 1|a, a|a.

2. a|1 if and only if a = ±1.

3. If a|b and c|d, then ac|bd.

4. If a|b and b|c, then a|c.

5. a|b and b|a if and only if a = ±b.

6. If a|b and b 6= 0, then |a| ≤ |b|.

7. If a|b and a|c, then a|(bx+ cy) for arbitrary integers x and y.

Proof. 1. Since 0 = a.0, a|0. Since a = 1.a, 1|a. Since a = a.1, a|a.

2. We have a|1 if and only if 1 = a.c for some c, this is if and only if
a = ±1.

3. Clear from definition.

4. Clear from definition.

5. Clear from definition.

6. If a|b, then there exists an integer c such that b = ac; also, b 6= 0 implies
that c 6= 0. Upon taking absolute values, we get |b| = |ac| = |a||c|.
Because c 6= 0, it follows that |c| ≥ 1, whence |b| = |a||c| ≥ |a|.

7. The relations a|b and a|c ensure that b = ar and c = as for suitable
integers r and s. But then whatever the choice of x and y, bx + cy =
arx + asy = a(rx + sy). Because rx + sy is an integer, this says that
a|(bx+ cy), as desired.

Definition 1.0.2. Let a and b be given integers, with at least one of them
different from zero. The greatest common divisor of a and b, denoted by
gcd(a, b), is the positive integer d satisfying the following:
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(i) d|a and d|b.

(ii) If c|a and c|b, then c ≤ d.

Example: The positive divisors of −12 are 1, 2, 3, 4, 6, 12, whereas those
of 30 are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of −12
and 30 are 1, 2, 3, 6. Because 6 is the largest of these integers, it follows
that gcd(−12, 30) = 6. In the same way, we can show that gcd(−5, 5) = 5,
gcd(8, 17) = 1, gcd(−8,−36) = 4.

Theorem 1.0.3. Given integers a and b, not both of which are zero, there
exist integers x and y such that

gcd(a, b) = ax+ by.

Proof. Consider the set S of all positive linear combinations of a and b :

S = {au+ bv : au+ bv > 0;u, v integers}.

Since, if a 6= 0 then |a| = au+b.0 ∈ S, where u = 1, ifa > 0;u = −1, ifa < 0,
S is nonempty. Therefore by the Well-Ordering Principle, S must contain
a smallest element, say d. Thus, from the very definition of S, there exist
integers x and y for which d = ax+ by.
Claim: d = gcd(a, b)

By using the Division Algorithm, we can obtain integers q and r such that
a = qd+ r, where 0 ≤ r < d. Then r can be written in the form:

r = a− qd
= a− q(ax+ by)
= a(1− qx) + b(−qy).

If r were positive, then this representation would imply that r is a member
of S, contradicting the fact that d is the least integer in S (recall that r < d).
Therefore, r = 0, and so a = qd, or equivalently d|a. By similar reasoning,
d|b, this implies d is a common divisor of a and b.
Now if c is an arbitrary positive common divisor of the integers a and b, then
part (7) of Theorem 2 allows us to conclude that c|(ax+ by); that is, c|d. By
part (6) of the same theorem, c = |c| ≤ |d| = d, so that d is greater than
every positive common divisor of a and b. Hence d = gcd(a, b). Hence the
claim. Therefore gcd(a, b) = ax+ by.

Corollary 1.0.2. If a and b are given integers, not both zero, then the set

T = ax+ by : x, y are integers

is precisely the set of all multiples of d = gcd(a, b).
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Proof. Because d|a and d|b, we know that d|(ax + by) for all integers x, y.
Thus, every member of T is a multiple of d. Conversely, d may be written as
d = ax0 + by0 for suitable integers x0 and y0 , so that any multiple nd of d is
of the form

nd = n(ax0 + by0) = a(nx0) + b(ny0).

Hence, nd is a linear combination of a and b, and, by definition, lies in T.

Definition 1.0.3. Two integers a and b, not both of which are zero, are said
to be relatively prime whenever gcd(a, b) = 1.

Theorem 1.0.4. Let a and b be integers, not both zero. Then a and b
are relatively prime if and only if there exist integers x and y such that
1 = ax+ by.

Proof. If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 3
guarantees the existence of integers x and y satisfying 1 = ax+by. Conversely,
suppose that 1 = ax+ by for some choice of x and y, and that d = gcd(a, b).
Because d|a and d|b, Theorem 2 yields d|(ax+by), or d|1. This implies d = ±1.
But d is a positive integer, d = 1. That is a and b are relatively prime.

Corollary 1.0.3. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Proof. Since d|a and d|b, a/d and b/d are integers. We have, if gcd(a, b) = d,
then there exists x and y such that d = ax+ by. Upon dividing each side of
this equation by d, we obtain the expression

1 = (a/d)x+ (b/d)y.

Because a/d and b/d are integers, a/d and b/d are relatively prime. Therefore
gcd(a/d, b/d) = 1.

Corollary 1.0.4. If a|c and b|c, with gcd(a, b) = 1, then ab|c.

Proof. Since a|c and b|c, we can find integers r and s such that c = ar = bs.
Given that gcd(a, b) = 1, so there exists integers x and y such that 1 = ax+by.
Multiplying the last equation by c, we get,

c = c1 = c(ax+ by) = acx+ bcy.

If the appropriate substitutions are now made on the right-hand side, then

c = a(bs)x+ b(ar)y = ab(sx+ ry).

This implies, ab|c.
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Theorem 1.0.5. (Euclid’s lemma.) If a|bc, with gcd(a, b) = 1, then a|c.

Proof. Since gcd(a, b) = 1, we have 1 = ax + by for some integers x and y.
Multiplication of this equation by c produces

c = 1c = (ax+ by)c = acx+ bcy.

Since a|bc and a|ac, we have a|acx+ bcy. This implies a|c.

Note: If a and b are not relatively prime, then the conclusion of Euclid’s
lemma may fail to hold. For example: 6|9.4 but 6 - 9 and 6 - 4.

Theorem 1.0.6. Let a, b be integers, not both zero. For a positive integer d,
d = gcd(a, b) if and only if

(i) d|a and d|b.

(ii) Whenever c|a and c|b, then c|d.

Proof. Suppose that d = gcd(a, b). Certainly, d|a and d|b, so that (i) holds.
By Theorem 3, d is expressible as d = ax+ by for some integers x, y. Thus, if
c|a and c|b, then c|(ax+ by), or rather c|d. This implies, condition (ii) holds.
Conversely, let d be any positive integer satisfying the stated conditions (i)
and (ii). Given any common divisor c of a and b, we have c|d from hypothesis
(ii). This implies that d ≥ c, and consequently d is the greatest common
divisor of a and b.

THE EUCLIDEAN ALGORITHM

Lemma 1.0.1. If a = qb+ r, then gcd(a, b) = gcd(b, r).

Proof. If d = gcd(a, b), then the relations d|a and d|b together imply that
d|(a− qb), or d|r. Thus, d is a common divisor of both b and r. On the other
hand, if c is an arbitrary common divisor of b and r, then c|(qb+ r), whence
c|a. This makes c a common divisor of a and b, so that c ≤ d. It now follows
from the definition of gcd(b, r) that d = gcd(b, r).

The Euclidean algorithm

The Euclidean Algorithm may be described as follows: Let a and b be two
integers whose greatest common divisor is desired. Because gcd(|a|, |b|) =
gcd(a, b),, with out loss of generality we may assume a ≥ b > 0. The first
step is to apply the Division Algorithm to a and b to get

a = q1b+ r1 0 ≤ r1 < b.
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If it happens that r1 = 0, then b|a and gcd(a, b) = b. When r1 6= 0, divide b
by r1 to produce integers q2 and r2 satisfying

b = q2r1 + r2 0 ≤ r2 < r1.

If r2 = 0, then we stop; otherwise, proceed as before to obtain

r1 = q3r2 + r3 0 ≤ r3 < r2.

This division process continues until some zero remainder appears, say, at the
(n+ l)th stage where rn−1 is divided by rn (a zero remainder occurs sooner or
later because the decreasing sequence b > r1 > r2 > · · · ≥ 0 cannot contain
more than b integers). The result is the following system of equations:

a = q1b+ r1 0 ≤ r1 < b

b = q2r1 + r2 0 ≤ r2 < r1

r1 = q3r2 + r3 0 ≤ r3 < r2
...

rn−2 = qnrn−1 + rn 0 ≤ rn < rn−1

rn−1 = qn+1rn + 0.

By Lemma 1.0.1,

gcd(a, b) = gcd(b, r1) = = gcd(rn−1, rn) = gcd(rn, 0) = rn.

Note: Start with the next-to-last equation arising from the Euclidean Al-
gorithm, we can determine x and y such that gcd(a, b) = ax+ by.
Example: Let us see how the Euclidean Algorithm works in a concrete case
by calculating, say, gcd(12378, 3054). The appropriate applications of the
Division Algorithm produce the equations

12378 = 4.3054 + 162

3054 = 18.162 + 138

162 = 1.138 + 24

138 = 5.24 + 18

24 = 1.18 + 6

18 = 3.6 + 0
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This tells us that the last nonzero remainder appearing in these equations,
namely, the integer 6, is the greatest common divisor of 12378 and 3054:

6 = gcd(12378, 3054).

To represent 6 as a linear combination of the integers 12378 and 3054, we start
with the next-to-last of the displayed equations and successively eliminate
the remainders 18, 24, 138, and 162:

6 = 24− 18
= 24− (138− 5.24)
= 6.24− 138
= 6(162− 138)− 138
= 6.162− 7.138
= 6.162− 7(3054− 18.162)
= 132.162− 7.3054
= 132(12378− 4.3054)− 7.3054
= 132.12378 + (−535)3054

Thus, we have

6 = gcd(12378, 3054) = 12378x+ 3054y,

where x = 132 and y = −535.Note that this is not the only way to express the
integer 6 as a linear combination of 12378 and 3054; among other possibilities,
we could add and subtract 3054.12378 to get

6 = (132 + 3054)12378 + (−535− 12378)3054
= 3186.12378 + (−12913)3054.

Theorem 1.0.7. If k > 0, then gcd(ka, kb) = k gcd(a, b).

Proof. If each of the equations appearing in the Euclidean Algorithm for a
and b, multiplied by k, we obtain

ak = q1(bk) + r1k 0 ≤ r1k < bk

bk = q2(r1k) + r2k 0 ≤ r2k < r1k

...

rn−2k = qn(rn−1k) + rnk 0 ≤ rnk < rn−1k

rn−1k = qn+1(rnk) + 0.
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But this is clearly the Euclidean Algorithm applied to the integers ak and
bk, so that their greatest common divisor is the last nonzero remainder rnk;
that is,

gcd(ka, kb) = rnk = k gcd(a, b),

Hence the theorem.

Corollary 1.0.5. For any integer k 6= 0, gcd(ka, kb) = |k| gcd(a, b).

Proof. We already have, if k > 0, then gcd(ka, kb) = k gcd(a, b). Therefore
it suffices to consider the case in which k < 0. Then −k = |k| > 0 and, by
Theorem 1.0.7,

gcd(ak, bk) = gcd(−ak,−bk)
= gcd(a|k|, b|k|)
= |k| gcd(a, b).

Hence the result.

Definition 1.0.4. The least common multiple of two nonzero integers a and
b, denoted by lcm(a, b), is the positive integer m satisfying the following:

(i) a|m and b|m.

(ii) If a|c and b|c, with c > 0, then m ≤ c.

As an example, the positive common multiples of the integers -12 and 30
are 60, 120, 180, ... hence, lcm(−12, 30) = 60.

Theorem 1.0.8. For positive integers a and b

gcd(a, b) lcm(a, b) = ab.

Proof. Let d = gcd(a, b) and let m = ab/d, then m > 0.
Claim: m = lcm(a, b)

Since d is the common divisor of a and b we have a = dr, b = ds for in-
tegers r and s. Then m = as = rb. This implies, m a (positive) common
multiple of a and b.
Now let c be any positive integer that is a common multiple of a and b, then
c = au = bv for some integers u and v. As we know, there exist integers x
and y satisfying d =ax+ by. In consequence,

c

m
=
cd

ab
=
c(ax+ by)

ab
= (

c

b
)x+

c

a
)y = vx+ uy.

This equation states that m|c, this implies, m ≤ c. By the definition of
least common multiple, we have m = lcm(a, b). Hence the claim. Therefore
gcd(a, b) lcm(a, b) = ab.
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Corollary 1.0.6. For any choice of positive integers a and b, lcm(a, b) = ab
if and only if gcd(a, b) = 1.

Definition 1.0.5. If a, b, c, are three integers, not all zero, gcd(a, b, c) is
defined to be the positive integer d having the following properties:

(i) d is a divisor of each of a, b, c.

(ii) If e divides the integers a, b, c, then e ≤ d.

For example gcd(39, 42, 54) = 3 and gcd(49, 210, 350) = 7.

THE DIOPHANTINE EQUATION ax+ by = c

The simplest type of Diophantine equation that we shall consider is the
linear Diophantine equation in two unknowns:

ax+ by = c,

where a, b, c are given integers and a, b are not both zero. A solution of this
equation is a pair of integers x0, y0 that, when substituted into the equation,
satisfy it; that is, we ask that ax0 + by0 = c.

Theorem 1.0.9. The linear Diophantine equation ax+by = c has a solution
if and only if d|c, where d = gcd(a, b). If x0, y0 is any particular solution of
this equation, then all other solutions are given by

x = x0 + (
b

d
)t y = y0 − (

a

d
)t,

where t is an arbitrary integer.

Example: Consider the linear Diophantine equation

172x+ 20y = 1000

Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we find
that

172 = 8.20 + 12
20 = 1.12 + 8
12 = 1.8 + 4
8 = 24,
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whence gcd(172, 20) = 4. Because 4|1000, a solution to this equation exists.
To obtain the integer 4 as a linear combination of 172 and 20, we work
backward through the previous calculations, as follows:

4 = 12− 8
= 12− (20− 12)
= 212− 20
= 2(172− 8.20)− 20
= 2.172 + (−17)20

Upon multiplying this relation by 250, we arrive at

1000 = 250.4
= 250(2.172 + (−17)20)
= 500.172 + (−4250)20,

so that x = 500 and y = −4250 provide one solution to the Diophantine
equation in question. All other solutions are expressed by

x = 500 + (20/4)t = 500 + 5t

y = −4250− (172/4)t = −4250− 43t,

for some integer t.
If we want to find positive solution,if any happen to exist. For this, t must
be chosen to satisfy simultaneously the inequalities

5t+ 500 > 0 − 43t− 4250 > 0

or

−98
36

43
> t > −100.

Because t must be an integer, we are forced to conclude that t = −99.
Thus, our Diophantine equation has a unique positive solution x = 5, y = 7
corresponding to the value t = −99.

Corollary 1.0.7. If gcd(a, b) = 1 and if x0 , y0 is a particular solution of
the linear Diophantine equation ax+ by = c, then all solutions are given by

x = x0 + bt y = Y0 − at,

for integral values of t.
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Problem 1: A customer bought a dozen pieces of fruit, apples and oranges,
for $1.32. If an apple costs 3 rupees more than an orange and more apples
than oranges were purchased, how many pieces of each kind were bought?
Solution: Let x be the number of apples and y be the number of oranges pur-
chased. Also let z be the cost (in rupees) of an orange. Then the conditions
of the problem lead to:

(z + 3)x+ zy = 132,

or equivalently
3x+ (x+ y)z = 132.

Because x+ y = 12, the previous equation may be replaced by

3x+ 12z = 132

this implies,
x+ 4z = 44.

Now the problem is to find integers x and z satisfying the Diophantine equa-
tion x+ 4z = 44. We have gcd(1, 4) = 1 is a divisor of 44, there is a solution
to this equation. Upon multiplying the relation 1 = 1 (-3) + 4 1 by 44 to
get

44 = 1(−132) + 4.44 (1.1)

it follows that x0 = −132, z0 = 44, serves as one solution. All other solutions
of Eq. (1.1) are of the form

x = −132 + 4t z = 44− t,

where t is an integer.
Not all of the choices fort furnish solutions to the original problem. Only
values of t that ensure 12 ≥ x > 6 should be considered. This requires
obtaining those values of t such that

12 ≥ −132 + 4t > 6.

Now,12 ≥ −132 + 4t implies that t ≤ 36, whereas −132 + 4t > 6 gives
t > 341

2
. The only integral values of t to satisfy both inequalities are t = 35

and t = 36. Thus, there are two possible purchases: a dozen apples costing
11 rupees apiece (the case where t = 36), or 8 apples at 12 rupees each and
4 oranges at 9 rupees each (the case where t = 35).
Problem 2: If a cock is worth 5 coins, a hen 3 coins, and three chicks together
1 coin, how many cocks, hens, and chicks, totaling 100, can be bought for
100 coins?
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Solution: Let x be the number of cocks, y be the number of hens, z be the
number of chicks. Then the conditions of the problem lead to

5x+ 3y +
1

3
z = 100 x+ y + z + 100.

Eliminating one of the unknowns, we are left with a linear Diophantine
equation in the two other unknowns. Specifically, because the quantity
z = 100− x− y, we have 5x+ 3y + 1

3
(100− x− y) = 100, or

7x+ 4y = 100.

This equation has the general solution x = 4t, y = 25−7t, so that z = 75+3t,
where t is an arbitrary integer. Some solutions are:

x = 4 y = 18 z = 78
x = 8 y = 11 z = 81
x = 12 y = 4 z = 84

To obtain all solutions in the positive integers, t must be chosen to satisfy
simultaneously the inequalities

4t > 0 25− 7t > 0 75 + 3t > 0.

The last two of these are equivalent to the requirement −25 < t < 34
7
.

Because t must have a positive value, we conclude that t = 1, 2, 3, leading to
precisely the values given above.
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PRIMES AND THEIR
DISTRIBUTION

THE FUNDAMENTAL THEOREM OF ARITHMETIC

Definition 2.0.6. An integer p > 1 is called a prime number, or simply a
prime, if its only positive divisors are 1 and p. An integer greater than 1 that
is not a prime is termed composite.

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10
are composite numbers. Note that the integer 2 is the only even prime, and
according to our definition the integer 1 plays a special role, being neither
prime nor composite.

Theorem 2.0.10. If p is a prime and p|ab, then p|a or p|b.
Proof. If p|a, then we need go no further, so let us assume that p - a. Because
the only positive divisors of p are 1 and p itself, this implies that gcd(p, a) = 1.
Hence, by Euclid’s lemma, we get p|b.
Corollary 2.0.8. If p is a prime and p|a1a2 · · · an, then p|ak for some k,
where 1 ≤ k ≤ n.

Proof. We proceed by induction on n, the number of factors. When n = 1,
the stated conclusion obviously holds; whereas when n = 2, the result is the
content of Theorem 10. Suppose, as the induction hypothesis, that n > 2
and that whenever p divides a product of less than n factors, it divides at
least one of the factors. Now let p|a1a2 · · · an. From Theorem 10, either
p|an or p|a1a2 · · · an−1 If p|an, then we are through. As regards the case
where p|a1a2 · · · an−1, the induction hypothesis ensures that p|ak for some
choice of k, with 1 ≤ k ≤ n − 1. In any event, p divides one of the integers
a1, a2, · · · , an.

17
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Corollary 2.0.9. If p, q1, q2, · · · , qn are all primes and p|q1q2 · · · qn, then
p = qk for some k, where 1 ≤ k ≤ n.

Proof. By Corollary 2.0.8, we know that p|qk for some k, with 1 ≤ k ≤ n.
Being a prime, qk is not divisible by any positive integer other than 1 or qk
itself. Because p > 1, we are forced to conclude that p = qk.

Theorem 2.0.11. (Fundamental Theorem of Arithmetic.) Every positive
integer n > 1 can be expressed as a product of primes; this representation is
unique, apart from the order in which the factors occur.

Proof. Either n is a prime, there is nothing to prove. If n is composite,
then there exists an integer d satisfying d|n and 1 < d < n. Among all such
integers d, choose p1 to be the smallest (this is possible by the Well-Ordering
Principle). Then P1 must be a prime number. Otherwise it too would have
a divisor q with 1 < q < p1; but then q|p1 and p1|n imply that q|n, which
contradicts the choice of p1 as the smallest positive divisor, not equal to 1,
of n. We therefore may write n = p1n1, where p1 is prime and 1 < n1 < n.If
n1 happens to be a prime, then we have our representation. In the contrary
case, the argument is repeated to produce a second prime number p2 such
that n1 = p2n2; that is,

n = p1P2n2 1 < n2 < n1.

If n2 is a prime,then it is not necessary to go further. Otherwise, write
n2 = p3n3, with p3 a prime:

n = p1P2p3n3 1 < n3 < n2.

The decreasing sequence n > n1 > n2 > · · · > 1 cannot continue indefinitely,
so that after a finite number of steps nk−1 is a prime, call it, pk. This leads
to the prime factorization

n = p1p2 · · · pk.

To establish the second part of the proof-the uniqueness of the prime factor-
ization, let us suppose that the integer n can be represented as a product of
primes in two ways, say,

n = p1p2 · · · pr = q1q2 · · · qs r ≤ s,

where the pi and qj are all primes, written in increasing magnitude so that

p1 ≤ p2 ≤ · · · ≤ pr q1 ≤ q2 ≤ · · · ≤ qs.
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Because p1|q1q2 · · · qs , Corollary 9 tells us that p1 = qk for some k; but then
p1 ≥ q1. Similar reasoning gives q1 ≥ p1, whence p1 = q1. We may cancel
this common factor and obtain

p2p3 · · · pr = q2q3 · · · qs.

Now repeat the process to get p2 = q2 and, in turn,

p3p4 · · · pr = q3q4 · · · qs.

Continue in this fashion. If the inequality r < s were to hold, we would
eventually arrive at

1 = qr+1qr+2 · · · qs,

which is absurd, because each qj > 1. Hence, r = s and

p1 = q1, p2 = q2, · · · , pr = qr,

making the two factorizations of n identical. The proof is now complete.

Corollary 2.0.10. Any positive integer n > 1 can be written uniquely in a
canonical form

n = pk11 p
k2
2 · · · pkrr ,

where, for i = 1, 2, · · · , r, each ki is a positive integer and each pi is a prime,
with p1 < p2 < · · · < pr.

Theorem 2.0.12. (Pythagoras.) The number
√

2 is irrational.

Proof. Suppose, to the contrary, that
√

2 is a rational number, say,
√

2 = a/b,
where a and b are both integers with gcd(a, b) = 1. Squaring, we get a2 = 2b2

, so that b|a2. Claim: b = 1 If b > 1, then the Fundamental Theorem of
Arithmetic guarantees the existence of a prime p such that p|b. It follows
that p|a2. This implies that p|a; hence, gcd(a, b) ≥ p. We therefore arrive at
a contradiction, unless b = 1, hence the claim.
But if this happens, then a2 = 2, which is impossible. Our supposition that√

2 is a rational number is not true, and so
√

2 must be irrational.

THE SIEVE OF ERATOSTHENES

Given a particular integer, how can we determine whether it is prime or
composite and, in the latter case, how can we actually find a nontrivial divi-
sor? The most obvious approach consists of successively dividing the integer
in question by each of the numbers preceding it; if none of them (except 1)
serves as a divisor, then the integer must be prime. Although this method
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is very simple to describe, it cannot be regarded as useful in practice. For
even if one is undaunted by large calculations, the amount of time and work
involved may be prohibitive.

Theorem 2.0.13. (Euclid.) There is an infinite number of primes.

Proof. Euclid’s proof is by contradiction. Let p1 = 2, p2 = 3, p3 = 5, p4 =
7, · · · be the primes in ascending order, and suppose that there is a last
prime, called pn Now consider the positive integer P = p1p2 · · · pn+1. Because
P > 1, we have P is divisible by some prime p. But p1, p2, · · · , pn are the only
prime numbers, so that p must be equal to one of p1, p2, ..., pn. Combining the
divisibility relation p|p1, p2, · · · , pn with p|P, we arrive at p|P −p1, p2, · · · , pn
or, equivalently, p|1. The only positive divisor of the integer 1 is 1 itself
and, because p > 1, a contradiction arises. Thus, no finite list of primes is
complete, whence the number of primes is infinite.

Definition 2.0.7. For a prime p, define p# = the product of all primes that
are less than or equal to p. Numbers of the form p# + 1 called Euclidean
numbers.

Note: Not all Euclidean numbers are primes. For example, 13#+1 = 59.509,
17# + 1 = 19.97.277, 19# + 1 = 347.27953.

Theorem 2.0.14. If pn is the nth prime number, then pn ≤ 22n−l
.

Proof. Proof is by induction on n.When n = 1, pn = p1 = 2 and 22n−1
=

221−1
= 220 = 21 = 2, the result is true.Suppose that n > 1 and that the

result holds for all integers up to n. Then

pn+1 ≤ p1p2 · · · pn + 1

≤ 222 · · · 2n−1 + 1 = 21+2+22+···+2n−1
+ 1.

Recalling the identity 1 + 2 + 22 + + 2n−1 = 2n − 1, we obtain

pn+1 ≤ 22n−1 + 1.

However, 1 ≤ 22n−1 for all n; whence

pn+1 ≤ 22n−1 + 22n−1

= 2.22n−1 = 22n

completing the induction step, and the argument.

Corollary 2.0.11. For n ≥ 1, there are at least n+ 1 primes less than 22n.

Proof. From the theorem, we know that p1, p2, · · · , pn+1 are all less than
22n .



Chapter 3

THE THEORY OF
CONGRUENCES

Definition 3.0.8. Let n be a fixed positive integer. Two integers a and b are
said to be congruent modulo n, symbolized by

a ≡ b(modn)

if n divides the difference a − b; that is, provided that a − b = kn for some
integer k.

Theorem 3.0.15. For arbitrary integers a and b, a ≡ b(modn) if and only
if a and b leave the same nonnegative remainder when divided by n.

Proof. Suppose a ≡ b(modn), so that a = b + kn for some integer k. Upon
division by n, b leaves a certain remainder r; that is, b = qn + r, where
0 ≤ r < n. Therefore,

a = b+ kn = (qn+ r) + kn = (q + k)n+ r

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = q1n+ r and b = q2n+ r, with
the same remainder r (0 ≤ r < n). Then

a− b = (q1n+ r)− (q2n+ r) = (q1 − q2)n,

whence n|a− b. That is, a ≡ b(modn).

Theorem 3.0.16. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then
the following properties hold:

1. a ≡ a(modn).

21
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2. If a ≡ b(modn), then b ≡ a(modn).

3. If a ≡ b(modn) and b ≡ c(modn), then a ≡ c(modn).

4. If a ≡ b(modn) and c ≡ d(modn), then a + c ≡ b + d(modn) and
ac ≡ bd(modn).

5. If a ≡ b(modn), then a+ c ≡ b+ c(modn) and ac ≡ bc(modn).

6. If a ≡ b(modn), then ak ≡ bk(modn) for any positive integer k.

Problem 1: Show that 41|220 − 1.
Solution: We have

25 ≡ −9(mod 41).

Therefore

(25)4 ≡ (−9)4(mod 41).

This implies that

220 ≡ (−9)4(mod 41).

But we have (−9)4 = 81.81 and 81 ≡ −1(mod 41). Therefore

220 ≡ (−1)(−1)(mod 41).

This implies 41|220 − 1.
Problem 2: Find the remainder obtained upon dividing the sum

1! + 2! + 3! + 4! + · · ·+ 99! + 100!

by 12.
Solution: We have 4! ≡ 24 ≡ 0(mod 12); thus, for k ≥ 4,

k! ≡ 4!.5.6 · · · k ≡ 0.5..6 · · · k ≡ 0(mod 12).

Therefore

1! + 2! + 3! + 4! + · · ·+ 100! ≡ 1! + 2! + 3! + 0 + · · ·+ 0 ≡ 9(mod 12).

The remainder 9.

Theorem 3.0.17. If ca ≡ cb(mod n), then a ≡ b(mod n/d), where d =
gcd(c, n).
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Proof. By hypothesis, we can write

c(a− b) = ca− cb = kn, (3.1)

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime
integers r and s satisfying c = dr, n = ds. When these values are substituted
in Eq. 3.1 and the common factor d canceled, the net result is

r(a− b) = ks.

Hence, s|r(a − b) and gcd(r, s) = 1. Euclid’s lemma yields s|(a − b), which
implies a ≡ b(mod s); in other words, a ≡ b(mod n/d).

Corollary 3.0.12. If ca ≡ cb(mod n) and gcd(c, n) = 1, then a ≡ b(mod n).

Corollary 3.0.13. If ca ≡ cb(mod p) and p - c, where p is a prime number,
then a ≡ b(mod p).

Proof. The conditions p - c and p a prime imply that gcd(c, p) = 1. Then by
Corollary 12, a ≡ b(mod p).

BINARY AND DECIMAL REPRESENTATIONS OF INTEGERS.

One of the more interesting applications of congruence theory involves find-
ing special criteria under which a given integer is divisible by another integer.
At their heart, these divisibility tests depend on the notational system used
to assign ”names” to integers and, more particularly, to the fact that 10 is
taken as the base for our number system. Let us, therefore, start by showing
that, given an integer b > 1, any positive integer N can be written uniquely
in terms of powers of b as

N = amb
m + am−lb

m−l + · · ·+ a2b
2 + a1b+ a0

where the coefficients ak can take on the b different values 0, 1, 2, · · · , b− 1.
For the Division Algorithm yields integers q1 and a0 satisfying

N = q1b+ a0 0 ≤ a0 < b.

If q1 ≥ b, we can divide once more, obtaining

q1 = q2b+ a1 0 ≥ a1 < b.

Now substitute for q1 in the earlier equation to get

N = (q2b+ a1)b+ a0 = q2b
2 + a1b+ a0.
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Because N > q1 > q2 > · · · ≥ 0 is a strictly decreasing sequence of integers,
this process must eventually terminate, say, at the (m− 1)th stage, where

qm−1 = qmb+ am−1 0 ≤ am−1 < b

and 0 ≤ qm < b. Setting am = qm, we reach the representation

N = amb
m + am−lbm−l + · · ·+ a1b+ a0.

which was our aim. To show uniqueness, refer text.

Theorem 3.0.18. Let P (x) =
∑m

k=0 ckx
k be a polynomial function of x with

integral coefficients ck. If a ≡ b(mod n), then P (a) ≡ P (b)(mod n).

Proof. Please refer text.

Theorem 3.0.19. If a is a solution of P (x) ≡ 0(mod n) and a ≡ b(mod n),
then b also is a solution.

Proof. From the last theorem, it is known that P (a) ≡ P (b)(mod n). Hence,
if a is a solution of P (x) ≡ 0(mod n), then P (b) ≡ P (a) ≡ 0(mod n), making
b a solution.

Theorem 3.0.20. Let N = am10m + am−1, 10m−1 + · · · + a110 + a0 be the
decimal expansion of the positive integer N, 0 ≤ ak < 10, and let S =
a0 + a1 + · · ·+ am. Then 9|N if and only if 9|S.

Proof. Please refer text.

Theorem 3.0.21. Let N = am10m + am−110m−1 + · · · + a110 + a0 be the
decimal expansion of the positive integer N, 0 ≤ ak < 10, and let T =
a0 − a1 + a2 − · · ·+ (−1)mam. Then 11|N if and only if 11|T.

Proof. Please refer text.

LINEAR CONGRUENCES AND THE CHINESE REMAINDER
THEOREM.

Theorem 3.0.22. The linear congruence ax ≡ b(mod n) has a solution if
and only if d|b, where d = gcd(a, n). If d|b, then it has d mutually incongruent
solutions modulo n.
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Theorem 3.0.23. Chinese Remainder Theorem: Let n1, n2, · · · , n, be posi-
tive integers such that gcd(ni, nj) = 1 for i 6= j. Then the system of linear
congruences

x ≡ a1(mod n1)
x ≡ a2(mod n2)

...
x ≡ ar(mod nr)

has a simultaneous solution, which is unique modulo the integer n1, n2, · · · , nr.

Problem 1: Solve
x ≡ 2(mod 3)
x ≡ 3(mod 5)
x ≡ 2(mod 7).

Solution: We have n = 3 . 5 .7 = 105 and

N1 =
n

3
= 35 N2 =

n

5
= 21 N3 =

n

7
= 15

Now the linear congruences

35x ≡ 1(mod 3) 21x ≡ 1(mod 5) 15x ≡ 1(mod 7)

are satisfied by x1 = 2, x2 = 1, x3 = 1, respectively. Thus, a solution of the
system is given by

x = 2352 + 3211 + 2151 = 233

Modulo 105, we get the unique solution x = 233 = 23(mod 105).



26 CHAPTER 3. THE THEORY OF CONGRUENCES



Chapter 4

FERMAT’S THEOREM

FERMAT’S LITTLE THEOREM AND PSEUDOPRIMES

The most significant of Fermat’s correspondents in number theory was Bern-
hard Frenicle de Bessy ( 1605-1675), an official at the French mint who was
renowned for his gift of manipulating large numbers. (Frenicle ’s facility in
numerical calculation is revealed by the following incident: On hearing that
Fermat had proposed the problem of finding cubes that when increased by
their proper divisors become squares, as is the case with 73+(1+7+72) = 202,
he immediately gave four different solutions, and supplied six more the next
day.) Though in no way Fermat’s equal as a mathematician, Frenicle alone
among his contemporaries could challenge Fermat in number theory and
Frenicle’s challenges had the distinction of coaxing out of Fermat some of
his carefully guarded secrets. One of the most striking is the theorem that
states: If p is a prime and a is any integer not divisible by p, then p divides
ap−1− 1. Fermat communicated the result in a letter to Frenicle dated Octo-
ber 18, 1640, along with the comment, ”I would send you the demonstration,
if I did not fear its being too long.” This theorem has since become known
as ”Fermat’s Little Theorem,” or just ”Fermat’s Theorem,” to distinguish it
from Fermat’s ”Great” or ”Last Theorem,” which is the subject of Chapter
12. Almost 100 years were to elapse before Euler published the first proof
of the little theorem in 1736. Leibniz, however, seems not to have received
his share of recognition, for he left an identical argument in an unpublished
manuscript sometime before 1683.
We now proceed to a proof of Fermat’s theorem.

Theorem 4.0.24. Fermat’s theorem. Let p be a prime and suppose that p|a.
Then

aP−1 ≡ 1(mod p).

27
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Proof. We begin by considering the first p − 1 positive multiples of a; that
is, the integers

a, 2a, 3a, · · · , (p− 1)a

None of these numbers is congruent modulo p to any other, nor is any con-
gruent to zero. Indeed, if it happened that

ra ≡ sa(mod p) 1 ≤ r < s ≤ p− 1

then a could be canceled to give r ≡ s(mod p), which is impossible. There-
fore, the previous set of integers must be congruent modulo p to 1, 2, 3, · · · , p−
1, taken in some order. Multiplying all these congruences together, we find
that

a.2a.3a · · · (p− 1)a ≡ 1.2.3 · · · (p− 1)(mod p)

whence
ap−1(p− 1)! ≡ (p− 1)!(mod p).

Once (p − 1)! is canceled from both sides of the preceding congruence (this
is possible because since p|(p − 1)!), our line of reasoning culminates in the
statement that ap−l = 1(mod p), which is Fermat’s theorem.

This result can be stated in a slightly more general way in which the
requirement that p - a is dropped.

Corollary 4.0.14. If p is a prime, then ap = a(mod p) for any integer a.

Proof. When p|a, the statement obviously holds; for, in this setting, ap ≡
0 ≡ a(mod p). If p|a, then according to Fermat’s theorem, we have ap − l ≡
1(mod p). When this congruence is multiplied by a, the conclusion ap ≡
a(mod p) follows.

Lemma 4.0.2. If p and q are distinct primes with ap ≡ a(mod q) and
aq ≡ a(mod p), then apq = a(mod pq).

Proof. The last corollary tells us that (aq)p = aq(mod p), whereas aq =
a(mod p) holds by hypothesis. Combining these congruences, we obtain
apq = a(mod p). or, in different terms, p|apq−a. In similar manner, q|apq−a.
Therefore pq|apq − a, that is, apq = a(mod pq).

Definition 4.0.9. A composite integer n is called pseudoprime whenever
n|2n − 2. It can be shown that there are infinitely many pseudoprimes, the
smallest four being 341, 561, 645, and 1105.

Theorem 4.0.25. If n is an odd pseudoprime, then Mn = 2n− 1 is a larger
one.
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Proof. Please refer text.

WILSON’S THEOREM

We now turn to another milestone in the development of number theory.
In his Meditationes Algebraicae of 1770, the English mathematician Edward
Waring (1734-1798) announced several new theorems. Foremost among these
is an interesting property of primes reported to him by one of his former stu-
dents, a certain John Wilson. The property is the following: If p is a prime
number, then p divides (p − 1)! + 1. Wilson appears to have guessed this
on the basis of numerical computations; at any rate, neither he nor Waring
knew how to prove it. Confessing his inability to supply a demonstration,
Waring added, ”Theorems of this kind will be very hard to prove, because of
the absence of a notation to express prime numbers.” (Reading the passage,
Gauss uttered his telling comment on ”notationes versus notiones,” imply-
ing that in questions of this nature it was the notion that really mattered,
not the notation.) Despite Waring’s pessimistic forecast, soon afterward La-
grange (1771) gave a proof of what in literature is called ”Wilson’s theorem”
and observed that the converse also holds. Perhaps it would be more just to
name the theorem after Leibniz, for there is evidence that he was aware of
the result almost a century earlier, but published nothing on the subject.
Now we give a proof of Wilson’s theorem.

Theorem 4.0.26. Wilson. If p is a prime, then (p− 1)! ≡ −1(mod p).

Proof. When p = 2 and p = 3 are trivial, let us take p > 3. Suppose that a is
any one of the p−1 positive integers 1, 2, 3, · · · , p−1 and consider the linear
congruence ax ≡ 1(mod p). Then gcd(a, p) = 1. Therefore this congruence
admits a unique solution modulo p; hence, there is a unique integer a′, with
1 ≤ a′ ≤ p − 1, satisfying aa′ ≡ 1(mod p). Because p is prime, a = a′ if
and only if a = 1 or a = p − 1. Indeed, the congruence a2 ≡ 1(mod p) is
equivalent to (a− 1).(a+ 1) = 0(mod p). Therefore, either a− 1 ≡ 0(mod p),
in which case a = 1, or a+ 1 ≡ 0(mod p), in which case a = p− 1.
If we omit the numbers 1 and p − 1, the effect is to group the remaining
integers 2, 3, · · · , p− 2 into pairs a, a′, where a 6= a′, such that their product
aa′ ≡ 1(mod p). When these (p − 3)/2 congruences are multiplied together
and the factors rearranged, we get

2.3 · · · (p− 2) ≡ 1(mod p)

or rather

(p− 2)! ≡ 1(mod p)
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Now multiply by p− 1 to obtain the congruence

(p− 1)! ≡ p− 1 ≡ −1(mod p)

this completes the proof.

Theorem 4.0.27. The quadratic congruence x2 + 1 ≡ 0(mod p), where p is
an odd prime, has a solution if and only if p ≡ 1(mod4).

Proof. Please refer text.
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NUMBER-THEORETIC
FUNCTIONS

THE SUM AND NUMBER OF DIVISORS

Certain functions are found to be of special importance in connection with
the study of the divisors of an integer. Any function whose domain of def-
inition is the set of positive integers is said to be a number-theoretic (or
arithmetic)function. Although the value of a number-theoretic function is
not required to be a positive integer or, for that matter, even an integer,
most of the number-theoretic functions that we shall encounter are integer-
valued. Among the easiest to handle, and the most natural, are the functions
τ and σ.

Definition 5.0.10. Given a positive integer n, let τ(n) denote the number
of positive divisors of n and σ(n) denote the sum of these divisors.

For an example of these notions, consider n = 12. Because 12 has the
positive divisors 1, 2, 3, 4, 6, 12, we find that τ(12) = 6 and σ(12) =
1 + 2 + 3 + 4 + 6 + 12 = 28 For the first few integers,

τ(l) = 1τ(2) = 2τ(3) = 2τ(4) = 3τ(5) = 2τ(6) = 4, · · ·

and

σ(1) = 1, σ(2) = 3, σ(3) = 4, σ(4) = 7, σ(5) = 6, σ(6) = 12, · · ·

It is not difficult to see that τ(n) = 2 if and only if n is a prime number;
also, σ(n) = n+ 1 if and only if n is a prime.
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Theorem 5.0.28. If n = pk11 p
k2
2 · · · pkrr is the prime factorization of n > 1,

then the positive divisors of n are precisely those integers d of the form

d = pa11 p
a2
2 · · · parr

where 0 ≤ ai ≤ ki (i = 1, 2, ..., r).

Proof. Please refer text.

Theorem 5.0.29. If n = pk11 p
k2
2 · · · pkrr is the prime factorization of n > 1,

then

1. τ(n) = (k1 + 1)(k2 + 1) · · · (kr + 1), and

2. σ(n) =
p
k1+1
1 −1
p1−1

p
k2+1
2 −1
p2−1

pkr+1
r −1
pr−1

Proof. Please refer text.

Problem: Find the number of positive divisors and their sum of 180.
Solution: The number 180 = 22 . 32 . 5 has

τ(180) = (2 + 1)(2 + 1)(1 + 1) = 18

positive divisors. These are integers of the form

2a1 . 3a2 . 5a3

where a1 = 0, 1, 2; a2 = 0, 1, 2; and a3 = 0, 1. Specifically, we obtain
1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180.
The sum of these integers is

σ(180) =
23 − 1

2− 1

33 − 1

3− 1

52 − 1

5− 1
=

7

1

26

2

24

4
= 7 . 13 . 6 = 546

Definition 5.0.11. A number-theoretic function f is said to be multiplicative
if

f(mn) = f(m)f(n)

whenever gcd(m,n) = 1.

Example: The functions τ and σ are both multiplicative functions.

THE GREATEST INTEGER FUNCTION

The greatest integer or ”bracket” function [ ] is especially suitable for treat-
ing divisibility problems. Although not strictly a number-theoretic function,
its study has a natural place in this chapter.
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Definition 5.0.12. For an arbitrary real number x, we denote by [x] the
largest integer less than or equal to x; that is, [x] is the unique integer satis-
fying x− 1 < [x] ≤ x.

[−3/2] = −2 [
√

2] = 1 [1/3] = 0 [π] = 3[−π] = −4

The important observation to be made here is that the equality [x] = x holds
if and only if x is an integer. Also from the definition we have any real
number x can be written as

x = [x] + θ

for a suitable choice of θ with 0 ≤ θ < 1.

Results:

1. If n is a positive integer and p a prime, then the exponent of the highest
power of p that divides n! is

∞∑
k=1

[
n

pk

]
where the series is finite, because [n/pk] = 0 for pk > n.

2. If n and r are positive integers with 1 ≤ r < n, then the binomial
coefficient (

n
r

)
=

n!

r!(n− r)!
is also an integer.

3. For a positive integer r, the product of any r consecutive positive inte-
gers is divisible by r!.

4. Let f and F be number-theoretic functions such that

F (n) =
∑
d|n

f(d).

Then, for any positive integer N,

N∑
n=1

F (n) =
N∑
k=1

f(k)

[
N

k

]
.
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5. If N is a positive integer, then

N∑
n=1

τ(n) =
N∑
n=1

[
N

n

]
.

6. If N is a positive integer, then

N∑
n=1

σ(n) =
N∑
n=1

n

[
N

n

]
.



Chapter 6

EULER’S GENERALIZATION
OF FERMAT’S THEOREM

EULER’S PHI-FUNCTION

This chapter deals with that part of the theory arising out of the result
known as Euler’s Generalization of Fermat’s Theorem. In a nutshell, Euler
extended Fermat’s theorem, which concerns congruences with prime moduli,
to arbitrary moduli. While doing so, he introduced an important number-
theoretic function:

Definition 6.0.13. For n ≥ 1, let φ(n) denote the number of positive integers
not exceeding n that are relatively prime to n.

As an illustration of the definition, we find that φ(30) = 8; for, among
the positive integers that do not exceed 30, there are eight that are relatively
prime to 30; specifically,

1, 7, 11, 13, 17, 19, 23, 29.

Similarly, for the first few positive integers, φ(l) = 1, φ(2) = 1, φ(3) =
2, φ(4) = 2, φ(5) = 4, φ(6) = 2, φ(7) = 6, · · ·
Notice that φ(1) = 1, because gcd(1, 1) = 1. In the event n > 1, then
gcd(n, n) = n 6= 1, so that φ(n) can be characterized as the number of in-
tegers less than n and relatively prime to it. The function φ(n) is usually
called the Euler phi-function (sometimes, the indicator or totient) after its
originator; the functional notation φ(n), however, is credited to Gauss.
If n is a prime number, then every integer less than n is relatively prime to
it; whence, φ(n) = n − 1. On the other hand, if n > 1 is composite, then n
has a divisor d such that 1 < d < n. It follows that there are at least two
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integers among 1, 2, 3, · · · , n that are not relatively prime to n, namely, d
and n itself. As a result, φ(n) ≤ n− 2. This proves that for n > 1,

φ(n) = n− 1 if and only if n is prime.

Results:

1. If p is a prime and k > 0, then

φ(pk) = pk − pk−1 = pk
(

1− 1

p

)
.

2. Given integers a, b, c, gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and
gcd(a, c) = 1.

3. The function φ is a multiplicative function.

4. If the integer n > 1 has the prime factorization n = pk11 p
k2
2 · · · pkrr , then

φ(n) = (pk11 − pk1−11 )(pk22 − pk2−12 ) · · · (pkrr − pkr−1r )

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
5. For n > 2, φ(n) is an even integer.

Problem 1: Find φ(16).
Solution: φ(16) = φ(24) = 24 − 23 = 16− 8 = 8.
Problem 2: Find φ(360).
Solution: The prime-power decomposition of 360 is 23 . 32 . 5, therefore

φ(360) = 360(1− 1

2
)(1− 1

3
)(1− 1

5
)

= 360 .
1

2
.

2

3
.

4

5
= 96.

EULER’S THEOREM

Lemma 6.0.3. Let n > 1 and gcd(a, n) = 1. If a1, a2, · · · , aφ(n) are the
positive integers less than n and relatively prime to n, then

aa1, aa2, · · · aφ(n)

are congruent modulo n to a1, a2, · · · , aφ(n) in some order.
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Proof. Observe that no two of the integers a1, a2, · · · , aφ(n) are congruent
modulo n. For if aai ≡ aaj(mod n), with 1 ≤ i < j ≤ φ(n), then the
cancellation law yields ai ≡ aj(mod n), and thus ai = aj, a contradiction.
Furthermore, because gcd(ai, n) = 1 for all i and gcd(a, n) = 1, this implies
that each of the aai is relatively prime to n.
Fixing on a particular aai, there exists a unique integer b, where 0 ≤ b < n,
for which aai ≡ b(mod n). Because gcd(b, n) = gcd(aai, n) = 1, b must be
one of the integers a1, a2, · · · , aφ(n). All told, this proves that the numbers
aa1, aa2, · · · aφ(n) and the numbers a1, a2, · · · , aφ(n) are identical modulo n
in a certain order.

Theorem 6.0.30. Euler. If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Corollary 6.0.15. Fermat. If p is a prime and p - a, then ap−1 ≡ 1(mod p).

Problem: Find the last two digits in the decimal representation of 3256.
Solution: This is equivalent to obtaining the smallest nonnegative integer to
which 3256 is congruent modulo 100. Because gcd(3, 100) = 1 and

φ(100) = φ(22 . 52) = 100

(
1− 1

2

)(
1− 1

5

)
= 40.

Euler’s theorem yields
3φ(100) ≡ 1(mod 100)

340 ≡ 1(mod 100)

By the Division Algorithm, 256 = 6 . 40 + 16; whence

3256 ≡ 36 . 40+16 ≡ (340)6 316 ≡ 316(mod 100)

and our problem reduces to one of evaluating 316, modulo 100. The method
of successive squaring yields the congruences

32 ≡ 9(mod 100) 34 ≡ 81(mod 100)

38 ≡ 61(mod 100) 316 ≡ 21(mod 100).

Hence the last two digits of 3256 is 21.

SOME PROPERTIES OF THE PHI-FUNCTION

The next theorem points out a curious feature of the phi-function; namely,
that the sum of the values of φ(d), as d ranges over the positive divisors of
n, is equal to n itself. This was first noticed by Gauss.
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Theorem 6.0.31. For each positive integer n ≥ 1,

n =
∑
d|n

φ(d)

the sum being extended over all positive divisors of n.

Theorem 6.0.32. For n > 1, the sum of the positive integers less than n
and relatively prime to n is 1

2
nφ(n).



Chapter 7

VECTOR SPACE

Definition 7.0.14. By a vector space we shall mean a set V on which there
are defined two operations, one called ’addition’ and the other called ’multi-
plication by scalars’, such that the following properties hold:

(V1) x+ y = y + x for all x, y ∈ V ;

(V2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ V ;

(V3) there exists an element 0 ∈ V such that x+ 0 = x for every x ∈ V ;

(V4) for every x ∈ V there exists −x ∈ V such that x+ (−x) = 0;

(V5) λ(x+ y) = λx+ λy for all x, y ∈ V and all scalars λ;

(V6) (λ+ µ)x = λx+ µx for all x ∈ V and all scalars λ, µ;

(V7) (λµ)x = λ(µx) for all x ∈ V and all scalars λ, µ;

(V8) 1x = xfor all x ∈ V.
When the scalars are all real numbers we shall often talk of a real vector space;
and when the scalars are all complex numbers we shall talk of a complex vector
space.

* It should be noted that in the definition of a vector space the scalars
need not be restricted to be real or complex numbers. They can in fact
belong to any ’field’ F (which may be regarded informally as a number
system in which every nonzero element has a multiplicative inverse).
Although in what follows we shall find it convenient to say that ’V is
a vector space over a field F ’ to indicate that the scalars come from
a field F , we shall in fact normally assume (that is, unless explicitly
mentioned otherwise) that F is either the field R of real numbers or the
field CC of complex numbers .
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** Axioms (V1) to (V4) above can be summarized by saying that the al-
gebraic structure (V ; +) is an abelian group. If we denote by F the
field of scalars (usually R or C) then multiplication by scalars can be
considered as an action by F on V , described by (λ, x) → λx, which
relates the operations in F (addition and multiplication) to that of V
(addition) in the way described by the axioms (V5) to (V8).

Example 7.0.1. Matm×nR , the set of all m× n matrices with real entries
is a real vector space under the usual operations of addition of matrices and
multiplication by scalars.

Example 7.0.2. The set Rn of n-tuples (x1, x2, ..., xn) of real numbers is a
real vector space under the following component-wise definitions of addition
and mutiplication by scalars;

(x1, x2, ..., xn) + (y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn),

λ(x1, x2, ..., xn) = (λx1, λx2, ..., λxn).

Geometrically, R2 represents the cartesian plane, whereas R3 represents three
dimensional space.
Similarly, the set Cn of n-tuples of complex numbers can be made into both
a real vector space (with the scalars real numbers) or a complex vector space
(with the scalars complex numbers).

Example 7.0.3. Let Map (R,R) be the set of all mappings f : R→ R. For
two such mappings f, g define f + g : R → R to be the mapping given by
the prescription (f + g)(x) = f(x) + g(x), and for every scalar λ ∈ R define
λf : R → R to be the mapping given by the prescription (λf)(x) = λf(x).
These operations make Map (R,R) into a real vector space.

Theorem 7.0.33. If V is a vector space over a field F then

1. (∀λ ∈ F ) λ0V = 0V

2. (∀x ∈ V ) 0Fx = 0V

3. if λx = 0V then either λ = 0F or x = 0V

4. (∀x ∈ V ) (∀λ ∈ F ) (−λ)x = −(λx) = λ(−x).

Proof. By (V3) and (V5) we have

λ0V = λ(0V + 0V )
= λ0V + λ0V
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Now add −(λ0V ) to each side, we get

λ0V +−(λ0V ) = λ0V + λ0V +−(λ0V ).

This implies that λ0V = 0V .

2. By (V6) we have
λ0Fx = λ(0F + 0F )x

= λ0F + λ0F

Now add −(λ0Fx) to each side, we get

λ0F +−(λ0F ) = λ0F + λ0F +−(λ0F ).

This implies that 0Fx = 0V .

3. Suppose that λx = 0V and that λ 6= 0F . Then λ has a multiplicative inverse
λ−1, and so, by (V7) and 1., x = 1Fx = (λλ−1)x = λ−1(λx) = λ−10V = 0V .

4. By 2. and (V6) we have

0V = [λ+ (−λ)]x = λx+ (−λ)x.

Now add -(λ)x to each side. Also, by 1. and (V5) we have

0V = λ[x+ (−x)] = λx+ λ(−x).

Now add -(λ)x to each side. We have (−λ)x = −(λx) = λ(−x).

Definition 7.0.15. Let V be a vector space over a field F. By a subspace of V
we shall mean a non-empty subset W of V that is closed under the operations
of V, in the sense that

(1) if x, y ∈ W then x+ y ∈ W ;

(2) if x ∈ W and λ ∈ F then λx ∈ W.

Example 7.0.4. Every vector space V is (trivially) a subspace of itself. V
itself is therefore the biggest subspace of V.

Example 7.0.5. The singleton subset {0V } is a subspace of V. This is then
the smallest subspace of V since, as observed above, we have that 0V ∈ W
for every subspace W of V.

Example 7.0.6. The real vector space R is a subspace of the complex vector
space C.
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Example 7.0.7. In the real vector space R2 the set X = {(x, 0) : x ∈ R}
is a subspace. This subspace is simply the ’x-axis’ in the cartesian plane R.
Similarly,the ’y-axis’ Y = {(0, y) : y ∈ R} is a subspace of R2.

Theorem 7.0.34. The intersection of any set of subspaces of a vector space
V is a subspace of V.

Proof. Let C be a set of subspaces of V and let T be their intersection. Then
T 6= φ since every subspace of V (and therefore every subspace in C) contains
0V , whence so also does T. Suppose now that x, y ∈ T . Since x and y belong
to every subspace W in the set C, so does x + y and hence x+ y ∈ T . Also,
if x ∈ T then x belongs to every subspace W in the set C, whence so does
λx and so λx ∈ T . Thus we see that T is a subspace of V.

Remark: The union of a set of subspaces of a vector space V need not be
a subspace of V.

Example 7.0.8. In R2 the x-axis X and the y-axis Y are subspaces, but
X
⋃
Y is not. For example, we have (1, 0) ∈ X and (0, 1) ∈ Y, but

(1, 0) + (0, 1) = (1, 1) /∈ X
⋃

Y

so the subset X
⋃
Y is not closed under addition and therefore cannot be a

subspace.

Suppose now that we are given a subset S of a vector space V (with no
restrictions, so that S may be empty if we wish). The collection C of all the
subs paces of V that contain S is not empty, for clearly V itself belongs to
C. By Theorem 7.0.34, the intersection of all the subspaces in C is also a
subspace of V, and clearly this intersection also contains S. This intersection
is therefore the smallest subspace of V that contains S (and is, of course, S
itself whenever S is a subspace). We shall denote this subspace by 〈S〉.

Definition 7.0.16. Let V be a vector space over a field F and let S be a
non-empty subset of V. Then we say that v ∈ V is a linear combination of
elements of S if there exist x1, x2, ..., xn ∈ S and λ1, λ2, ..., λn ∈ F such that

v = λ1x1 + λ2x2 + ...+ λnxn =
n∑
i=1

λixi.

It is clear that v =
∑n

i=1 λixi and w =
∑n

i=1 µiyi are linear combinations of
elements of S then so is v + w; moreover, so is λv for every λ ∈ F . Thus
the set of linear combinations of elements of S is a subspace of V. We call
this the subspace spanned by S and denote it by Span S.
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Theorem 7.0.35. 〈S〉 = SpanS.

Proof. For every x ∈ S we have x = 1Fx ∈ SpanS and therefore we see that
S ⊆ SpanS. Since, by definition, 〈S〉 is the smallest subspace that contains
S, and since Span S is a subspace, we see that 〈S〉 ⊆ SpanS.
For the reverse inclusion, let x1, x2, ..., xn ∈ S and λ1, λ2, ..., λn ∈ F . If W
is any subspace of V that contains S we clearly have x1, x2, ..., xn ∈ W and
λ1x1+λ2x2+ ...+λnxn ∈ W . Consequently we see that SpanS ⊆ W . Taking
W in particular to be 〈S〉, we obtain the result.

Example 7.0.9. If the n-tuple

ei = (0, ..., 0, 1, 0, ..., 0)

has the 1 in the i-th position then for every (x1, x2, ..., xn) ∈ Rn we have
(x1, x2, ..., xn) = x1e1 +x2e2 + ...xnen. Consequently, {e1, e2, ..., en} spans Rn.

Definition 7.0.17. Let S be a non-empty subset of a vector space V over a
field F. Then S is said to be linearly independent if the only way of expressing
0V as a linear combination of elements of S is the trivial way (in which
all scalars are 0F )’ Equivalently, S is linearly independent if, for any given
x1, x2, ..., xn ∈ S, we have λ1x1 + λ2x2 + ... + λnxn = 0V . This implies that
λ=λ2 = ... = λn = 0F .
A subset that is not linearly independent is said to be linearly dependent.

Example 7.0.10. If the n-tuple

ei = (0, ..., 0, 1, 0, ..., 0)

has the 1 in the i-th position then {e1, e2, ..., en} is a linearly independent
subset of the vector space Rn.

Example 7.0.11. Every singleton subset {x} of a vector space V with x 6= 0
is linearly independent.

Theorem 7.0.36. No linearly independent subset of a vector space V can
contain 0V .

Theorem 7.0.37. Let V be a vector space over a field F. If S is a subset
of V that contains at least two elements then the following statements are
equivalent:

(1) S is linearly dependent;

(2) at least one element of S can be expressed as a linear combination of
the other elements of S.
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Definition 7.0.18. A basis of a vector space V is a linearly independent
subset of V that spans V.

Example 7.0.12. If the n-tuple

ei = (0, ..., 0, 1, 0, ..., 0)

has the 1 in the i-th position then {e1, e2, ..., en} is a basis for the vector space
Rn. This basis are called the natural (or canonical) basis.

A fundamental characterisation of bases is the following.

Theorem 7.0.38. A non-empty subset S of a vector space V is a basis of
V if and only if every element of V can be expressed in a unique way as a
linear combination of elements of S.

Proof. Suppose first that S is a basis of V. Then V = Span S and so, by
Theorem 7.0.35, every x ∈ V is a linear combination of elements of S. Now
since S is linearly independent, only one such linear combination is possible
for each x ∈ V ; for if

∑n
i=1 λixi =

∑n
i=1 µixi where xi ∈ S then

∑n
i=1(λi −

µi)xi = 0V whence each λi − µi = 0V and therefore λi = µi for each i.
Conversely, suppose that every element of V can be expressed in a unique
way as a linear combination of elements of S. Then, by Theorem 7.0.35, Span
S is the whole of V. Moreover, by the hypothesis, 0V can be expressed in only
one way as a linear combination of elements of S. This can only be the linear
combination in which all the scalars are 0F , It follows, therefore, that S is
also linearly independent. Hence S is a basis of V.

Theorem 7.0.39. Let V be a vector space that is spanned by the finite set
G = {v1, ..., vn}. If I = {w1, ..., wn} is a linearly independent subset of V
then necessarily m ≤ n.

Proof. Consider wi ∈ I. Since G is a spanning set of V, there exist scalars
λ1, ..., λn such that

w1 = λ1v1 + ...+ λnvn

and at least one of theλi is non-zero (otherwise every λi = 0 whence w1 = 0V
and this contradicts Theorem 7.0.36). By a suitable change of indices if
necessary, we may assume without loss that λ1 6= 0. We then have

v1 = λ−11 w1 − λ−11 λ2v2 − ...− λ−11 λnvn,

which shows that

V = SpanG = Span{v1, v2, ..., vn} ⊆ Span{wl, v2, v3, ..., vn}.
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It follows that
V = Span{wl, v2, v3, ..., vn}.

Now w2 can be written as a linear combination of wl, v2, v3, ..., vn in which
at least one of the coefficients of the vj is non-zero (otherwise w2 is a lin-
ear combination of w1, a contradiction). Repeating the above argument we
therefore obtain

V = Span{wl, w2, v3, ..., vn}.

Continuing in this way, we see that if p = min{m,n} then

V = Span{wl, ..., wp, vp+1, ..., vn}.

Now we see that m > n is impossible; for in this case p = n and we would
have V = Span{wl, w2, ..., wn} whence the elements wn+1, ..., wm would be
linear combinations of wl, w2, ..., wn and this would contradict the fact that
I is independent. Thus we conclude that m ≤ n.

Corollary 7.0.16. If V has a finite basis B then every basis of V is finite
and has the same number of elements as B.

Proof. Suppose thatB∗ were an infinite basis of V. Since, clearly, every subset
of a linearly independent set is also linearly independent, every subset of B*
is linearly independent Now B∗, being infinite, contains finite subsets that
have more elements than B. There would therefore exist a finite independent
subset having more elements than B. Since this contradicts Theorem 7.0.39,
we conclude that all bases of V must be finite. Suppose now that the basis B
has n elements and let B∗ be a basis with n∗ elements. By Theorem 7.0.39,
we have n∗ ≤ n. But, inverting the roles of B and B∗, we deduce also that
n ≤ n∗. Thus n∗ = n and so all bases have the same number of elements.

Corollary 7.0.17. If V has a finite basis then all linearly independent subsets
of V are finite.

Proof. If V has a finite basis of n elements and if there existed an infinite
independent subset then this would contain an independent subset of n + 1
elements, and by the above this is not possible.

Definition 7.0.19. By a finite-dimensional vector space we shall mean a
vector space V that has a finite basis. The number of elements in any basis
of V is called the dimension of V and will be denoted by dim V.

Example 7.0.13. The vector space Rn has dimension n.

Example 7.0.14. The vector space Matm×nR has dimension mn.
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Example 7.0.15. The set V of complex matrices of the form forms a real
vector space of dimension 6. In fact, V is a subspace of the real vector space
Mat2×2C. Moreover, the matrix[

α β
γ −α

]
=

[
a+ ib c+ id
e+ if −a− ib

]
can be written as

a

[
1 0
0 −1

]
+ b

[
i 0
0 −i

]
+ c

[
0 1
0 0

]
+ d

[
0 i
0 0

]
+ e

[
0 0
1 0

]
+ f

[
0 0
i 0

]
and as the six matrices involved in this belong to V and are clearly linearly
independent over R, they form a basis of the subspace that they span, which
is V.

We shall now establish some important facts concerning bases.

Theorem 7.0.40. Let V be a finite-dimensional vector space. If G is a
finite spanning set of V and if I is a linearly independent subset of V such
that I ⊆ G then there is a basis B of V such that I ⊆ B ⊆ G.

Proof. Observe first that if I also spans V then I is a basis of V and there is
nothing to prove. Suppose then that V 6= SpanI. Then we must have l ⊂ G
(for otherwise I = G and is a spanning set of V). We note first that there
exists gl ∈ G\I such that gl /∈ SpanI; for otherwise every element of G\I
belongs to Span I whence V = SpanG ⊆ SpanI and we have the contra-
diction V = SpanI. We then observe that I

⋃
{g1} is linearly independent;

otherwise we have the contradiction g1 ∈ SpanI. Now if I
⋃
{g1} spans V

then it is a basis, in which case no more proof is required since we can take
B = I

⋃
{g1}. If I

⋃
{g1} does not span V then we can repeat the above

argument to produce an element g2 ∈ G (I
⋃
{g1}) with I

⋃
{g1, g2}linearly

independent. Proceeding in this way we see, since G is finite by hypoth-
esis, that for some m the set B = I

⋃
{g1, g2, ..., gm} is a basis of V with

I ⊂ B ⊆ G.

Corollary 7.0.18. Every linearly independent subset I of a finite-dimensional
vector space V can be extended to form a basis.

Proof. By Corollary 7.0.17, I is finite. Take G = I
⋃
B where B is any basis

of V. Then by the above there is a basis B∗ with I ⊆ B∗ ⊆ I
⋃
B.

Corollary 7.0.19. If V is of dimension n then every linearly independent
set consisting of n elements is a basis of V.
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Corollary 7.0.20. If S is a subset of V then the following statements are
equivalent:

(1) S is a basis;

(2) S is a maximal independent subset (in the sense that if I is an indepen-
dent subset with S ⊆ I then S = I);

(3) S is a minimal spanning set (in the sense that if G spans V and G ⊆ S
then G= S).

Proof. Let S be a subset of V

(1)⇒(2) If I is independent with S ⊆ I then by Corollary 7.0.18 there is a basis
B such that I ⊆ B. Since S is a basis, and since all bases have the
same number of elements, we deduce that S = B = I.

(2)⇒(1) By CorolIary 7.0.18 there is a basis B with S ⊆ B. But B is also
independent so, by (2), we have S = B and therefore S is a basis.

(1)⇒(3) If G spans V then (recalling that φ is independent) there is a basis B
with φ ⊆ B ⊆ G. If G ⊆ S then B ⊆ S and both are bases. Again
since bases have the same number of elements, we deduce that B = G
= S.

(3)⇒(1) There is a basis B with φ ⊆ B ⊆ S. But B also spans V so, by (3), we
have B = S and so S is a basis.

This completes the proof.

Corollary 7.0.21. If V is of dimension n then every subset containing more
than n elements is linearly dependent. No subset containing fewer than n
elements can span V.

Theorem 7.0.41. Let V be a finite-dimensional vector space. If W is a
subspace of V then W is also of finite dimension, and dim W ≤ dim V.
Moreover, we have dim W= dim V ⇔ W= V.

Proof. Suppose that V is of dimension n. If I is a linearly independent subset
of W then, by Theorem 7.0.39, I has at most n elements. A maximal such
subset B is then, by Corollary 7.0.20, a basis of W. Hence W is also of finite
dimension, and dim W≤ dim V. Finally, if dim W = dim V = n then B is
a linearly independent subset of V having n elements whence, by Corollary
7.0.19, B is a basis of V. Hence W = Span B = V.
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Chapter 8

LINEAR MAPPINGS

Definition 8.0.20. If V and W are vector spaces over the same field F then
by a linear mapping (or linear transformation) from V to W we shall mean
a mapping f : V → W such that

1. (∀x, y ∈ V ) f(x+ y) = f(x) + f(y);

2. (∀x ∈ V ) (∀λ ∈ F ) f(λx) = λf(x).

If f : V → W is linear then V is sometimes called the departure space and
W the arrival space off.

Example 8.0.16. The mapping f : R2 → R3 given by

f(a, b) = (a+ b, a− b, b)

is linear.

Proof. For all (a, b) and (a′, b′) in R2 we have

f((a, b) + (a′, b′)) = f(a+ a′, b+ b′)
= (a+ a′ + b+ b′, a+ a′ − b− b′, b+ b′)
= (a+ b, a− b, b) + (a′ + b′, a′ − b′, b′)
= f(a, b) + f(a′, b′)

and for all (a, b) ∈ R2 and all λ ∈ R

f(λ(a, b)) = f(λa, λb)
= (λa+ λb, λa− λb, λb)
= λ(a+ b, a− b, b)
= λf(a, b).

This implies that f is linear.

49
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The following result contains two important properties of linear mappings.

Theorem 8.0.42. If the mapping f : V → W is linear then

1. f(0V ) = 0W ;

2. (∀x ∈ V ) f(−x) = −f(x).

Proof. 1. f(0V ) = f(0F0V ) = 0Ff(0V ) = 0W .

2. Using 1. we have ∀x ∈ V ,

f(x) + f(−x) = f(x+ (−x)) = f(0V ) = 0W ,

adding −f(x) to each side we get the result.

Definition 8.0.21. If f : V → W is linear then for every subset X of V we
define f→(X) to be the subset of W given by

f→(X) = {f(x) : x ∈ X}

and for every subset Y of W we define f←(Y ) to be the subset of V given by

f←(Y ) = x ∈ V : f(x) ∈ Y .

We often call f→(X) the direct image of X under f, and f←(Y ) the inverse
image of Y under f.

Theorem 8.0.43. Let f : V → W be linear. If X is a subspace of V then
f→(X) is a subspace of W; and if Y is a subspace of W then f←(Y ) is a
subspace of V.

Proof. Observe first that if X is a subspace of V then we have 0V ∈ X and
therefore 0W = f(0V ) ∈ f→(X). Thus f→(X) 6= φ. If now y1, y2 ∈ f→(X)
then yl = f(xl) and y2 = f(x2) for some xl, x2 ∈ X. Consequently, since X is
a subspace of V,

yl + y2 = f(xl) + f(x2) = f(x1 + x2) ∈ f→(X)

and, for every scalar λ,

λy1 = λf(x1) = f(λx1) ∈ f→(X).

Thus f→(X) is a subspace of W. Suppose now that Y is a subspace of W.
Observe that f(0V ) = 0W ∈ Y gives 0V ∈ f←(Y ), and therefore f←(Y ) 6= φ.
If now x1, x2 ∈ f←(Y ) and therefore

f(x1 + x2) = f(x1) + f(x2) ∈ Y
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whence x1 + x2 ∈ f←(Y ) and for every scalar λ,

f(λx1) = λf(x1) ∈ Y

whence λx1 ∈ f←(Y ). Thus f←(Y ) is a subspace of V.

Definition 8.0.22. Let f : V → W be linear. The biggest possible direct
image f→(V ) is called the image (or range) of f and is denoted by Im f. The
smallest possible inverse image f←({0V }) is called the kernel (or null-space)
of f and is denoted by Ker f.

Pictorially, these sets can be depicted as follows:

Example 8.0.17. If A is a given real n × n matrix, consider the linear
mapping fA : Matn×1R → Matn×1R by fA(x) = Ax. The image of fA

consists of all n× 1 column matrices

y1...
yn

 for which there exists

x1...
xn

 such

that Ax = y; that is, the set of all y such that there exist x1, ..., xn with
y = x1a1 + ...+xnan. In other words, Im fA is the subspace of Matn×1R that
is spanned by the columns of A. As for the kernel of fA this is the subspace
of Matn×1R consisting of the column matrices x such that Ax = 0; that is,
the solution space of the system Ax = 0.

Example 8.0.18. Consider the mapping f : R3 → R4 given by

f(a, b, c, d) = (a+ b, b− c, a+ d).

Since

(a+ b, b− c, a+ d) = a(1, 0, 1) + b(1, 1, 0) + c(0,−1, 0) + d(0, 0, 1)
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we see that Im f = Span{(1, 0, 1), (1, 1, 0), (0,−1, 0), (0, 0, 1)}. To find a basis
for 1m f , proceed as follows. Observe that Im f is the subspace spanned by
the rows of the matrix

A =


1 0 1
1 1 0
0 −1 0
0 0 1

 .
The Hermite form of A is

A =


1 0 0
0 1 0
0 0 1
0 0 0

 .
Since the rows of this matrix span the same subspace, and since they are lin-
early independent, we deduce that a basis for Im f is {(1, 0, 1), (1, 1, 0), (0,−1, 0)}.
Thus Im f = R3.

Definition 8.0.23. A linear mapping f : V → W is said to be surjective if
Im f = W (in other words, if every element of W is the image under f of
some element of V); and injective if f(x) 6= f(y) whenever x 6= y (in other
words, if f carries distinct elements to distinct elements). We say that f is
bijective if it is both injective and surjective.

Example 8.0.19. The i-th projection pri : Rn → R is surjective but not
injective.

Example 8.0.20. The linear mapping f : R2 → R3 given by

f(x, y) = (y, 0, x)

is injective but not surjective.

Example 8.0.21. The differentiation map D : Rn[X] → Rn[X] is neither
injective nor surjective.

Theorem 8.0.44. If f : V → W is linear then the following statements are
equivalent:

(1) f is injective;

(2) Ker f = {0}.

Proof. Let f : V → W be linear.
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(1)⇒ (2) : Suppose that f is injective. Then f is such that x 6= y ⇒ f(x) 6= f(y)
or, equivalently, f(x) = f(y) ⇒ x = y. Suppose now that x ∈ Ker f .
Then we have f(x) = 0W = f(0V ) whence we see that x = 0V and
consequently Ker f = {0}.

(2)⇒ (1) : Suppose that Ker f = {0} and let f(x) = f(y).

Then f(x − y) = f [x + (−y)] = f(x) + f(−y) = f(x) − f(y) = 0W so that
x− y ∈ Ker f = 0V and hence x = y, that is f is injective.

Example 8.0.22. The linear mapping f : R3 → R3 given by

f(x, y, z) = (x+ z, x+ y + 2z, 2x+ y + 3z)

is neither surjective nor injective. In fact, we have that (a, b, c) ∈ Imf if
and only if the system of equations

x+ z = a
x+ y + 2z = b
2x+ y + 3z = c

is consistent. The augmented matrix of the system is1 0 1 a
1 1 2 b
2 1 3 c


and this has Hermite form 1 0 1 a

0 1 1 b− a
0 0 0 c− b− a


We deduce from this that (a, b, c) ∈ Imf if and only if c = a + b, whence f
is not surjective.
Now (x, y, z) ∈ Ker f if and only if

x+ z = 0
x+ y + 2z = 0
2x+ y + 3z = 0

which is the associated homogeneous system of equations. By Theorem 8.0.44,
for Ker f to be the zero subspace we require this system to have a unique
solution (namely the trivial solution (0, 0, 0)). But, from the above Hermite
form, the coefficient matrix has rank 2 and so, non-trivial solutions exist.
Hence f is not injective.
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In the case of finite-dimensional vector spaces there is an important connec-
tion between the dimensions of the subspaces Im f and Ker f .

Theorem 8.0.45. [Dimension Theorem] Let V and W be vector spaces of
finite dimension over a field F. If f : V → W is linear then

dim V = dim Im f + dim Ker f.

Proof. Let {w1, w2, ..., wm} be a basis of Im f , and let {v1, v2, ..., vn} be a
basis of Ker f . Since each wi ∈ Im f , we can choose v∗1, v

∗
2, ..., v

∗
m ∈ V such

that f(v∗i ) = wi for i = 1, ...,m. We shall show that

{v∗1, v∗2, ..., v∗m, v1, v2, ..., vn}

is a basis of V. whence the result follows. Suppose that x E V, Since f(x) ∈
Im f there exist A λ1, ..., λm ∈ F such that

f(x) =
m∑
i=1

λiwi =
m∑
i=1

λif(v∗i ) =
m∑
i=1

f(λiv
∗
i ) = f(

m∑
i=1

λiv
∗
i ).

It follows that

x−
m∑
i=1

λiv
∗
i ∈ Ker f

and so there exist µ1, µ2, ..., µn ∈ F such that

x−
m∑
i=1

λiv
∗
i =

n∑
j=1

µjvj.

Thus every x ∈ V is a linear combination of v∗1, v
∗
2, ..., v

∗
m, v1, v2, ..., vn and so

V = Span {v∗1, v∗2, ..., v∗m, v1, v2, ..., vn}.

Suppose now that
m∑
i=1

λiv
∗
i +

n∑
j=1

µjvj = 0. (8.1)

Then we have
m∑
i=1

λiv
∗
i = −

n∑
j=1

µjvj ∈ Ker f

and consequently
m∑
i=1

λiwi = f(
m∑
i=1

λiv
∗
i ) = 0.
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whence λ1 = ... = λm = 0 since {w1, w2, ..., wm} is a basis of Im f . It
now follows from 8.1 that

∑n
j=1 µjvj = 0 whence µ1 = ... = µn = 0

since {v1, v2, ..., vn} is a basis of Ker f . Thus we see that the spanning
set {v∗1, v∗2, ..., v∗m, v1, v2, ..., vn} is also linearly independent and is therefore a
basis of V.

Definition 8.0.24. If f is a linear mapping then dim Im f is called the rank
of f; and dim Ker f is called the nullity of f.

Remark: The dimension theorem above can be stated in the form:

rank + nullity = dimension of departure space.

Example 8.0.23. Consider pr1 : R3 → R given by pr1(x, y, z) = x. We have
Im pr1 = R which is of dimension 1 since {1} is a basis of the real vector
space R; so pr1 is of rank 1. Also, Ker pr1 is the y, z-plane which is of
dimension 2. Thus pr1 is of nullity 2.

Theorem 8.0.46. Let V and W be vector spaces each of dimension n over a
field F. If f : V → W is linear then the following statements are equivalent:
(1) f is injective;
(2) f is surjective;
(3) f is bijective;
(4) f carries bases to bases, in the sense that if {v1, v2, ..., vn} is a basis of V
then {f(v1), f(v2), ..., f(vn)} is a basis of W.

Proof. (l)⇒ (3) : Suppose that f is injective. Then Ker f = {0} and so dim
Ker f = 0. By Theorem 8.0.45, it follows that

dim Im f = n = dim V = dim W.

It now follows by Theorem 7.0.41 that Im f = W and so f is also surjective,
and hence is bijective.
(2)⇒ (3) : Suppose that f is surjective. Then Im f = W and so, by Theorem
8.0.45,

dim Im f = dim W = n = dim V = dim Im f + dim Ker f

whence dim Ker f = 0. Thus Ker f = {0} and so, by Theorem 8.0.44,f is
also injective, and hence is bijective.
(3)⇒ (1) : and (3)⇒ are clear.
(1) ⇒ (4) : Suppose that f is injective. If {v1, v2, ..., vn} is a basis of V then
the elements f(v1), f(v2), ..., f(vn) are distinct. If now

∑n
i=1 λif(vi) = 0 then

f(
∑n

i=1 λivi) = 0 and so, since Ker f = {0}, we have
∑n

i=1 λivi = 0 and hence
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λ1 = ... = λn = 0. Thus {f(v1), f(v2), ..., f(vn)} is linearly independent.
That it is now a basis follows from Corollary 7.0.19.
(4) ⇒ (2) : Since every linear combination of f(v1), f(v2), ..., f(vn) belongs
to Im f , it is clear from (4) that Im f = W and so f is surjective.

Definition 8.0.25. A bijective linear mapping is called a linear isomorphism,
or simply an isomorphism. We say that vector spaces V, Ware isomorphic,
and write V ' W , if there is an isomorphism f : V → W.

Example 8.0.24. Let A = (x, y, 0);x, y ∈ R be the x, y-plane in R3, and let
B = (x, 0, z);x, z ∈ R be the x, z-plane. Consider the mapping f : A → B
given by f(x, y, 0) = (x, 0, y). Clearly, f is linear and bijective. Thus f is an
isomorphism and so A ' B.

Theorem 8.0.47. Let V be a vector space 01 dimension n ≥ 1 over a field
F. Then V is isomorphic to the vector space F n.

Proof. Let {v1, v2, ..., vn} be a basis of V. Consider the mapping f : V → F n.
given by the prescription

f(
n∑
i=1

λivi) = (λ1, ..., λn).

Since for every x ∈ V there are unique scalars λ1, ..., λn such that x =∑n
i=1 λivi it is clear that f is a bijection. It is clear that f is linear. Hence f

is an isomorphism.

Corollary 8.0.22. If V and W are vector spaces of the same dimension n
over F then V and W are isomorphic.

Proof. There are isomorphisms fV : V → F n and If : W → F n. Since
the inverse of an isomorphism is clearly also an isomorphism, so then is the
composite mapping f−1W ◦ fV : V → W.

Theorem 8.0.48. Let V and W be vector spaces over a field F. If {v1, v2, ..., vn}
is a basis of V and {w1, w2, ..., wn} are elements of W (not necessarily dis-
tinct) then there is a unique linear mapping f : V → W such that (i = l, ..., n)
f(vi) = wi.

Proof. Since every element of V can be expressed uniquely in the form∑n
i=1 λivi, we can define a mapping f : V → W by the prescription f(

∑n
i=1 λivi) =∑n

i=1 λiwi, that is, taking x as a linear combination of the basis elements,
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define f(x) to be the same linear combination of the elements w1, w2, ..., wn.
It is readily verified that f is linear. Moreover, for each i, we have

f(vi) = f(
n∑
j=1

δijvj) =
n∑
j=1

δijvj = wi.

As for the uniqueness, suppose that g : V → W is also linear and such that
g(vi) = wi for each i. Given x ∈ V , say x =

∑n
i=1 λivi, we have

f(vi) = f(
n∑
j=1

δijvj) =
n∑
j=1

δijvj = wi

whence g = f.

Corollary 8.0.23. A linear mapping is completely and uniquely determined
by its action on a basis.

Proof. If f : V → W is linear and B = {v1, v2, ..., vn} is a basis of V let
wi = f(vi) for each i. Then by the above f is the only linear mapping that
sends vi to wi. Moreover, knowing the action of f on the basis B, we can
compute f(x) for every x; for x =

∑n
i=1 λivi gives f(x) =

∑n
i=1 λif(vi).

Corollary 8.0.24. Two linear mappings f, g : V → W are equal if and only
if they agree on any basis of V.

Proof. If f(vi) = g(vi) for every basis element vi then by the above uniqueness
we have that f = g.

Example 8.0.25. Consider the basis {(1, 1, 0), (1, 0, 1), (0, 1, 1)} of R3. If
f : R3 → R2 is linear and such that

f(1, 1, 0) = (1, 2), f(1, 0, 1) = (0, 0), f(0, 1, 1) = (2, 1),

then we can determine f completely. In fact, we have

(1, 0, 0) =
1

2
(1, 1, 0) +

1

2
(1, 0, 1)− 1

2
(0, 1, 1)

and therefore

f(1, 0, 0) = 1
2
f(1, 1, 0) + 1

2
f(1, 0, 1)− 1

2
f(0, 1, 1)

= 1
2
(1, 2) + 1

2
(0, 0)− 1

2
(2, 1)

= (−1
2
, 1
2
).
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Likewise,

(0, 1, 0) = 1
2
(1, 1, 0)− 1

2
(1, 0, 1) + 1

2
(0, 1, 1)

(0, 0, 1) = −1
2
(1, 1, 0) + 1

2
(1, 0, 1) + 1

2
(0, 1, 1)

give
f(0, 1, 0) = 1

2
(1, 2) + 1

2
(2, 1) = (3

2
, 3
2
)

f(0, 0, 1) = −1
2
(1, 2) + 1

2
(2, 1) = (1

2
,−1

2
).
.

Consequently, f is given by

f(x, y, z) = f [x(1, 0, 0) + y(1, 0, 0) + z(0, 0, 1)]
= xf(1, 0, 0) + yf(1, 0, 0) + zf(0, 0, 1)
= x(−1

2
, 1
2
) + y(3

2
, 3
2
) + (1

2
,−1

2
)

= (1
2
(−x+ 3y + z), 1

2
(x+ 3y − z)).

Remark 1: Note that, alternatively, we could first have expressed (x, y, z)
as a linear combination of the given basis elements by solving an appropriate
system of equations, then using the given data.
Remark 2: Note that Theorem 8.0.46 is not true for vector spaces of infinite
dimension.

Example 8.0.26. Let V = SeqfR be the infinite-dimensional vector space of
finite sequences of real numbers. Since every element of V is a (finite) linear
combination of basis elements, we can define a linear mapping f : V → V by
specifying f(ei) for the basis elements e1, e2, e3, ... and extending to all of V
by linearity. Consider then the definition

f(ei) =

{
0 if i is odd;
e 1

2
i if i is even.

Since f(e1) = 0 = f(e3) we see that f is not injective. But, given any basis
element en we have en = f(e2n) ∈ Im f , so the subspace spanned by these
elements (namely, the whole of V) is contained in Im f . Hence Im f = V
and so f is surjective. If we define g : V → V by specifying g(ei) = e2i for
every i then we obtain an injective linear mapping that is not surjective.


