UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

B.Sc MATHEMATICS

(CORE COURSE)

SIXTH SEMESTER (2011 Admission)

COMPLEX ANALYSIS

Question Bank

Question bank				
Module- I				
(1) An analytic function with constant modulus is:				
A) zero				
C) identity map	D) None of these.			
(2) Real part of $f(z) = \log z$ is:				
$A) \frac{1}{2} \log(x^2 + y^2)$	$B) \log(x^2 + y^2)$			
C) $\log(x + iy)$	D) None of these			
(3) If n is a positive integer, then $(1+i\sqrt{3})^n + (1-i\sqrt{3})^n$	$\sqrt{3}$) ⁿ is equal to:			
A) $2^n \sin \frac{nf}{2}$	B) $2^{n+1} \cos \frac{nf}{3}$			
C) $2^{n+1} \sin \frac{nf}{3}$	D) None of these.			
(4) Value of $(1-i)^{10} + (1+i)^{10}$ equals:				
A) $1+i$	B) <i>i</i>			
C) 0	D) None of these.			
(5) Real part of $f(z) = z^3$ is:				
A) $x^3 - 3xy^2$	B) $x^3 + 3xy^2$			
C) $x^3 - 3x^2y$	D) None of these			
(6) If $f(z) = (x^2 + ay^2 - 2xy) + i(bx^2 - y^2 + 2xy)$ is	analytic, then value of a and b is			
A) -1, 1	B) 1, -1			
C) 1, 0	D) None of these			
(7) If G is an open set in complex plane and $f: G \to G$	C is differentiable, then on G, f is:			
A) Analytic	B) not analytic			
C) Discontinuous	D) bounded			
(8) Value of $(1+i)^{24}$ is:				
A) 2 ²⁴	B) $(\sqrt{2})^{24} e^{\frac{if}{4}}$			
C) 2 ¹²	D) None of these			
(9) For any complex number $ \mathcal{Z} $, $ e^{ z } \leq 1$ if:				
A) Re $z \ge 0$	B) Re $z \le 0$			

C) Im $z \le 0$

D) None of these

(10)	For any	complex number z	e^{z+fi}	equals:
(10)	I OI ally	complex mumber z	, .	cquais

B)
$$e^{iz}$$

C)
$$-e^{z}$$

D) None of these

(10) For any complex number
$$z$$
, e^{i} equals:
A) e^{z}
C) $-e^{z}$
(11) For any real number π , $\frac{e^{i} - e^{-i}}{i(e^{i} + e^{-i})} = \dots$

D) None of these

(12) If S and T are domains in the complex plane, which of the following need NOT be true?

A)
$$S \cup T$$
 is a domain if $S \cap T \neq W$

B)
$$S \cup T$$
 is an open set

C)
$$S \cap T$$
 is an open set

D)
$$S \cap T$$
 is a domain

(13) The derivative of
$$f(z) = \left(\frac{z^2 - 1}{z^2 + 1}\right)^{100} at \ z \neq \pm i$$
 is :

A)
$$z \left(\frac{z^2 - 1}{z^2 + 1} \right)^{99}$$

B)
$$400 z \frac{\left(z^2 - 1\right)^{99}}{\left(z^2 + 1\right)^{101}}$$

C)
$$400 \frac{(z^2-1)^{99}}{(z^2+1)^{101}}$$

D) None of these

(14) If f(z) is a real valued analytic function in a domain D, then :

A)
$$f(z)$$
 is a constant

B)
$$f(z)$$
 is identically zero

C)
$$f(z)$$
 has modulus 1

D) None of these

(15) If v is a harmonic conjugate for u, then a harmonic conjugate for v is:

D) None of these

(16) If f(z) is analytic and non zero in a domain D, then in D, $\ln |f(z)|$ is:

B) a constant

D) harmonic

(17) The function
$$e^{iz}$$
 has period:

B) 2f

$$_{)}f$$

(18) For real numbers
$$X$$
 and Y , $\sin(x+iy)$ equals:

A)
$$SinxCoshy + i cos xSinhy$$

C)
$$SinxCoshy - i cos xSinhy$$

(19) The function Log z is analytic at:

- A) all points in the complex plane
- B) all non zero complex numbers
- C) all complex numbers except that on the non positive real axis
- D) all complex numbers except that on the non positive imaginary axis

(20) Let G be a region not containing 0. Which of the following functions is NOT harmonic in G?

A)
$$x + y$$

B)
$$x^2 + y^2$$

C)
$$x^2 - y^2$$

D)
$$\log(x^2 + y^2)$$
.

(21) Which of the following is not harmonic?

$$A \cdot u = 2x(1-y)$$

B)
$$u = 2xy + 3y^2 - 2y^3$$

C)
$$u = 3x^2y + 2x^2 - y^3 - 2y^2$$

(22) If V is the imaginary part of an analytic function given by:	n f , an analytic function with real part ${\mathcal V}$ is			
A) $\frac{1}{f}$	B) - f			
f	D) - if			
C) if	D) - <i>y</i>			
(23) Value of the limit $\lim_{z\to 0} \frac{z}{z}$ equals:				
A)1	B) -1			
C) 0	D) Not exists			
(24) Real part of the function $f(z) = z ^2$ equals:				
A) $2xy$	B) $x^2 - y^2$			
C) $x^2 + y^2$	D) None of these			
(25) For any complex number Z , $\exp(z + 2f i)$ equ				
$A) \exp(z)$	B) $-\exp(z)$			
$C) \exp(\frac{1}{z})$	D) None of these			
(1) An arc $z = z(t)$; $a \le t \le b$ is simple if:	ule – II			
A) $z(t)$ is continuous	B) $z(t)$ is a one to one function			
C) $z(t)$ is such that $z(a) = z(b)$	D) None of these			
(2) Which of the following is not a simply connected				
A) circular disk	B) half planes			
C) an annulus region (3) Which of the following subset of C is a simply cor	D) a parallel strip			
A) $\{z \mid 0 < z < 1\}$	B) $\{z \mid ; 0 < z \le 4\}$			
C) $\{z \mid 1 < 2 \}$	D) $\{z \mid (0 \le z < 3\}$			
, .	nted counter clockwise. Then the value of the integral			
$\int_{\Gamma} \frac{\cos z dz}{z^2} \mathbf{is} :$	o de la companya de			
A) $2f$ i C)- $2f$ i	B) 0			
	D) undefined			
(5) The integral $\int_{ z =2f} \frac{Sin z}{(z-f)^2} dz$ where the curve is taken anti-clockwise, equals:				
A) $-2\pi i$.	B) $2\pi i$.			
C) 0.	D) $4\pi i$.			
(6) The value of the integral $\int_C \frac{dz}{(z-a)^{10}}$, where C is $ z-a = 3$ is:				
A) 0	B) 2f i			
C) f i	D) None of these			
(7) The only bounded entire functions are:				

Complex Analysis Page 3

B) harmonic functions

D) Exponential function

A) Real valued functions

C) Constant functions

(8) Suppose $f(z)$ is analytic inside and on unit circle. If $ f(z) \le 1$,	$\forall z$ with	z = 1
Then an upper bound for $ f^{-n}(0) $ is:		

B)
$$\frac{1}{n!}$$

$$c)$$
 n

D) None of these

(9) The integral $\oint_C \frac{dz}{z^2 - 1}$ around a closed curve containing -1 but not 1, has the value:

A)
$$-fi$$

B) 0

D) None of these

(10) The value of the integral
$$\int_C \frac{e^{5z}}{z^3} dz$$
, where C is $|z| = 3$ is:

A)
$$10f i$$

B) 2fi

C)
$$25fi$$

D) None of these

(11) Value of the integral
$$\int_{0}^{f} e^{it} dt$$
 is:

B) 0

D) None of these

(12) Value of
$$\oint_C \frac{3z-2}{z^2-z} dz$$
 where C is $|z|=2$; is:

A)
$$2fi$$

D)
$$-2fi$$

(13) If n is any non zero integer, then
$$\int_{0}^{2f} e^{in_{\pi}} d_{\pi}$$
 equals:

B) 2f

D) None of these

(14) The value of the integral
$$\int |z| dz$$
 evaluated and the semi circle $|z| = 1$; $0 \le \arg z \le f$ starting at $z = 1$ is:

A)
$$f$$
 i

 $B_i - f_i$

D) None of these

(15) Converse of Cauchy's integral theorem is known as:

A) Liouville's theorem

B) Goursat's theorem

C) Morera's theorem

D) Euler's theorem.

(16) The value of the integral
$$\frac{1}{2fi} \int_{|z|=1}^{\infty} \frac{\cos z}{z^3} dz$$
 is:

B) 1

D) -1/2

A)
$$z(t) = e^{it}; 0 \le t \le f$$

B)
$$z(t) = e^{it}$$
; $-f \le t \le f$

C)
$$z(t) = e^{i 2t}$$
; $0 \le t \le f$

D)
$$z(t) = e^{it}$$
; $0 \le t \le 2f$.

(18) The integral
$$\int_C \frac{ze^{-z}}{z^2+9} dz$$
 has non zero value if C is:

A)
$$|z| = 1$$

B)
$$|z| = 2$$

$$(z - 1) = 1$$

D)
$$|z| = 4$$

(19) If f is continuous in a domain D and if $\int_C f(z)dz = 0$ for every simple closed positively oriented contour C in D, then:

A) f is a constant in D

B) f is analytic in D

C) f is real valued in D

D) f is purely imaginary in D

(20) If f is a analytic within and on a simple closed, positively oriented contour C and if z_0 is a point

interior to C, then $\int_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz$ equals:

A) $\frac{2f i}{n!} f^n(z_0)$

 $B) \frac{n!}{2f i} f^n(z_0)$

C) $\frac{2f i}{n+1} f^{n}(z_{0})$

D) $\frac{2f i}{(n+1)!} f^n(z_0)$

Module - III

(1) A Maclaurin series is a Taylor series with centre

A) $z_0 = 1$

B) $z_0 = 0$

C) $z_0 = 2$

D) None of these

(2) Let f be an analytic function and let $f(z) = \sum_{n=0}^{\infty} a_n (z-2)^{2n}$ be its Taylor series in some disc. Then:

A) $f^{(n)}(0) = (2n)!a_n$

 $(B) f^{(n)}(2) = n! a_n$

 $C) f^{(2n)}(2) = (2n)! a_n$

 $D) f^{(2n)}(2) = (n)! a_n$

(3) The radius of convergence of the power series of the function $f(z) = \frac{1}{1-z}$ about z = 1/4 is:

A) 1

B)1/4

C) 3/4

D) 0

(4) The coefficient of 1/z in the Laurent series expansion of $f(z) = \frac{1}{z(z-2)}$ in the region 2< $|z| < \infty$ is:

A)0

B) $\frac{1}{2}$

C)2

D) 4

(5) If f(z) is entire, then $f(z) = \sum_{n=1}^{\infty} a_n z^n$ has radius of convergence:

 $C) \infty$

D) None of these

(6) A power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ always converges for:

A) at least one point z.

- B) all complex numbers z
- C) at all z which are either real or purely imaginary
- D) at all z with $|z z_0| < R$ for some R > 0.

(7) If f(z) admits a Laurent series expansion $\sum_{i=-\infty}^{\infty} a_{j}(z-a)^{j}$ in an annulus region. Then a_{j} is given by:

A) $\frac{1}{2fi} \int_{C} \frac{f(')}{('-a)^{j+1}} d'$

B) $\frac{j!}{2fi} \int_{C} \frac{f(')}{('-a)^{j+1}} d'$

C) $\frac{2fi}{j!} \int_{C} \frac{f(')}{('-a)^{j+1}} d'$

D) None of these

(8) If $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ is represented as the Laurent series, then z_0 is a removable singularity

of
$$f(z)$$
 if:

A)
$$a_n = 0$$
, for $n > 0$

B)
$$a_n = 0$$
, for $n < 0$

C)
$$a_n = 0$$
, for $n \ge 0$

D)
$$a_n = 0$$
, for $n \le 0$

(9) A function f(z) given by a power series is analytic at:

B) every point inside its circle of convergence

C) every point on its circle of convergence

D) every point in the complex plane

(10) The Taylor series expansion of $f(z) = e^z$ in the region $|z| < \infty$ is:

$$A) \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

B)
$$\sum_{n=0}^{\infty} n! z^n$$

$$C) \sum_{n=1}^{\infty} \frac{z^n}{n!}$$

D) None of these

(11) The singular points of the function $f(z) = \frac{1}{4z - z^2}$ are:

A)
$$z = 0$$
 and $z = -4$

B)
$$z = 0$$
 and $z = 4$

C)
$$z = 4$$
 and $z = -4$

$$D$$
) $z = 2$ and $z = -2$

(12) The singular points of the function $f(z) = \frac{e^z}{z(z^2+1)}$ that lies inside $|z-i| = \frac{3}{2}$ are:

A)
$$z = 0$$
 and $z = -i$

B)
$$z = 0$$
 and $z = i$

C)
$$z = i$$
 and $z = -i$

$$D$$
) $z = 0$ and $z = 1$

(13) The constant term in the Laurent series expansion of $f(z) = \frac{e^z}{z^2}$ in the region $0 < |z| < \infty$ is:

B)
$$\frac{1}{2}$$

D) None of these

(14) The Laurent series expansion of $f(z) = e^{\frac{1}{z}}$ in the region $0 < |z| < \infty$ is:

A)
$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$

B)
$$\sum_{n=0}^{\infty} n! z^n$$

$$C) \sum_{n=1}^{\infty} \frac{1}{n! z^n}$$

D) None of these

- (15) The power series $b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots$ converges:
 - A) inside of some circle |z| = R
- B) on the circle |z| = 1

C) on some circle |z| = R

D) outside of some circle |z| = R

Module- IV

- (1) The residue of $\frac{z^3}{z^2-1}$ at $z=\infty$ is:
 - A)(

B) -1

C) 1

D) ∞ .

- (2) Value of $\int_{0}^{\infty} \frac{Sin x}{x} dx$ is:
 - A) $\frac{f}{2}$

- B) 0
- C) ∞ D) 2f
- (3) If f(z) has a zero of order m at z_0 and g(z) has a pole of order n at z_0 and $n \le m$, then the product f(z)g(z) has at z_0 :
 - A) An essential singularity

B) a pole of order m - n

C) A removable singularity

- D) a pole of order m 1.
- (4) If f(z) has a pole of order m at z_0 , then $g(z) = \frac{f'(z)}{f(z)}$, at z_0 has:
 - A) a simple pole

B) a pole of order m

C) a pole of order m + 1

- D) a pole of order m 1.
- (5) If f(z) has a pole of order m at z_0 , then at z_0 , $\frac{1}{f(z)}$ has:
 - A) A removable singularity

B) an essential singularity

C) A pole of order m

D) none of these

- (6) Zeros of $Sin (1 z^{-1})$ are:
 - A) $\frac{1}{1+nf}$; $n \in \mathbb{Z}$

B) $\frac{1}{1-nf}$; $n \in \mathbb{Z}$

C) 1 + nf ; $n \in \mathbb{Z}$

D) 0.

- (7) For $f(z) = \frac{\tan z}{z}$, z = 0 is a:
 - A) Essential singularity

B) simple pole

C) Removable singularity

- D) double pole
- (8) If f(z) has a pole of order m at z=0, then $f(z^2)$ has a pole of order at z=0:
 - A) m

B) m²

C)2 m

- D) m + 1
- (9) Which of the following function has a simple zero at z=0 and an essential singularity z=1?
 - A) $_{7e}^{\frac{1}{z-1}}$

B) $ze^{\frac{1}{1+z}}$

C) $(z-1)e^{\frac{1}{z}}$

- D) $(z-1)e^{\frac{1}{z-1}}$
- (10) If $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ is represented as the Laurent series, then z_0 is a removable singularity
 - of f(z) if:
 - A) $a_n = 0$, for n > 0

B) $a_n = 0$, for n < 0

C) $a_n = 0$, for $n \ge 0$

- D) $a_n = 0$, for $n \le 0$
- (11) The function $f(z) = \frac{Sin z}{(z^2 1)^2}$ at z = 1 has :
 - A) pole of order 4

B) pole of order 1

C) pole of order 2

D) essential singularity

A) m - 1

B) m + 1

C) m

D) m²

(13) Residue of $f(z) = \frac{z^3 + 4z + 9}{(2z + 2)(z - 3)^5}$ at z = -1 is:

A) $\frac{-1}{64}$

B) $\frac{-1}{32}$

C) $\frac{-1}{16}$

D) None of these

(14) The function
$$f(z) = \frac{z^2 + 2iz + 3}{(z-i)^2(z+i)}$$
 at $z = i$ has:

A) Regular point

B) Simple pole

C) double pole

D) removable singularity

(15) Singularities of a rational function are:

A) poles

B) essential

C) non isolated

D) removable

(16) If
$$f(z) = \frac{1 - e^z}{1 + e^z}$$
, then at $z = \infty$, f(z) has:

A) Isolated singularity

B) non-isolated singularity

C) Pole

D) a zero

(17) If a function f(z) has an isolated singularity at $z = a_t$, then it is a removable singularity if:

A) $\lim_{z \to a} (z - a) f(z) \neq 0$

 $B) \lim_{z \to a} (z - a) f(z) = 0$

C) $\lim_{z \to a} f(z) \neq 0$

 $D) \lim_{z \to a} f(z) = 0$

(18) The singularity of the function $\frac{\sin z}{z}$ at z = 0 is:

A) Essential singularity

B) simple pole

C) Removable singularity

D) double pole

(19) Residue of
$$\frac{1}{z^m (1-z)^n}$$
, m and n are natural numbers at $z = 0$ is:

A) $\frac{(m+n-1)!}{(m-1)!(n-1)!}$

B) $\frac{(m+n-1)!}{m!n!}$

C)
$$\frac{(m+n-2)!}{(m-1)!(n-1)!}$$

D)
$$\frac{(m+n-2)!}{m! n!}$$

(20) At z = 1, the residue of
$$f(z) = \frac{z^2 + 1}{z(z - 1)}$$
 is:

A) -

B) 0

C) 1

D) 2

(21) The residue of
$$f(z) = \frac{2z+3}{z(z-1)}$$
 at $z = 1$ is:

A) - 5

B) 0

C) 2

D) None of these

(22) The function
$$f(z) = 1/\tan(\frac{f}{z})$$
, at $z = 0$ has a:

A) isolated singularity

B) a non-isolated singularity

C) simple pole

D) None of these

- (23) The zero of first order is known as
 - A) Complex zero
 - C) Singularity

- B) Simple zero
- D) None of these
- (24) The poles of the function $f(z) = \sin z / \cos z$ are at
 - A) (2n+1) $\pi \setminus 2$, n any integer
 - C) n π , n any integer

- B) $2n \pi \setminus 3$; n any integer
- D) None of these
- (25) For the function $f(z) = e^{1/z}$, the point z = 0 is a:
 - A) removable singularity
 - C) essential singularity

- B) simple pole
- D) None of these

SCHOOL OF DISTANCE EDUCATION - UNIVERSITY OF CALICUT B.Sc DEGREE PROGRAMME MATHEMATICS (CORE COURSE) SIXTH SEMESTER - MM6B010 - COMPLEX ANALYSIS

<u>Answer Key</u> Module – I						
1. B	2. A	3. B	4. C	5. A	6. A	7. A
8. C	9. B	10. C	11. B	12. D	13. B	14. A
15. B	16. D	17. B	18. A	19. C	20. B	21. B
22. D	23. D	24. C	25. A			
			Module – II	•		
1. B	2. C	3. D	4. B	5. A	6. A	7. C
8. A	9. A	10. C	11. A	12. C	13. A	14. C
15. C	16. D	17. A	18. D	19. B	20. A	
				_		
			Module – II	I		
1. B	2. C	3. C	4. A	5. C	6. A	7. A
8. B	9. B	10. A	11. B	12. B	13. B	14. C
15. D						
				_		
Module – IV						
1. C	2. A	3. C	4. A	5. A	6. B	7. C
8. C	9. A	10. B	11. C	12. B	13. D	14. B
15. A	16. B	17. B	18. C	19. C	20. D	21. D
22. B	23. B	24. A	25. C			

Complex Analysis Page 9