UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

BSc(MATHEMATICS)-VI SEMESTER-QUESTION BANK

MAT6B12-NUMBER THEORY AND LINEAR ALGEBRA

SHAMEEN M K
Assistant Professor,
Department of Mathematics,
T M Govt. College, Tirur.

- 1. If V is a vector space over the set of real numbers then (V,+) is
 - (a) a group
 - (b) an abelian group
 - (c) need not be an abelian group
 - (d) not a group

- 2. A subset W of a vector space V is a subspace if
 - (a) the sum of elements of W belongs to W
 - (b) the sum and scalar multiples of elements of W belongs to W
 - (c) the scalar multiples of elements of W belongs to W
 - (d) the sum of elements of V belongs to W

Answer: (b)

- 3. A subspace of a real vector space \mathbb{R} is
 - (a) $\{0\}$
 - (b) $\{1\}$
 - (c) $\{0,1\}$
 - $(d) \{1,1\}$

Answer: (a)

- 4. A subspace of a real vector space \mathbb{R}^2 is
 - (a) $\{(1, x); x \in \mathbb{R}\}$
 - (b) $\{(x,1); x \in \mathbb{R}\}$
 - (c) $\{(x,0); x \in \mathbb{R}\}$
 - (d) $\{(1, 1+x); x \in \mathbb{R}\}$

Answer: (c)

- 5. A line in \mathbb{R}^3 is a subspace of \mathbb{R}^3 if
 - (a) it passes through the origin
 - (b) it does not passes through the origin
 - (c) it passes through (1,0)
 - (d) it passes through (-1,0)

Answer: (a)

- 6. The intersection of any set of subspaces of a vector space V is
 - (a) not a subspace of V
 - (b) a subspace of V
 - (c) need not be a subspace of V
 - (d) a proper subspace of V

Answer: (b)

- 7. The union of any two subspaces of a vector space V is
 - (a) a subspace of V
 - (b) not a subspace of V
 - (c) need not be a subspace of V
 - (d) a proper subspace of V

Answer: (c)

- 8. The span of subset $\{(1,0),(0,1)\}$ of the real vector space \mathbb{R}^2 is
 - (a) \mathbb{R}^2
 - (b) \mathbb{R}^3

()	TD /
(c)	lK,∓

 $(d) \mathbb{R}$

Answer: (a)

- 9. If $e_i = (0, 0, \dots, 1, 0, \dots)$, where 1 is in the i^{th} position. Then the span of subset $\{e_1, e_2, \dots, e_n\}$ of the real vector space \mathbb{R}^n is
 - (a) \mathbb{R}^2
 - (b) \mathbb{R}^3
 - (c) \mathbb{R}^n
 - (d) \mathbb{R}

Answer: (c)

- 10. The subspace of the real vector space \mathbb{R}^3 spanned by $\{(1,0,0),(0,0,1)\}$ is
 - (a) $\{(x,0,z); x,z \in \mathbb{R}\}$
 - (b) $\{(x, y, z); x, y, z \in \mathbb{R}\}$
 - (c) $\{(0,0,z); z \in \mathbb{R}\}$
 - (d) $\{(x,0,0); x \in \mathbb{R}\}$

Answer: (a)

- 11. The subset $\{(1,0),(0,1)\}$ of the real vector space \mathbb{R}^2 is
 - (a) linearly independent
 - (b) linearly dependent
 - (c) neither linearly independent nor dependent
 - (d) not a basis

Answer: (a)

- 12. A linearly independent subset of a vector space V does not contain
 - (a) 3
 - (b) 1
 - (c) 2
 - (d) 0_V

Answer: (d)

- 13. The vectors $\{(1,1),(2,2)\}$ of real vector space \mathbb{R}^2 is
 - (a) linearly independent
 - (b) linearly dependent
 - (c) neither linearly independent nor dependent
 - (d) a basis

Answer: (b)

- 14. The set $Mat_{m \times n} \mathbb{R}$ of all $m \times n$ matrices with real entries under the usual operations of addition of matrices and multiplication by scalars is
 - (a) a real vector space
 - (b) a complex vector space
 - (c) not a real vector space
 - (d) not a complex vector space

Answer: (a)

- 15. The subset $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix} \right\}$ of $Mat_{2\times 2}\mathbb{R}$ is
 - (a) linearly independent
 - (b) linearly dependent

- (c) neither linearly independent nor dependent
- (d) not a basis

- 16. A basis of a vector space V is a subset of V which is
 - (a) linearly independent and spans V
 - (b) linearly dependent and spans V
 - (c) linearly independent only
 - (d) linearly dependent

Answer: (a)

- 17. A basis of a vector space $\mathbb{R}_3[X]$ of all polynomials of degree atmost three is
 - (a) $1, X, X^2, X^3, X^4$
 - (b)1, X, X^2
 - (c)1,X
 - (d) $1, X, X^2, X^3$

Answer: (d)

- 18. A basis of real vector space \mathbb{R}^3 is
 - (a) $\{(1,1,1),(2,2,2),(1,0,0)\}$
 - (b) $\{(1,1,1),(1,1,0),(1,0,0)\}$
 - (c) $\{(1,1,1),(1,1,1),(1,1,0)\}$
 - (d) $\{(1,1,1),(2,2,2),(3,3,3)\}$

Answer: (b)

- 19. If B_1 and B_2 are any two finite bases of a vector space V then
 - (a) number of elements in $B_1 >$ number of elements in B_2
 - (b) number of elements in B_1 < number of elements in B_2
 - (c) number of elements in B_1 =number of elements in B_2
 - (d) number of elements in $B_1 \neq$ number of elements in B_2

Answer: (c)

- 20. The dimension of real vector space \mathbb{R}^n is
 - (a) 2
 - (b) 4
 - (c) n+1
 - (d) n

Answer: (d)

- 21. The dimension of the vector space $Mat_{m\times n}\mathbb{R}$ is
 - (a) m+n
 - (b) mn
 - (c) m
 - (d) n

Answer: (b)

- 22. The dimension of the vector space \mathbb{C} over \mathbb{C} is
 - (a) 2
 - (b) 4
 - (c) 1
 - (d) 3

Answer: (c)

- 23. The dimension of the vector space \mathbb{C} over \mathbb{R} is
 - (a) 2
 - (b) 4
 - (c) 1
 - (d) 3

- 24. If a vector space V is of dimension n then every linearly independent set containing n elements is
 - (a) a basis of V
 - (b) not a basis of V
 - (c) need not be a basis of V
 - (d) linearly dependent

Answer: (a)

- 25. If a vector space V is of dimension n then every subset containing more than n elements is
 - (a) linearly independent
 - (b) linearly dependent
 - (c) neither linearly independent nor dependent
 - (d) a basis

Answer: (b)

- 26. If W is a subspace of a finite dimensional vector space V then
 - (a) dim $V = \dim W$
 - (b) dim $V \leq \dim W$
 - (c) dim $V > \dim W$
 - (d) dim $V \neq \dim W$

Answer: (c)

- 27. The map $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by f(a,b) = (a+b,a-b,b) is
 - (a) linear
 - (b) not linear
 - (c) not injective
 - (d) not surjective

Answer: (a)

- 28. The subset $\{(1,1),(1,-1)\}$ of real vector space \mathbb{R}^2 is
 - (a) linearly independent only
 - (b) linearly dependent
 - (c) neither linearly independent nor dependent
 - (d) a basis

Answer: (d)

- 29. A subset of a linearly independent set is
 - (a) linearly independent
 - (b) linearly dependent
 - (c) neither linearly independent nor dependent
 - (d) need not be linearly independent

Answer: (a)

30. Let S_1 and S_2 be non empty subsets of a vector space such that $S_1 \subset S_2$. If S_1 is linearly dependent then S_2 is

- (a) linearly independent
- (b) linearly dependent
- (c) neither linearly independent nor dependent
- (d) need not be linearly dependent

- 31. The differentiation map, $D: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$ given by $D(a_0 + a_1X + - + a_nX^n) = a_1 + 2a_2X + - + na_nX^{n-1}$ is
 - (a) linear
 - (b) not linear
 - (c) injective
 - (d) surjective

Answer: (a)

- 32. A map $f: \mathbb{R} \longrightarrow \mathbb{R}$ which is linear is
 - (a) $f(x) = x^2$
 - (b) f(x) = 3x
 - (c) $f(x) = x^3$
 - (d) $f(x) = \sqrt{x}$

Answer: (b)

- 33. If the map $f: V \longrightarrow W$ is linear then $f(0_V) = ----$
 - $(a)0_V$
 - (b) 0
 - (c) 0_W
 - (d) 1

Answer: (c)

- 34. If the map $f: V \longrightarrow W$ is linear then for all $x \in V$, f(-x) = -----
 - (a) -f(x)
 - (b) f(x)
 - (c) $(f(x))^2$
 - (d) 1

Answer: (a)

- 35. If the map $f:V\longrightarrow W$ is linear. If X is a subspace of V then $f^{\rightarrow}(X)$ is a
 - (a) a subspace of V
 - (b) not a subspace of W
 - (c) a subspace of W
 - (d) a subset of V

Answer: (c)

- 36. If the map $f:V\longrightarrow W$ is linear. If Y is a subspace of W then $f^{\leftarrow}(Y)$ is a
 - (a) a subspace of V
 - (b) not a subspace of V
 - (c) a subspace of W
 - (d) a subset of W

Answer: (a)

- 37. If the map $f:V\longrightarrow W$ is linear. Then the image or range of f is
 - (a) $f^{\rightarrow}(W)$
 - (b) $f^{\rightarrow}(V)$

	(c) $f^{\leftarrow}(V)$ (d) $f^{\leftarrow}(W)$ Answer : (b)
38.	If the map $f:V\longrightarrow W$ is linear. Then the kernel or null space of f is (a) $f^{\rightarrow}(W)$ (b) $f^{\rightarrow}(\{0_V\})$ (c) $f^{\leftarrow}(\{0_W\})$ (d) $f^{\leftarrow}(W)$ Answer: (c)
39.	The Im D of differentiation map, $D: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$ is (a) $\mathbb{R}_n[X]$ (b) $\mathbb{R}_{n-2}[X]$ (c) $\mathbb{R}_{n-1}[X]$ (d) $\mathbb{R}_{n+1}[X]$ Answer : (c)
40.	The Ker D of differentiation map, $D: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$ is (a) $\mathbb{R}_n[X]$ (b) \mathbb{R}^2 (c) $\mathbb{R}_{n-1}[X]$ (d) \mathbb{R} Answer : (d)
41.	The i^{th} projection $pr_i: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $pr_i(x_1,, x_n) = x_i$ is (a) linear only (b) not linear (c) linear and surjective (d) linear and injective Answer : (c)
42.	The image of i^{th} projection $pr_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $pr_i(x_1,, x_n) = x_i$ is (a) \mathbb{R} (b) \mathbb{R}^2 (c) \mathbb{R}^3 (d) \mathbb{R}^n Answer: (a)
43.	The kernel of i^{th} projection $pr_i: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $pr_i(x_1,, x_n) = x_i$ is (a) \mathbb{R}^n (b) \mathbb{R} (c) \mathbb{R}^3 (d) the set of all n-tuples whose i -th component is zero $\mathbf{Answer}: (\mathbf{d})$
44.	The map $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by $f(a,b) = (b,0,a)$ is (a) linear only (b) not linear (c) linear and surjective (d) linear and injective Answer : (d)

45.	If the map $f:V\longrightarrow W$ is linear and injective then $\operatorname{Ker} f$ is (a) $\{0\}$ (b) V (c) W (d) $V+W$ Answer: (a)
46.	Let V and W be vector spaces of finite dimension over a field F . If $f:V\longrightarrow W$ is linear then dim Im $f+\dim\ker f$ is (a) $\dim W$ (b) $\dim V$ (c) $\dim (V+W)$ (d) $\dim (V\cap W)$ Answer: (b)
47.	The rank of 1^{st} projection $pr_1: \mathbb{R}^3 \longrightarrow \mathbb{R}$ defined by $pr_1(x, y, z) = x$ is (a) 1 (b) 2 (c) 3 (d) 4 Answer : (a)
48.	If $f:V\longrightarrow W$, where V and W are vector spaces over a field F . Then f is a linear isomorphism if f is (a) linear only (b) linear and injective (c) linear and surjective (d) linear and bijective Answer: (d)
49.	Let V be a vector space of dimension $n \geq 1$ over a field F . Then V is isomorphic to the vector space (a) \mathbb{R}^{n-1} (b) \mathbb{R}^n (c) \mathbb{R}^5 (d) \mathbb{R}^4 Answer: (b)
50.	A linear mapping is completely and uniquely determined by its action on (a) domain (b) range (c) a basis (d) kernel Answer: (c)
51.	The quotient and reminder when 10 is divided by 3 is (a) 3 and 1 (b) 2 and 1 (c) 3 and 2

(d) 4 and 1 **Answer** : (a)

- 52. If a, b, c are any integers and a|b and b|c then
 - (a) c|a
 - (b) c|b
 - (c) b|a
 - (d) a|c

- 53. Suppose a and b are integers with $a \neq 0$, then a|b if
 - (a) a = bc, c is some integer
 - (b) b = ac, c is some integer
 - (c) c = ab, c is some integer
 - (d) ab = 1

Answer: (b)

- 54. If a and b are two non zero integers and gcd(a,b) = d, then d is the greatest positive integer with
 - (a) d|a and d|b
 - (b) d|a only
 - (c) d|b only
 - (d) a|d and b|d

Answer: (a)

- 55. gcd(-5,5) = ----
 - (a) 3
 - (b) 1
 - (c) 5
 - (d) -5

$\mathbf{Answer}: (\mathbf{c})$

- 56. a is an integer, a|1 if
 - (a) $a = \pm 1$
 - (b) $a = \pm 2$
 - (c) a = 2
 - (d) $a = \pm 3$

Answer: (a)

- 57. gcd(-8, 36) = ----
 - (a) 36
 - (b) -8
 - (c) 8
 - (d) 4

Answer: (d)

- 58. Let a and b be integers, not both zero. Then a and b are relatively prime and only if there exists integers x and y such that
 - (a) 1 = ax + by
 - (b) 2 = ax + by
 - (c) ab = ax + by
 - (d) a b = ax + by

Answer: (a)

- $59. \ \gcd(39, 42, 54) = ---$
 - (a) 8

- (b) 39 (c) 3 (d) 6 Answer: (c)(a) $|a| \le |b|$ (b) |b| < |a|(c) $|a| \neq |b|$ (a) $ab = \pm 1$ (b) $a = \pm b$ (c) ab = 1
- 60. Let a and b be integers. If a|b and $b \neq 0$, then
 - (d) $|a| \le -|b|$

- 61. The Euclidean algorithm is used for finding the
 - (a) lcm of two integers
 - (b) gcd of two integers
 - (c) prime numbers
 - (d) composite numbers

Answer: (b)

- 62. If a, b, c are integers with a|b and b|a, then
 - (d) a/x + b/y = 1, x and y are integers

Answer: (b)

- 63. A linear combination of integers a and b is

 - (b) a/x + b/y, x and y are integers
 - (c) ab = 1
 - (d) ax + by, x and y are integers

Answer: (d)

- 64. The product of any three consecutive integers is divisible by
 - (a) 36
 - (b) 9
 - (c) 6
 - (d) 8

Answer: (c)

- 65. If gcd(a,b) = 1 then gcd(a+b,a-b) = ----
 - (a) 3 or 4
 - (b) 1 or 2
 - (c) 5 or 6
 - (d) 7 or 8

Answer: (b)

- 66. If p is a prime, then $p^{\#}$ is the
 - (a) sum of all primes that are less than or equal to p
 - (b) product of all primes that are less than or equal to p
 - (c) sum of squares of all primes that are less than or equal to p
 - (d) product of all primes that are greater than or equal to p

Answer: (b)

67.	31# + 1 is (a) prime (b) composite (c) even integer (d) irrational Answer: (a)
68.	If a and b are non zero integers with $a b$, then $gcd(a,b)=$ (a) $ a $ (b) b (c) ab (d) a Answer: (d)
69.	The number of primes is (a) finite (b) infinite (c) uncountable (d) 1729 Answer: (b)
70.	Two integers a and b , not both of which are zero, are said to be relatively prime if (a) $\gcd(a,b)=a$ (b) $a b$ (c) $\gcd(a,b)=1$ (d) $b a$ Answer : (c)
71.	If $gcd(a, b) = d$, then $gcd(a / d, b / d) =$ (a) 1 (b) b (c) a (d) d Answer: (a)
72.	If a, b, c are any integers with $a bc$ and $gcd(a, b) = 1$, then (a) $b a$ (b) $a c$ (c) $c a$ (d) $c b$ Answer: (b)
73.	If a is an odd integer then $gcd(3a, 3a + 2) =$ (a) 3 (b) 5 (c) 1 (d) 2 Answer : (c)
74.	The $gcd(12378, 3054) =$ (a) 6 (b) 1

	(c) 3 (d) 2 Answer : (a)
75.	If $k > 0$, then $gcd(ka, kb) =$ (a) $a \ gcd(k, b)$ (b) $b \ gcd(a, k)$ (c) kab (d) $k \ gcd(a, b)$ Answer : (d)
76.	For any integer $k \neq 0$, then $gcd(ka, kb) =$ (a) $ k \ gcd(a, b)$ (b) $b \ gcd(a, k)$ (c) $k \ gcd(a, b)$ (d) $a \ gcd(k, b)$ Answer : (a)
77.	The $lcm(a,b)$ is the least positive integer m with (a) $a m$ and $b m$ (b) $a m$ only (c) $b m$ only (d) $m a$ and $m b$ Answer: (a)
78.	For positive integers a and b , $gcd(a,b)lcm(a,b) =$ (a) $a+b$ (b) ab (c) $a-b$ (d) a/b Answer : (b)
79.	The $lcm(3054, 12378) =$ (a) 6300402 (b) 6678 (c) 6300400 (d) 300402 Answer : (a)
80.	If a and b are non zero integers and $k>0$, then $lcm(ka,kb)=$ (a) a $lcm(k,b)$ (b) b $lcm(a,k)$ (c) k $lcm(a,b)$ (d) kab Answer: (c)
81.	The linear Diophantine equation $ax + by = c$ has a solution if and only if (a) $gcd(a,c) b$ (b) $gcd(a,b) c$ (c) $gcd(c,b) a$ (d) $c gcd(a,b)$ Answer: (b)

- 82. Which of the following Diophantine equation cannot be solved?
 - (a) 6x + 51y = 22
 - (b) 33x + 14y = 115
 - (c) 14x + 35y = 93
 - (d) 11x + 13y = 21

- 83. An integer p > 1 is called a prime, if its only positive divisors are
 - (a) 1 and p
 - (b) 1 and 2
 - (c) 2 and p
 - (d) 3 and p

Answer: (a)

- 84. Every positive integer n > 1 can be expressed as a product of
 - (a) composite numbers
 - (b) prime numbers
 - (c) even numbers
 - (d) odd numbers

Answer: (b)

- 85. If n is an odd pseudoprime, then $2^n 1$ is
 - (a) pseudoprime
 - (b) prime
 - (c) irrational
 - (d) not pseudoprime

Answer: (a)

- 86. If p is a prime and p|ab, then
 - (a) p|a only
 - (b) p|b only
 - (c) p|a or p|b
 - (d) p|a and p|b

Answer: (c)

- 87. The Sieve of Eratosthenes is used for finding,
 - (a) all primes below a given integer
 - (b) all even numbers below a given integer
 - (c) all odd numbers below a given integer
 - (d) all composite numbers below a given integer

Answer: (a)

- 88. If p is any prime then \sqrt{p} is
 - (a) prime
 - (b) an integer
 - (c) irrational
 - (d) rational

Answer: (c)

- 89. If m and n are positive integers and n|m, then
 - (a) $R_n | R_m$
 - (b) $R_m|R_n$

	(c) $R_n m$ (d) $R_n n$ Answer : (a)
90.	If a and b are integers. Then $a \equiv b \pmod{n}$ is equivalent to (a) a is a multiple of n (b) b is a multiple of n (c) $a - b$ is a multiple of n (d) $a + b$ is a multiple of n Answer: (c)
91.	$ \equiv 24 \pmod{7}$ (a) 1 (b) 2 (c) 4 (d) 3 Answer : (d)
92.	If a is an odd integer, then $a^2 \equiv\pmod 8$ (a) 1 (b) 2 (c) 3 (d) 4 Answer : (a)
93.	Let $n > 1$ be fixed and a,b,c are integers. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then (a) $ac \equiv 1 \pmod{n}$ (b) $1 \equiv bc \pmod{n}$ (c) $a \equiv c \pmod{n}$ (d) $ab \equiv -1 \pmod{n}$ Answer: (c)
94.	$(1001111)_2 =$ (a) 79 (b) 89 (c) 69 (d) 99 Answer : (a)
95.	If a is a solution of $P(x) \equiv 0 \pmod{n}$ and $a \equiv b \pmod{n}$, then (a) ab is also a solution (b) $a + b$ is also a solution (c) $a - b$ is also a solution (d) b is also a solution Answer : (d)
96.	Give an example for $a^2 \equiv b^2 \pmod{n}$ need not imply $a \equiv b \pmod{n}$ (a) $a = 2, b = 3, n = 5$ (b) $a = 4, b = 9, n = 5$ (c) $a = 8, b = 13, n = 5$ (d) $a = 16, b = 11, n = 5$ Answer : (a)

- 97. If a is an odd integer then $a^2 1$ is
 - (a) a multiple of 7
 - (b) a multiple of 8
 - (c) a multiple of 11
 - (d) a multiple of 9

- 98. The International Standard Book Number(ISBN) consists of nine digits $a_1a_2,....a_9$ followed by a tenth check digit a_{10} , which satisfies
 - (a) $a_{10} \equiv \sum_{k=1}^{9} k a_k \pmod{9}$
 - (b) $a_{10} \equiv \sum_{k=1}^{9} k a_k \pmod{11}$
 - (c) $a_{10} \equiv \sum_{k=1}^{9} ka_k \pmod{10}$
 - (d) $a_{10} \equiv \sum_{k=1}^{9} k a_k \pmod{7}$

Answer: (b)

- 99. The system of linear congruences $ax + by \equiv r \pmod{n}$, $cx + dy \equiv s \pmod{n}$ has a unique solution modulo n whenever
 - (a) qcd(a c, n) = 1
 - (b) gcd(a-d,n)=1
 - (c) gcd(ad bc, n) = 2
 - (d) gcd(ad bc, n) = 1

Answer: (d)

- 100. Any palindrome with even number of digits is divisible by
 - (a) 5
 - (b) 2
 - (c) 11
 - (d) 12

Answer: (c)

- 101. The solution of $25x \equiv 15 \pmod{29}$ is
 - (a) $x \equiv 18 \; (mod \; 29)$
 - (b) $x \equiv 29 \pmod{29}$
 - (c) $x \equiv 18 \pmod{19}$
 - (d) $x \equiv 17 \pmod{19}$

Answer: (a)

- 102. The number of primes of the form $n^2 2$ is
 - (a) finite
 - (b) infinite
 - (c) 1729
 - (d) 1

Answer: (b)

- 103. Let p be a prime and suppose that $p \nmid a$ then $a^{p-1} 1$ is
 - (a) a multiple of p^2
 - (b) a multiple of p
 - (c) a multiple of 2p

(d) a multiple of p-1Answer: (b)104. If p is a prime and a is any integer then $a^p - a$ is (a) a multiple of p^2 (b) a multiple of p-1(c) a multiple of 2p(d) a multiple of p Answer: (d)105. If p and q are distinct prime with $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$, then (a) $a^{p+q} \equiv a \pmod{pq}$ (b) $a^{pq} \equiv a \pmod{pq}$ (c) $a^{p-q} \equiv a \pmod{pq}$ (d) $a^{p/q} \equiv a \pmod{pq}$ Answer: (b)106. An integer n is called a pseudoprime if (a) $n \mid 2^n - 2$ (b) n is composite and $n \mid 2^n - 2$ (c) n is prime and $n \mid 2^n - 2$ (d) n is composite and $n \mid 2^n - 1$ Answer: (b)107. A composite number n for which $a^n \equiv a \pmod{n}$ is called (a) a pseudoprime (b) a prime (c) a pseudoprime to the base a (d) an absolute pseudoprime Answer: (c)108. The composite numbers n that are pseudoprime to every base a are called (a) a pseudoprime (b) a prime (c) a pseudoprime to the base a(d) absolute pseudoprimes Answer: (d)109. If p is a prime, then (p-1)! + 1 is (a) a multiple of p(b) a multiple of p-1(c) a multiple of p+1(d) a multiple of p^2 Answer: (a)110. The reminder when 12! is divided by 13 is

Answer: (a)

(a) 12(b) 13(c) 2(d) 3

- 111. $\tau(12) = ---$
 - (a) 5
 - (b) 6
 - (c) 7
 - (d) 8

- 112. $\sigma(12) = - -$
 - (a) 28
 - (b) 26
 - (c) 23
 - (d) 32

Answer: (a)

- 113. If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ is the prime factorization of n > 1, then $\tau(n) = --$
 - (a) $k_1 + k_2 + \dots + k_r$
 - (b) $(k_1+1)(k_2+1)....(k_r+1)$
 - (c) $k_1 k_2 k_r$
 - (d) $k_1 k_2 \dots k_r$

Answer: (b)

- 114. A number theoretic function f is said to be multiplicative if whenever gcd(m,n)=1, then
 - (a) f(mn) = f(m) + f(n)
 - (b) f(mn) = f(m)f(n)
 - (c) f(mn) = f(m) f(n)
 - (d) f(mn) = f(m) / f(n)

Answer: (b)

- 115. The domain of number theoretic function is the
 - (a) set of prime numbers
 - (b) set of negative integers
 - (c) set of rational numbers
 - (d) set of positive integers

Answer: (d)

- 116. If m and n are relatively prime integers then $\tau(mn) = ---$
 - (a) $\tau(m) + \tau(n)$
 - (b) $\tau(m) \tau(n)$
 - (c) $\tau(m)\tau(n)$
 - (d) $\tau(m) / \tau(n)$

Answer: (c)

- 117. If m and n are relatively prime integers then $\sigma(mn) = ---$
 - (a) $\sigma(m) + \sigma(n)$
 - (b) $\sigma(m) \sigma(n)$
 - (c) $\sigma(m) / \sigma(n)$
 - (d) $\sigma(m)\sigma(n)$

Answer: (d)

- 118. The largest integer less than or equal to π , $[\pi] = ---$
 - (a) 3

	(b) 4 (c) π (d) $\pi - 1$ Answer : (a)
119.	If n and r are positive integers with $1 \le r < n$, then the binomial coefficient $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ is (a) an integer (b) a prime (c) irrational (d) an even integer Answer : (a)
120.	If n is a prime, then $\phi(n) =$ (a) n (b) $n-1$ (c) $n+1$ (d) $n-2$ Answer : (b)
121.	If m and n are relatively prime integers then $\phi(mn) =$ (a) $\phi(m) + \phi(n)$ (b) $\phi(m) / \phi(n)$ (c) $\phi(m) - \phi(n)$ (d) $\phi(m)\phi(n)$ Answer: (d)
122.	For $n > 2$, $\phi(n)$ is (a) an odd integer (b) an even integer (c) irrational (d) prime Answer : (b)
123.	$\phi(360) =$ (a) 96 (b) 98 (c) 86 (d) 90 Answer : (a)
124.	If $n \ge 1$ and $gcd(a, n) = 1$, then $a^{\phi(n)} - 1$ is (a) a multiple of n^2 (b) a multiple of n (c) a multiple of $n - 1$ (d) a multiple of $n + 2$ Answer : (b)
125.	For any integer $a, a^{37} \equiv \pmod{1729}$ (a) a (b) $2a$ (c) a^2 (d) $a-1$ Answer : (a)
