UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

BSc(MATHEMATICS)-VI SEMESTER-QUESTION BANK

MAT6B13[E02]-LINEAR PROGRAMMING

SHAMEEN M K Assistant Professor, Department of Mathematics, T M Govt. College, Tirur.

- 1. In a Linear Programming Problem, the constraints are
 - (a) linear(b) quadratic(c) cubic(d) constants
 - **Answer**: (a)
- A subset S ⊂ Rⁿ is said to be convex, if for each pair of points x, y in S,
 (a) S ⊂ [x : y]
 - (b) the line segment $[\mathbf{x} : \mathbf{y}] \subset \mathbf{S}$ (c) $\mathbf{x} - \mathbf{y} \in \mathbf{S}$ (d) $\mathbf{xy} \in \mathbf{S}$ Answer : (b)
- 3. For any two points **x** and **y** in $\mathbf{R}^{\mathbf{n}}$, the set $\{u : u = \lambda \mathbf{x} + (1 \lambda)\mathbf{y}, 0 \le \lambda \le 1\}$ is called (a) the circle
 - (b) a parabola
 - (c) an ellipse
 - (d) the line segment joining the points x and y

 $\mathbf{Answer}:(\mathbf{d})$

- 4. For any two points \mathbf{x} and \mathbf{y} in \mathbf{R}^{n} , the line segment $[\mathbf{x} : \mathbf{y}]$ is
 - (a) convex
 - (b) not convex
 - (c) a loop
 - (d) a half space
 - $\mathbf{Answer}:(\mathbf{a})$
- 5. In \mathbf{R}^3 the closed ball $\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2 \leq \mathbf{1}$ is
 - (a) not convex
 - (b) convex
 - (c) a loop
 - (d) a half space Answer : (b)
- 6. The intersection of a finite number of convex sets is
 - (a) not convex
 - (b) a half space
 - (c) a cone
 - (d) convex

```
Answer : (d)
```

- 7. A nonempty subset $\mathbf{C} \subset \mathbf{R}^{\mathbf{n}}$ is said to be a CONE if for each $\mathbf{x} \in \mathbf{C}$ and $\lambda \geq 0$, (a) the vector $\lambda \mathbf{x}^2 \in \mathbf{C}$
 - (b) the vector $\lambda \mathbf{x} \notin \mathbf{C}$
 - (c) the vector $\lambda \mathbf{x} \in \mathbf{C}$
 - (d) the vector $\lambda \mathbf{x} \in \mathbf{R}^{\mathbf{n}}$
 - Answer : (c)
- 8. The sets $H_1 = {\mathbf{x} | \mathbf{c} \cdot \mathbf{x} \ge z}$ and $H_2 = {\mathbf{x} | \mathbf{c} \cdot \mathbf{x} \le z}$ are called
 - (a) hyper planes
 - (b) circles

- (c) line segments(d) closed half spacesAnswer : (d)
- 9. The closed half spaces are
 - (a) not convex
 - (b) hyper planes
 - (c) convex
 - (d) a cone
 - $\mathbf{Answer}:(\mathbf{c})$
- 10. The intersection of a finite number of closed half spaces in \mathbb{R}^n is called
 - (a) a polyhedral convex set
 - (b) a half space
 - (c) a cone
 - (d) a convex set
 - $\mathbf{Answer}:(\mathbf{a})$
- 11. If $A \subset \mathbf{R}^{\mathbf{n}}$, then the convex hull of A is the
 - (a) convex set containing A
 - (b) intersection of all convex sets containing ${\cal A}$
 - (c) union of all convex sets containing ${\cal A}$
 - (d) subset of a convex set containing A

 $\mathbf{Answer}:(\mathbf{b})$

- 12. Union of convex sets is
 - (a) convex
 - (b) not convex
 - (c) need not be convex
 - (d) a cone

 $\mathbf{Answer}:(\mathbf{c})$

- 13. The set of all convex combinations of a finite number of vectors $\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_k}$ in $\mathbf{R^n}$ is (a) not a convex set
 - (b) a hyper plane
 - (c) a cone
 - (d) a convex set
 - $\mathbf{Answer}:(\mathbf{d})$
- 14. Let $x_1, x_2, ..., x_k$ be a finite number of vectors in \mathbb{R}^n . Then the set of all convex combinations of the given vectors is called a
 - (a) polytope
 - (b) cone
 - (c) hyper plane
 - (d) convex set
 - $\mathbf{Answer}:(\mathbf{a})$
- 15. A convex polyhedron having exactly (n + 1) vertices is
 - (a) not a convex set
 - (b) a hyperplane
 - (c) a cone
 - (d) a simplex in n dimension

 $\mathbf{Answer}:(\mathbf{d})$

16. An ϵ -nbd of $x_0 \in \mathbf{R}^1$ is (a) $\{x_0\}$ (b) $(x_0 - \epsilon, x_0 + \epsilon)$ (c) $(x_0 + \epsilon, x_0 - \epsilon)$ (d) $(-\epsilon, \epsilon)$ Answer : (b)

17. A set that contains the ϵ -nbd of each of its points, is called

- (a) the boundary of the set
- (b) the closure of the set
- (c) an open set
- (d) a closed set
- $\mathbf{Answer}:(\mathbf{c})$
- 18. A set is said to be closed if its,
 - (a) complement is open
 - (b) complement is not open
 - (c) complement is convex
 - (d) complement is not convex

Answer : (a)

- 19. Int [0,1] = ---(a) $(0 - \epsilon, 1 - \epsilon)$ (b) [0,1](c) (1,2)(d) (0,1)**Answer** : (d)
- 20. Let S be a convex subset of the plane, bounded by lines in the plane. Then a linear function $z = c_1x_1 + c_2x_2$, where $x_1, x_2 \in S$, c_1 and c_2 are scalars, attains its extreme values at
 - (a) the interior of S
 (b) the vertices of S
 (c) the exterior of S
 (d) the X-axis
 Answer : (b)
- 21. The solution of Maximize $z = 2x_1 + 3x_2$ subject to the constraints:
- $x_{1} + 2x_{2} \leq 10$ $x_{1} + x_{2} \leq 6$ $x_{1} \leq 4$ $x_{1}, x_{2} \geq 0 \text{ is}$ (a) 2,4
 (b) 2,3
 (c) 2,5
 (d) 2,9 **Answer** : (a)
 22. $\partial (0, 1) = - -$ (a) $\{0\}$
 - (b) $\{0,1\}$

(c) {1}
(d) {0,2}
Answer : (b)

- 23. In a General Linear Programming Problem, the objective function is
 - (a) cubic
 - (b) quadratic
 - (c) linear
 - (d) constant Answer : (c)

24. If the constraints of a General Linear Programming Problem is $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$, $i = 1, 2, \dots, k$, then the slack variables x_{n+i} satisfy

(a)
$$\sum_{j=1}^{n} a_{ij}x_j + x_{n+i} = b_i$$
, $i = 1, 2,, k$
(b) $\sum_{j=1}^{n} a_{ij}x_j + x_{n+i} \neq b_i$, $i = 1, 2,, k$
(c) $\sum_{j\leq 1}^{n} a_{ij}x_j + x_{n+i} \leq b_i$, $i = 1, 2,, k$
(d) $\sum_{j=1}^{n} a_{ij}x_j + x_{n+i} \geq b_i$, $i = 1, 2,, k$
Answer: (a)

25. If the constraints of a General Linear Programming Problem is $\sum_{j=1}^{n} a_{ij}x_j \geq b_i$, $i = 1, 2, \dots, k$, then the surplus variables x_{n+i} satisfy

(a)
$$\sum_{j=1}^{n} a_{ij}x_j + x_{n+i} = b_i$$
, $i = 1, 2,, k$
(b) $\sum_{j=1}^{n} a_{ij}x_j - x_{n+i} \neq b_i$, $i = 1, 2,, k$
(c) $\sum_{j\leq 1}^{n} a_{ij}x_j - x_{n+i} \leq b_i$, $i = 1, 2,, k$
(d) $\sum_{j=1}^{n} a_{ij}x_j - x_{n+i} = b_i$, $i = 1, 2,, k$

26. A feasible solution to the General Linear Programming Problem is

(a) any solution to a General L.P.P.

Answer : (d)

- (b) a particular solution to a General L.P.P.
- (c) any solution to a General L.P.P. which satisfies the non-negative restrictions

(d) a particular solution to a General L.P.P. which satisfies the non-negative restrictions **Answer** : (c)

27. An optimum solution to the General Linear Programming Problem is

(a) any feasible solution to a General L.P.P.

- (b) any feasible solution which optimizes the objective function
- (c) any solution to a General L.P.P. which satisfies the non-negative restrictions
- (d) a particular solution to a General L.P.P. which satisfies the non-negative restrictions **Answer** : (b)

- 28. The standard form of L.P.P. is
 - (a) Maximize $z = \mathbf{c}^{\mathbf{T}} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} \ge \mathbf{b}, \mathbf{x} \ge 0$
 - (b) Maximize $z = \mathbf{c}^{\mathbf{T}} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$
 - (c) Minimize $z = \mathbf{c}^{\mathbf{T}} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$
 - (d) Maximize $z = \mathbf{c}^{T}\mathbf{x}$ subject to constraints: $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$ Answer : (d)
- 29. The *canonical form* of L.P.P. is
 - (a) Maximize $z = \mathbf{c}^{\mathbf{T}} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} \ge \mathbf{b}, \mathbf{x} \ge 0$
 - (b) Maximize $z = \mathbf{c}^{T} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} < \mathbf{b}, \mathbf{x} > 0$
 - (c) Minimize $z = \mathbf{c}^{\mathbf{T}} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$
 - (d) Maximize $z = \mathbf{c}^{\mathbf{T}} \mathbf{x}$ subject to constraints: $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$

$$\mathbf{Answer}: (\mathbf{b})$$

- 30. In the iteration of simplex method, if $z_j c_j \ge 0$ for all j, then the initial basic feasible solution is
 - (a) not a solution
 - (b) not optimal
 - (c) an optimum solution
 - (d) none of the above

 $\mathbf{Answer}:(\mathbf{c})$

- 31. A degenerate solution to the system Ax = b is
 - (a) a basic solution with one or more basic variables vanish
 - (b) a solution with one or more basic variables vanish
 - (c) a particular solution with one or more basic variables vanish
 - (d) a basic solution with no basic variable vanish

Answer : (a)

- 32. A feasible solution to an L.P.P. which is also a basic solution to the problem is called (a) an optimum solution to the L.P.P.
 - (b) a standard solution to the L.P.P.
 - (c) a basic feasible solution to the L.P.P.
 - (d) a feasible solution to the L.P.P.
 - Answer : (c)
- 33. Let $\mathbf{x}_{\mathbf{B}}$ and $\mathbf{x}_{\mathbf{B}}^*$ be two basic feasible solutions to the standard L.P.P., then $\mathbf{x}_{\mathbf{B}}^*$ is said to be an improved basic feasible solution as compared to $\mathbf{x}_{\mathbf{B}}$, if

(a) $\mathbf{c}_{\mathbf{B}}^{\mathbf{T}^*} \cdot \mathbf{x}_{\mathbf{B}}^* \leq \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}}$, where $\mathbf{c}_{\mathbf{B}}^*$ is constituted of cost components corresponding to $\mathbf{x}_{\mathbf{B}}^*$ (b) $\mathbf{c}_{\mathbf{B}}^{\mathbf{T}^*} \cdot \mathbf{x}_{\mathbf{B}}^* \neq \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}}$, where $\mathbf{c}_{\mathbf{B}}^*$ is constituted of cost components corresponding to $\mathbf{x}_{\mathbf{B}}^*$ (c) $\mathbf{c}_{\mathbf{B}}^{\mathbf{T}^*} \cdot \mathbf{x}_{\mathbf{B}}^* = \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}}$, where $\mathbf{c}_{\mathbf{B}}^*$ is constituted of cost components corresponding to $\mathbf{x}_{\mathbf{B}}^*$ (d) $\mathbf{c}_{\mathbf{B}}^{\mathbf{T}^*} \cdot \mathbf{x}_{\mathbf{B}}^* \geq \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}}$, where $\mathbf{c}_{\mathbf{B}}^*$ is constituted of cost components corresponding to $\mathbf{x}_{\mathbf{B}}^*$ Answer : (d)

34. A basic feasible solution $\mathbf{x}_{\mathbf{B}}$ to the L.P.P., Maximize $z = \mathbf{c}^{\mathbf{T}}\mathbf{x}$ subject to constraints: $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$ is called an optimum basic feasible solution if

(a) $z_0 = \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}} \geq z^*$, where z^* is the value of the objective function for any feasible solution

(b) $z_0 = \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}} \leq \mathbf{z}^*$, where z^* is the value of the objective function for any feasible solution

(c) $z_0 = \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}} \neq \mathbf{z}^*$, where z^* is the value of the objective function for any feasible solution

(d) $z_0 = \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \cdot \mathbf{x}_{\mathbf{B}} < \mathbf{z}^*$, where z^* is the value of the objective function for any feasible solution Answer : (a)

- 35. The set of feasible solutions to an L.P.P. is
 - (a) an open set
 - (b) not a convex set
 - (c) a convex set
 - (d) a cone
 - Answer : (c)
- 36. A hyperplane in \mathbb{R}^n is
 - (a) a convex set
 - (b) not a convex st
 - (c) a cone
 - (d) none of the above

 $\mathbf{Answer}:(\mathbf{a})$

- 37. The number of extreme points of the convex set of feasible solutions of an L.P.P. is (a) infinite
 - (b) finite
 - (c) 1
 - (d) 3

Answer : (\mathbf{b})

- 38. L.P.P.s involving artificial variables can be solved by using
 - (a) simplex algorithm
 - (b) graph
 - (c) simplex method
 - (d) two-phase simplex method

 $\mathbf{Answer}:(\mathbf{d})$

- 39. If $A = \{a, b, c\}$, where a, b, c are three points in the plane, then convex hull of A is (a) a circular disc containing a, b, c
 - (b) a triangular region whose vertices are a, b, c
 - (c) a square whose three vertices are a, b, c
 - (d) none of the above

 $\mathbf{Answer}:(\mathbf{b})$

40. Big M method is used to solve an L.P.P., if it contains

- (a) artificial variables
- (b) variables
- (c) surplus variables
- (d) slack variables
- $\mathbf{Answer}:(\mathbf{a})$
- 41. A variable x is called unrestricted if
 - (a) x is zero only
 - (b) x is negative only
 - (c) x is positive, negative or zero
 - (d) x is positive only

Answer : (c)

- 42. The dual of L.P.P., Maximize z = c^Tx subject to constraints: Ax ≤ b, x ≥ 0, x, c ∈ Rⁿ, b ∈ R^m, A is an m × n matrix, is
 (a) Maximize z* = b^Tw subject to constraints: A^Tw ≥ c, w ≥ 0, c ∈ Rⁿ, w, b ∈ R^m, A^T is the transpose of an m × n matrix A
 (b) Minimize z* = b^Tw subject to constraints: A^Tw ≥ c, w ≥ 0, c ∈ Rⁿ, w, b ∈ R^m, A^T is the transpose of an m × n matrix A
 (c) Minimize z* = b^Tw subject to constraints: A^Tw ≤ c, w ≥ 0, w, c ∈ Rⁿ, b ∈ R^m, A^T is the transpose of an m × n matrix A
 (d) Maximize z* = b^Tw subject to constraints: A^Tw ≤ c, w ≥ 0, w, c ∈ Rⁿ, b ∈ R^m, A^T is the transpose of an m × n matrix A
 (d) Maximize z* = b^Tw subject to constraints: A^Tw ≤ c, w ≥ 0, w, c ∈ Rⁿ, b ∈ R^m, A^T is the transpose of an m × n matrix A
 (d) Maximize z* = b^Tw subject to constraints: A^Tw ≤ c, w ≥ 0, w, c ∈ Rⁿ, b ∈ R^m, A^T is the transpose of an m × n matrix A
- 43. If the number of dual variables are m and primal constraints are n, then

(a) $m \neq n$ (b) m > n(c) m < n(d) m = nAnswer : (d)

- 44. If A is the constraint coefficient matrix associated with primal and B is the constraint coefficient matrix associated with dual, then
 - (a) $B = A^T$ (b) B = A
 - (c) $B = A^{-1}$
 - (d) $A = B^{-1}$
 - $\mathbf{Answer}:(\mathbf{a})$
- 45. The objective function in primal problem is
 - (a) minimization type only
 - (b) maximization and minimization type
 - (c) maximization or minimization type
 - (d) maximization type only

 $\mathbf{Answer}:(\mathbf{c})$

- 46. The dual of dual problem is
 - (a) the unsymmetric dual problem
 - (b) the unsymmetric primal problem
 - (c) the dual problem
 - (d) the primal problem
 - Answer : (\mathbf{d})
- 47. A transportation problem is
 - (a) not an L.P.P.
 - (b) an L.P.P.
 - (c) a dual problem only
 - (d) a primal problem only
 - $\mathbf{Answer}:(\mathbf{b})$
- 48. In a transportation problem, let $a_i > 0$, i = 1, 2, ..., m be the availability at the i^{th} origin and $b_j > 0$, j = 1, 2, ..., n be the requirement at the j^{th} destination, then the problem is said to be balanced, if

(a)
$$\sum_{i=1}^{m} a_i \neq \sum_{j=1}^{n} b_j$$

(b)
$$\sum_{i=1}^{m} a_i \leq \sum_{j=1}^{n} b_j$$

(c)
$$\sum_{i=1}^{m} a_i \geq \sum_{j=1}^{n} b_j$$

(d)
$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

Answer: (d)

- 49. A balanced transportation problem has
 - (a) an optimal solution always
 - (b) no solution
 - (c) no feasible solution
 - (d) no optimal solution

 $\mathbf{Answer}:(\mathbf{a})$

- 50. In a transportation problem, the coefficients of constraints are
 - (a) 2 only
 - (b) 1 only
 - (c) either 0 or 1
 - (d) 0 only

 $\mathbf{Answer}:(\mathbf{c})$

- 51. If there are m origins and n destinations in a transportation problem, then the order of the matrix containing the coefficients of constraints is
 - (a) $(m+n) \times mn$ (b) $(m-n) \times mn$ (c) $(m+n) \times (m+n)$ (d) $mn \times (m+n)$ Answer : (a)
- 52. A system of n linear equations $A\mathbf{x} = \mathbf{b}$ is called a triangular system if the matrix A is (a) unit matrix
 - (b) zero matrix
 - (c) diagonal matrix
 - (d) triangular matrix
 - Answer : (d)
- 53. The column coefficients of the dual constraints are
 - (a) the coefficients of the primal objective function
 - (b) the column coefficients of the primal constraints
 - (c) the row coefficients of the primal constraints
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{c})$
- 54. If the primal is of maximization type, then the dual is
 - (a) minimization type
 - (b) maximization type
 - (c) either maximization or minimization type
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{a})$
- 55. An initial feasible solution to a T.P. is obtained by(a) method of penalties

- (b) North-west corner rule
- (c) two-phase simplex method
- (d) big M method Answer : (b)
- 56. An initial basic feasible solution to a T.P. is obtained by
 - (a) method of penalties
 - (b) two-phase simplex method
 - (c) row minima method
 - (d) big M method

Answer : (c)

- 57. An initial basic feasible solution to a T.P. is obtained by
 - (a) method of penalties
 - (b) column minima method
 - (c) two-phase simplex method
 - (d) big M method
 - Answer : (b)
- 58. In a transportation problem, let $a_i > 0$, i = 1, 2, ..., m be the availability at the i^{th} origin and $b_j > 0$, j = 1, 2, ..., n be the requirement at the j^{th} destination, then the problem is said to be unbalanced, if

(a)
$$\sum_{i=1}^{m} a_i \neq \sum_{j=1}^{n} b_j$$

(b) $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$
(c) $\sum_{i=1}^{m} a_i + \sum_{j=1}^{n} b_j = 1$
(d) $\sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = 1$
Answer : (a)

- 59. An L.P.P. can be solve using graphical method if it has
 - (a) more than four variables
 - (b) only two variables
 - (c) more than two variables
 - (d) three variables

Answer : (\mathbf{b})

- 60. The assignment problem is a special case of transportation problem because
 - (a) the number of origins is not equal to number of destinations
 - (b) the number of origins is greater than number of destinations
 - (c) the number of origins is less than number of destinations
 - (d) the number of origins is equal to number of destinations Answer : (d)
- 61. The assignment problem is solved using
 - (a) method of penalties
 - (b) two-phase simplex method
 - (c) Hungarian method
 - (d) big M method

Answer : (c)

- 62. Hungarian method for solving assignment problem is
 - (a) an iterative method
 - (b) a direct method
 - (c) a computer program
 - (d) both direct and iteratve method
 - $\mathbf{Answer}:(\mathbf{a})$
- 63. An optimal solution of transportation problem is obtained by
 - (a) north-west corner rule
 - (b) row minima method
 - (c) VAM
 - (d) MODI method

 $\mathbf{Answer}:(\mathbf{d})$

- 64. MODI method is
 - (a) a direct method
 - (b) an iterative method
 - (c) a computer program
 - (d) both direct and iterative method

 $\mathbf{Answer}: (\mathbf{b})$

- 65. The initial basic feasible solution of a transportation problem obtained by north-west corner rule is
 - (a) an optimum
 - (b) near to optimum
 - (c) far from optimum
 - (d) none of the above

Answer : (c)

- 66. In a transportation problem there is more demand than the availability, then the problem is said to be
 - (a) unbalanced
 - (b) balanced
 - (c) degenerate
 - (d) non degenerate
 - $\mathbf{Answer}:(\mathbf{a})$
- 67. In an assignment problem, the number of jobs and number of persons are not equal then the problem is
 - (a) balanced
 - (b) unbalanced
 - (c) degenerate
 - (d) non degenerate
 - $\mathbf{Answer}:(\mathbf{b})$
- 68. An unbalanced assignment problem can be solved by
 - (a) adding dummy rows or columns
 - (b) adding dummy rows only
 - (c) adding dummy columns only
 - (d) none of the above
 - Answer : (a)

- 69. A General Linear Programming Problem consists of (a) an objective function
 - (b) a set of constraints
 - (c) an objective function and a set of constraints
 - (d) none of the above

Answer : (c)

70. Cl(2,7) = --

- (a) (2,7)(b) (2,7]
- (c) [2,7]
- (d) [2,7]

 $\mathbf{Answer}: (\mathbf{d})$

- 71. A circular disc in a plane is
 - (a) a convex set
 - (b) a half space
 - (c) a hyperplane
 - (d) not a convex set
 - **Answer** : (a)
- 72. If ${\bf S}$ and ${\bf T}$ are two convex sets in ${\bf R^n}$, then ${\bf S}+{\bf T}$ is
 - (a) a half space
 - (b) a convex set
 - (c) a hyperplane
 - (d) not a convex set

 $\mathbf{Answer}:(\mathbf{b})$

- 73. If ${\bf S}$ and ${\bf T}$ are two convex sets in ${\bf R^n}$, then ${\bf S-T}$ is
 - (a) a half space
 - (b) not a convex set
 - (c) a hyperplane
 - (d) a convex set

 $\mathbf{Answer}:(\mathbf{d})$

- 74. A simplex in zero dimension is
 - (a) a point
 - (b) a line
 - (c) a square
 - (d) none of the above
 - Answer: (a)
- 75. A simplex in one dimension is
 - (a) a point
 - (b) a line segment
 - (c) a square
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{b})$
- 76. A simplex in two dimension is
 - (a) a point
 - (b) a line

(c) a triangle (d) none of the above Answer : (c)

77. A cone is

- (a) a convex set always
- (b) need not be a convex set
- (c) a point
- (d) none of the above
- $\mathbf{Answer}:(\mathbf{b})$
- 78. A point is called a boundary point of a set S, if every ϵ -nbd of that point contains
 - (a) a point of S and a point not in S
 - (b) a point of S only
 - (c) a point, not in S only
 - (d) a point of S or a point not in S
 - $\mathbf{Answer}:(\mathbf{a})$
- 79. Int [3, 6] = - -(a) $(3 - \epsilon, 6 - \epsilon)$ (b) [3, 6](c) (3, 6)(d) (2, 7)Answer : (c)
- 80. Cl(3,6) = - -(a) $(3 - \epsilon, 6 - \epsilon)$ (b) (0,1)(c) (3,6)(d) [3,6]Answer : (d)
- 81. In graphical method for solving an L.P.P., the solution space is in
 - (a) first quadrant
 - (b) second quadrant
 - (c) third quadrant
 - (d) fourth quadrant
 - $\mathbf{Answer}:(\mathbf{a})$
- 82. In graphical method for solving an L.P.P., the solution space is
 - (a) not a convex set
 - (b) a convex set
 - (c) unbounded
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{b})$
- 83. In a Linear Programming Problem, if the objective function is of minimization type, then it can be converted into maximization type by
 - (a) multiplying the objective function by 2
 - (b) multiplying the objective function by 3
 - (c) multiplying the objective function by -1
 - (d) multiplying the objective function by -2
 - $\mathbf{Answer}:(\mathbf{c})$

- 84. In a Linear Programming Problem, all the variables are
 - (a) non negative
 - (b) negative
 - (c) 0
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{a})$
- 85. The optimal solution to an L.P.P. is
 - (a) always infinite
 - (b) always finite
 - (c) unique
 - (d) either unique or infinite
 - $\mathbf{Answer}:(\mathbf{d})$
- 86. Let f be a linear function of n variables, then by Minimax theorem,
 - (a) Minimum $f(\mathbf{x}) = \text{Maximum}\{\mathbf{f}(\mathbf{x})\}$
 - (b) Minimum $f(\mathbf{x}) = \text{Maximum}\{-f(\mathbf{x})\}$
 - (c) Minimum $f(\mathbf{x}) = -\text{Maximum}\{-f(\mathbf{x})\}$
 - (d) Minimum $f(\mathbf{x}) = -\text{Maximum}\{f(\mathbf{x})\}$

 $\mathbf{Answer}:(\mathbf{c})$

- 87. The simplex method is
 - (a) an iterative method
 - (b) a direct method
 - (c) both direct and iterative method
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{a})$

88. The objective function in dual problem is

- (a) maximization type only
- (b) maximization or minimization type
- (c) minimization type only
- (d) none of the above

 $\mathbf{Answer}:(\mathbf{b})$

- 89. In a transportation problem the number of origins and destinations are
 - (a) equal
 - (b) not equal
 - (c) need not be equal
 - (d) none of the above
 - Answer : (c)
- 90. Loop is associated with
 - (a) two-phase simplex method
 - (b) big M method
 - (c) assignment problem
 - (d) transportation problem
 - $\mathbf{Answer}:(\mathbf{d})$
- 91. A feasible solution to a T.P. is basic if and only if the corresponding cells in the transportation table
 - (a) do not contain a loop

- (b) contain a loop
- (c) contain zero vectors
- (d) none of the above
- $\mathbf{Answer}:(\mathbf{a})$
- 92. In north west corner rule, the first assignment is made in the cell occupying,
 - (a) bottom corner of the transportation table
 - (b) north-west corner of the transportation table
 - (c) top-right corner of the transportation table
 - (d) none of the above

 $\mathbf{Answer}:(\mathbf{b})$

- 93. In row minima method, the first assignment is made in the cell with
 - (a) smallest cost in the second row of the transportation table
 - (b) smallest cost in the transportation table
 - (c) largest cost in the first row of the transportation table
 - (d) smallest cost in the first row of the transportation table

 $\mathbf{Answer}:(\mathbf{d})$

- 94. In matrix minima method, the first assignment is made in the cell with
 - (a) smallest cost in the second row of the transportation table
 - (b) smallest cost in the first column of the transportation table
 - (c) smallest cost in the cost matrix of the transportation table
 - (d) smallest cost in the first row of the transportation table **Answer** : (c)
- 95. Vogel's approximation method is connected with
 - (a) T.P.
 - (b) assignment problem
 - (c) both T.P. and assignment problem
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{a})$
- 96. An unbalanced transportation problem can be solved by
 - (a) introducing dummy destinations or sources
 - (b) introducing dummy destinations only
 - (c) introducing dummy sources only
 - (d) none of the above
 - $\mathbf{Answer}:(\mathbf{a})$
- 97. In an assignment problem with cost (c_{ij}) , if all the $c_{ij} \ge 0$, then a feasible solution (x_{ij}) is an optimal solution if
 - (a) $\sum \sum c_{ij} c_{ij} x_{ij} = 1$ (b) $\sum \sum c_{ij} c_{ij} x_{ij} = -1$ (c) $\sum \sum c_{ij} c_{ij} x_{ij} = 2$ (d) $\sum \sum c_{ij} c_{ij} x_{ij} = 0$ Answer : (d)

98. The maximum assignment problem can be converted into minimization problem,

- (a) by substracting from the lowest element, all the elements of the given cost matrix
- (b) by adding from the highest element, all the elements of the given cost matrix
- (c) by substracting from the highest element, all the elements of the given cost matrix

(d) none of the above Answer : (c)

- 99. In the iteration of simplex method, if there are more than one negative $z_j c_j$, then we may choose
 - (a) the most negative of them
 - (b) the largest of them
 - (c) any one of them
 - (d) none of the above

 $\mathbf{Answer}:(\mathbf{a})$

- 100. An example of an L.P.P. is
 - (a) assignment problem
 - (b) transportation problem
 - (c) both (a) and (b)
 - (d) none of the above

 $\widehat{\mathbf{Answer}}:(\mathbf{c})$
